

South Carolina

1835 Assembly Street, Suite 1270 Columbia, South Carolina 29201 803-765-5411 803-253-3989

July 20, 2020

In Reply Refer To: **HDA-SC**

Mr. Chad Long Director Environmental Services Office South Carolina Department of Transportation (SCDOT) 955 Park Street, P.O. Box 191 Columbia, South Carolina 29202

Subject: I-26 Widening and Interchange Improvements; Mile Marker 85 to 101, EA/FONSI

Reevaluation and Amended Interchange Modification Report (IMR) Approval; Federal

Project Number P029208.

Dear Mr. Long:

The FHWA has received your request for a Reevaluation of the FONSI determination for the subject project. Based on the information provided to complete the environmental process the FHWA finds that the project revisions do not affect the FHWA's original determination; therefore, the FONSI determination remains valid.

We have also reviewed the amended Interchange Modification Report (IMR) submitted on June 10, 2020, for an Interstate access revision at Exit 91. Based on our review, the modifications, as recommended, are acceptable. As the selected alternative contained in the approved NEPA document is consistent with the IMR, the proposed access revision to the Interstate System is approved. Please note that the approved access revision is valid for a period of three years and must be re-assessed if not advanced to construction within this timeframe.

Please address any questions to Mr. J. Shane Belcher at jeffrey.belcher@dot.gov /803-253-3187 or Mr. Jim Martin at james.martin@dot.gov /803-765-5693.

Sincerely,

Digitally signed by EMILY OLDHAM EMILY OLDHAM LAWTON LAWTON

Date: 2020.07.20 13:23:04 -04'00'

Emily O. Lawton Division Administrator

Enclosure

Mr. Will McGoldrick, SCDOT Design-Build NEPA Coordinator ec:

Mr. Brad Reynolds, SCDOT Design-Build Program Manager

Interstate 26 Widening MM 85-101 Design-Build Project Project ID P029208

Richland, Lexington, and Newberry Counties

NEPA RE-EVALAUTION June 2020

ENVIRONMENTAL RE-EVALUATION FORM

FHWA South Carolina

Alto,	TATES OF AMERICA										
	te File #		Fed Project #	P029208	Project ID	P029208	Route I-26		County	Richland	d
Pro	roject Name/Description										
Пар	I-26 Widening MM 85-101 in Newberry, Lexington, and Richland Counties. The project would widen Interstate 26 (I-26) from approximately 1.6 miles west of the SC Highway 202 (SC 202) interchange (exit 85) to approximately 0.4 mile west of the US Highway 176 (US 176) interchange (exit 101). The project would also reconstruct interchanges along exits 85, 91, and 97.										
1.	DOCU	MENT TYP	E: EIS	⊠ EA	CE (non	Programma	atic)	PCE (No FHW	'A Appro	val Requ	ired)
	A. Other	Actions Ass	ociated with the	Project:							
	☐ Se	ection 4(f) Ev	aluation								
	⊠ Se	ection 106 Co	ompliance								
	\boxtimes W	etland Findi	ng/Section 404 C	ompliance							
	\boxtimes T	& E Species E	Biological Assessr	nent							
	□ No	one									
2.	2. DOCUMENT APPROVAL DATE: August 22, 2018										
	B. DATE(S) OF PRIOR RE-EVALUATIONS: March 30, 2020 (2 bridges)										
3.	DATE(S) OF PRIC	OR RE-EVALU	ATIONS:	March 30, 202	0 (2 bridges	s)				
			OR RE-EVALUA	L	Лаrch 30, 202	0 (2 bridges	s)				
	PROJE			L	Лarch 30, 202	0 (2 bridges	s)				
	PROJE	CT DEVEL I Design		L	/larch 30, 202	0 (2 bridges	s)				
	PROJE ⊠ Fina □ ROW	CT DEVEL I Design V struction	OPMENT STA	.GE:							
	PROJE ⊠ Fina □ ROW □ Con:	CT DEVEL I Design V struction		.GE:							
4.	PROJE Fina ROW Con: Othe	CT DEVEL I Design V struction er, Specify	Design-Build cor	GE:	finalizing RO	W and final	design		⊠ YE	ess.	□ NO
4. 5.	PROJE Fina ROW Con: Othe HAS D (if "NO"	CT DEVEL I Design V struction er, Specify ESIGN OR " then Go	Design-Build cor	ntract, currently	finalizing RO	W and final	design		⊠ YE	:S	□ NO
5.	PROJE Fina ROW Con: Othe HAS D (if "NO"	CT DEVEL I Design V struction er, Specify ESIGN OR " then Go	Design-Build cor	ntract, currently ED SINCE THE	finalizing RO	W and final PPROVAL?	design ?:	n changes at c			
5.	PROJE Fina ROW Con: Othe HAS D (if "NO"	CT DEVEL I Design V struction er, Specify ESIGN OR " then Go	Design-Build con ROW CHANG To Item 7) F CURRENT P Exit 91 has been	ntract, currently ED SINCE THE	finalizing RO	W and final PPROVAL?	design ?:	n changes at c			
5.	PROJE Fina ROW Con: Othe HAS D (if "NO"	CT DEVEL I Design V struction er, Specify ESIGN OR " then Go	Design-Build con ROW CHANG To Item 7) F CURRENT P Exit 91 has been	ntract, currently ED SINCE THE	finalizing RO	W and final PPROVAL?	design ?:	n changes at c			
4. 5. 6. De	PROJE Fina ROW Con: Othe HAS D (if "NO"	CT DEVEL I Design V struction er, Specify ESIGN OR " then Go	Design-Build con ROW CHANG To Item 7) F CURRENT P Exit 91 has been	ntract, currently ED SINCE THE	finalizing RO	W and final PPROVAL?	design ?:	n changes at c			
5.	PROJE Fina ROW Con: Othe HAS D (if "NO"	CT DEVEL I Design V struction er, Specify ESIGN OR " then Go	Design-Build con ROW CHANG To Item 7) F CURRENT P Exit 91 has been	ntract, currently ED SINCE THE	finalizing RO	W and final PPROVAL?	design ?:	n changes at c			

Form Updated: 10/20/2015 Page 1 of 3

7.	HAVE THERE BEEN SIGNIFICANT CHENVIRONMENT OR HAVE THE ENVI UPDATED SINCE THE LAST PROJECTION 10 (10)	RONMENTAL S	TUDIES BEEN	⊠ YES □ NO
8.	APPROVED DOCUMENT(S) RE-EVA	LUATION:		
	A. REVIEW OF EFFECTS: (Complete this sec	tion if "YES" to eith	er Item 5 or Item 7)	
	SOCIAL ENVIRONMENT	CHA	ANGE	REMARKS
	1. Land Use	☐ YES	⊠ NO	
	2. Community	☐ YES	⊠ NO	
	3. Relocations	⋉ YES	□ NO	Relocations decreased, see attached pg 12
	4. Churches/Institutions	☐ YES	⊠ NO	
	5. Title VI/E.O. 12898	☐ YES	⊠ NO	
	6. Economic	☐ YES	_ ⊠ NO	
	7. Controversy	 ☐ YES	 ⊠ NO	
	8. Other; Specify	☐ YES	⊠ NO	
	NATURAL ENVIRONMENT	CHA	ANGE	REMARKS
	1. Wetlands	× YES	□ NO	The PSA expanded around exit 91, see JD
	2. Water Quality	☐ YES	⊠ NO	
	3. Wild/Scenic Rivers	☐ YES	⊠ NO	
	4. Farmland	☐ YES	⊠ NO	
	5. T & E Species	☐ YES	⊠ NO	
	6. Floodplains	☐ YES	⊠ NO	
	7. Other; Specify	YES	⊠ NO	
	PHYSICAL ENVIRONMENT	CHA	ANGE	REMARKS
	1. Noise		□ NO	Reduction in noise impacts; see attached
	2. Air Quality	☐ YES	⊠ NO	·
	3. Energy/Mineral Resources	☐ YES	⊠ NO	
	4. Construction/Utilities	YES	_ ⊠ NO	
	5. UST's	☐ YES	 ⊠ NO	
	6. Hazardous Waste Sites	 ☐ YES	∑ NO	
	7. Other; Specify	☐ YES	∑ NO	

Form Updated: 10/20/2015 Page 2 of 3

Environmental Re-evaluation Form:

CULTURAL ENVIRO	NMENT	CHA	ANGE	REMARKS		
1. Historic Sites		☐ YES	⊠ NO			
2. Archaeological Re	esources	☐ YES	⊠ NO			
7. Other; Specify		☐ YES	⊠ NO			
PERMITS		CHA	ANGE	REMARKS		
1. U.S. Coast Guard		☐ YES	⊠ NO			
2. Forest Service/US	ACE/USFWS Land	☐ YES	\boxtimes NO			
3. Section 404		☐ YES	\bowtie NO	IP is pending; sub	omitted December 2019	
4. Other; Specify		☐ YES	\boxtimes NO			
Have the required	permits been obtained?	☐ YES	□ NO			
If "YES" what is the	expiration date?					
*If permits have ex	pired, permits will need upo	dated and at	tached to re-eval	uation.		
9. NEED FOR PUBL	IC INVOLVMENT:					
	/public information meeting	was held for t	he project on:	PH: 05/13/2018	3; stakeholder mtg: 10/29/19	
There have beer public hearing if	no changes in project desigr one has already been held] o	n or environm r public infor	ental effects which mation meeting.	n would require a pu	blic hearing [or additional	
	project design and/or effects public information meeting. T					
⊠ environmental e previous re-eval There have beer	alysis contained in this re-eval ffects would not significantly uation(s). In no changes in the design/RC nerefore, the conclusions read	alter the con	clusions reached ir ject nor have there	n the approved envir	onmental document and/or oject effects or the affected	
Prepared By:	Will McGoldrick			Date	6-30-20	
	Will McGoldrick	Digitally signed by Will McGo DN: cn=Will McGoldrick, o=S- c=US Date: 2020.06.30 16:56:06-04	CDOT, ou=ESO, email=mcgoldriwr@scdot.org,			
For Non Programm	atic CEs:					
Concurred (FHWA):	EMILY OLDHAM LAWTON	OLDHAM LA	ned by EMILY .WTON 7.16 17:54:41 -04'00'	Date		

Form Updated: 10/20/2015 Page 3 of 3

Special Provision

Date: 06	5/15/2020		NEPA ENVIRO	NMENTA	L COMMITMEN	TS FORM		ENVIRONMENTAL SERVICE	ēs .
Project ID	P029208	County	Richland	District	: District 1	Doc Type:	RE-Eval	Total # of Commitments:	1
Project Na	me: I-26 Widening	MM 85-101	<u> </u>						
the respons	mental Commitment ibility of the Program garding the commitn	n Manager t	o make sure the Env						
CONTAC	T NAME: Bradley S. I	Reynolds, PE	, DBIA			PHONE	#: (803) 737-144	10	
		EN	IVIRONMENTAL	COMMI	TMENTS FOR	THE PRO.	JECT		
Non-Sta	ndard Commitm				ge: 24 Paragra _l		esponsibility:	SCDOT	
	Outreach/Detour Noti		INEL A DOC	c itel. I a	ge. 24 i alagia	ρπ. σ2		JCDO1	
Street B	ds will be mailed to ridge, and SC 202 B be posted on the p	ridge 30 da	ays prior to constru	ction to r	notify the publi				
								⊠ Spe	cial Provision
			NEPA Do	c Ref: Pa	ge: XX Paragra	ph: XX R	esponsibility:		
								☐ Spe	cial Provision
			NEPA Do	c Ref: Pa	ge: XX Paragra	ph: XX R	esponsibility:		

Date: 06/16/2020

☐ Special Provision

3444 37,13722		NEPA ENVIRO	NMENTAL	. COMMITMEN	TS FORM		ENVIRONMENTAL SERVICE	3	
		<u> </u>		1					
Project ID :	P029208	County:	Richland	District :	District 1	Doc Type	e: EA	Total # of Commitments:	18
Project Nan	ne: I-26 Widening	MM 85-101							
	nental Commitment								
	bility of the Program garding the commitm			vironmenta	I Commitment	SCDOT Re	sponsible measur	res are adhered	to. If there are
	_								
CONTACT	NAME: Bradley S. F	Reynolds, PE	, DBIA			PHONE	(803)-737-144	10	
		EN	VIRONMENTAL	COMMIT	MENTS FOR	THE PRO	DJECT		
Non-Stan	dard Commitme	ent	NEPA Do	c Ref: EA	Page: 46 Paraç	graph: 2	Responsibility:	CONTRACTOR	?
Conserv	ation Easement								
Throom	areals lesated wit	hin tha DC	A /TN4C 01700 10	04 0170	00 10 22 and	01700 10		a Diabland Ca	
	arcels located wit ation easement .		-				-		· ·
	The Richland Cou	•					•	_	I
	d through eminen	•					• •		
	dinated with the				•			/	
	·			·					
								☐ Spe	cial Provision
Water Qu	ıality		NEPA Do	c Ref: EA	Page: 52 Parag	graph: 2	Responsibility:	CONTRACTOR	}
	ractor will be requ		•	•		•	•	-	•
•	contained in 23 CF		•		•				-
•	and Supplementa		•	•	•	•		•	
tences, s	ediment basins, e	tc. as appi	opriate will be in	nplement	ed during cor	nstruction	to minimize im	pacts to wate	r quality.
								☐ Spe	cial Provision
Stormwa	ter		NEPA Do	c Ref: EA	Page: 52 Parag	graph: 3	Responsibility:	CONTRACTOR	}
Stormwa	ter control meas	ures, both	during construct	tion and	post-construc	ction, are	required for SO	CDOT projects	with land
disturbar	nce and/or constr	ucted in t	he vicinity of 303	3(d), TMD	L, ORW, tida	l, and oth	ier sensitive wa	iters in accord	lance with
the SCD0	OT's MS4 Permit.	The selec	ted contractor w	vould be	required to i	minimize	potential storm	nwater impact	ts through
impleme	ntation of constr	uction be	st management	practices,	reflecting p	olicies co	ntained in 23 (CFR 650 B and	d SCDOT's
Supplem	ental Specification	ns on Seed	l and Erosion Con	ntrol Mea	sures (latest e	edition).			

Project ID :	P029208

SCDOT NEPA ENVIRONMENTAL COMMITMENTS FORM

ENVIRO	ONMENTAL COM	MITMENTS FOR THE PR	OJECI				
Non-Standard Commitment	NEPA Doc Ref:	EA Page: 59 Paragraph: 2	Responsibility:	SCDOT/CONTRACTOR			
Individual Permit							
Impacts to jurisdictional waters will be permitted under a Department of the Army Section 404 permit from the U.S. Army Corps of Engineers. Based on preliminary design, it is anticipated that the proposed project would be permitted under an Individual Army Corps of Engineers Permit (IP). SCDOT will provide the Army Corps with information regarding any proposed demolition activities during the Section 404 permitting process. The required mitigation for this project will be determined through consultation with the USACE and other resource agencies. The Contractor is responsible for obtaining the Section 404 permit and required mitigation, in consultation with SCDOT.							
				special revision			
Non-Standard Commitment	NEPA Doc Ref:	Page:59,60 Paragraph:5,3	Responsibility:	CONTRACTOR			
Invasive Species Management							
SCDOT will comply with the intent of EO disturbed areas with measures and/or se Practices contained in the SCDOT Standa introduction or spread of invasive specie seed mixtures. Vegetative matting and/ovegetation, preventing the growth or spr	eed mixtures that and Specifications as. Cleared areas wo or other techniqu	would not include invasion for Highway Construction would be seeded with bot es may also be used to st	ve species. Best in would be used in temporary and	Management to reduce the d permanent			
				Special Provision			
Floodplains	NEPA Doc Ref:	EA Page: 62 Paragraph: 2	Responsibility:	SCDOT			
The Engineer of Record will send a set of	final plans and re	quest for floodplain mana	gement complia	ance to the local			
County Floodplain Administrator prior to	the project letting	g date.					
				Special Provision			

Project ID: P029208

SCDOT NEPA ENVIRONMENTAL COMMITMENTS FORM

ENVIRONMENTAL COMMITMENTS FOR THE PROJECT					
Migratory Bird Treaty Act	NEPA Doc Ref:	EA Page: 64 Paragraph: 2	Responsibility:	SCDOT	
The federal Migratory Bird Treaty Act, 16 USC § 703-711, states that it is unlawful to pursue, hunt, take, capture or kill; attempt to take, capture or kill; possess, offer to or sell, barter, purchase, deliver or cause to be shipped, exported, imported, transported, carried or received any migratory bird, part, nest, egg or product, manufactured or not. The South Carolina Department of Transportation (SCDOT) will comply with the Migratory Bird Treaty Act of 1918 in regard to the avoidance of taking of individual migratory birds and the destruction of their active nests. The contractor shall notify the Resident Construction Engineer (RCE) at least four (4) weeks prior to construction/demolition/maintenance of bridges and box culverts. The RCE will coordinate with SCDOT Environmental Services Office (ESO), Compliance Division, to determine if there are any active birds using the structure. After this coordination, it will be determined when construction/demolition/maintenance can begin. If a nest is observed that was not discovered after construction/demolition/maintenance has begun, the contractor will cease work and immediately notify the RCE, who will notify the ESO Compliance Division. The ESO Compliance Division will determine the next course of action. The use of any deterrents by the contractor designed to prevent birds from nesting, shall be approved by the RCE with coordination from the ESO Compliance Division. The cost for any contractor provided deterrents will be provided at no additional cost to SCDOT.					
Non-Standard Commitment	NEPA Doc Ref:	Page: 77 Paragraph: 2-5	Responsibility:	CONTRACTOR	
Air Quality					
State and local regulations regarding dus order to minimize the amount of construduring the construction of the project. The haul roads, and refraining from open bur equipment would also produce slight am retrofit technologies which may be deploted the discretion of the Contractor, in consu	nction dust genera nese include cove ming, except as m ounts of exhaust oyed as emissions	ated, current state best maring earth-moving trucks hay be permitted by local emissions. The EPA has list mitigation measures for	nanagement prac to keep dust leve regulations. The isted a number o	etices, will be followed els down, watering construction f approved diesel	

N	on-Standard Commitment	NEPA Doc Ref:	FONSI Pg:12, Paragraph:7	Responsibility:	SCDOT/CONTRACTOR
	Noise Barrier Walls				
	Based on the studies thus far accomplish form of a barrier at NAA 5 and 6 (Westco	ott Ridge and Arbo	or Springs). These prelimi	nary indications	of likely abatement

form of a barrier at NAA 5 and 6 (Westcott Ridge and Arbor Springs). These preliminary indications of likely abatement measures are based upon preliminary design for a barrier cost of \$35.00 per square foot that will reduce the noise level by at least 5 dB(A) for residences. If it subsequently develops during final design that these conditions have substantially changed, the abatement measures might not be provided. A final decision of the installation of the abatement measure(s) will be made upon completion of the project's design.

Project ID :	P029208

SCDOT NEPA ENVIRONMENTAL COMMITMENTS FORM

ENVIRO	ENVIRONMENTAL COMMITMENTS FOR THE PROJECT					
Non-Standard Commitment	NEPA Doc Ref:	EA Page: 96 Paragraph: 2	Responsibility:	CONTRACTOR		
Noise - Traffic						
It will be necessary that some work be remay impact adjacent residential areas are periods and will be submitted for approx	nd thus a specific	work plan will be necessa	ary regarding wo	rk during these time		
				Special Provision		
	1		1			
USTs/Hazardous Materials	NEPA Doc Ref:	Page: 100 Paragraph: 2	Responsibility:	SCDOT		
If avoidance of hazardous materials is no during construction, the South Carolina Hazardous materials will be tested and Protection Agency and the SCDHEC requir	Department of removed and/o	Health and Environmen r treated in accordance	tal Control (SCD	HEC) will be informed.		
				Special Provision		
Non-Standard Commitment	NEPA Doc Ref:	Page: 103 Paragraph: 1	Responsibility:	SCDOT		
Lead-Based Paint						
The existing structures shall be removed the Standard Specifications. The Contract disposal of structural components contact containing lead-based paints shall complead in air, lead in water, lead in soil, and	ctor's attention is dining lead-based ply with all applicable	called to the fact that this paints. Removal and disposle Federal, State, and Lo	s project may rec osal of structural	quire removal and components		
				✓ Special Provision		

Project ID: P029208

SCDOT NEPA ENVIRONMENTAL COMMITMENTS FORM

ENVIRONMENTAL COMMITMENTS FOR THE PROJECT

N	on-Standard Commitment	NEPA Doc Ref:	Page: 103 Paragraph: 1	Responsi	ibility:	CONTRACTOR	
	Lead-Based Paint						
	Lead-based paint surveys must be taken on 6 of the 10 bridges included within the project area. The results submitted to SCDOT RCE for review prior to demolition or reconstruction. Excluded from additional survey (Parr Road), S-39 (Holy Trinity Church Road), SC 202, and S-48 (Columbia Ave) which have already tested presence of lead-based paint.						
							/ision

N	on-Standard Commitment	NEPA Doc Ref:	Page: 102 Paragraph: 2	Responsibility:	CONTRACTOR
	Asbestos				
	SCDOT has surveyed the existing bridges contain ACM. Potential removal of ACM prior to demolition or disturbances to th	would be coordin	ated with the SCDHEC Bu		
					Special Provision

Non-Standard Commitment	NEPA Doc Ref:	Page: 108 Paragraph: 3	Responsibility:	SCDOT/CONTRACTOR
Cultural Resources - Cemeteries				
The Department will ensure that the exist identified and delineated in the field. Pri or other appropriate barrier will be erect that these cemeteries and any potential these cemeteries are not proposed to be delineated area, the Department will proaffected area(s).	or to construction ted a minimum of unmarked graves impacted by the	n activities near these co f 10 feet beyond the kno s associated with them v project. However, if co	emeteries, a const own cemetery lim will be protected. nstruction would	its. This will ensure As currently designed, need to impede into a

Project ID : P029208

SCDOT NEPA ENVIRONMENTAL COMMITMENTS FORM

ENVIRONMENTAL COMMITMENTS FOR THE PROJECT						
Non-Standard Commitment	NEPA Doc Ref:	Page: 109 Paragraph: 1	Responsibility:	CONTRACTOR		
Cultural Resources						
The contractor and subcontractors must notify their workers to watch for the presence of any prehistoric or historic remains, including but not limited to arrowheads, pottery, ceramics, flakes, bones, graves, gravestones, or brick concentrations during the construction phase of the project. If any such remains are encountered, the Resident Construction Engineer (RCE) will be immediately notified and all work in the vicinity of the discovered material shall cease until the SCDOT Archaeologist directs otherwise.						
				Special Provision		
Non-Standard Commitment	NEPA Doc Ref:	Page: 110 Paragraph: 5	Responsibility:	SCDOT/CONTRACTOR		
Displacements						
Uniform Relocation Assistance and Real The purpose of these regulations is to el assisted projects are treated fairly and cowner, to minimize litigation and relieve	SCDOT, and/or contractor will acquire all new right-of-way and process any relocations in compliance with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970, as amended (42 U.S.C 4601 et seq.). The purpose of these regulations is to ensure that owners of real property to be acquired for Federal and federally assisted projects are treated fairly and consistently, to encourage and expedite acquisition by agreements with such owner, to minimize litigation and relieve congestion in the courts, and to promote public confidence in Federal and federally assisted land-acquisition programs.					
				Special Provision		
	NEPA Doc Ref:		Responsibility:			
				Special Provision		

Contents

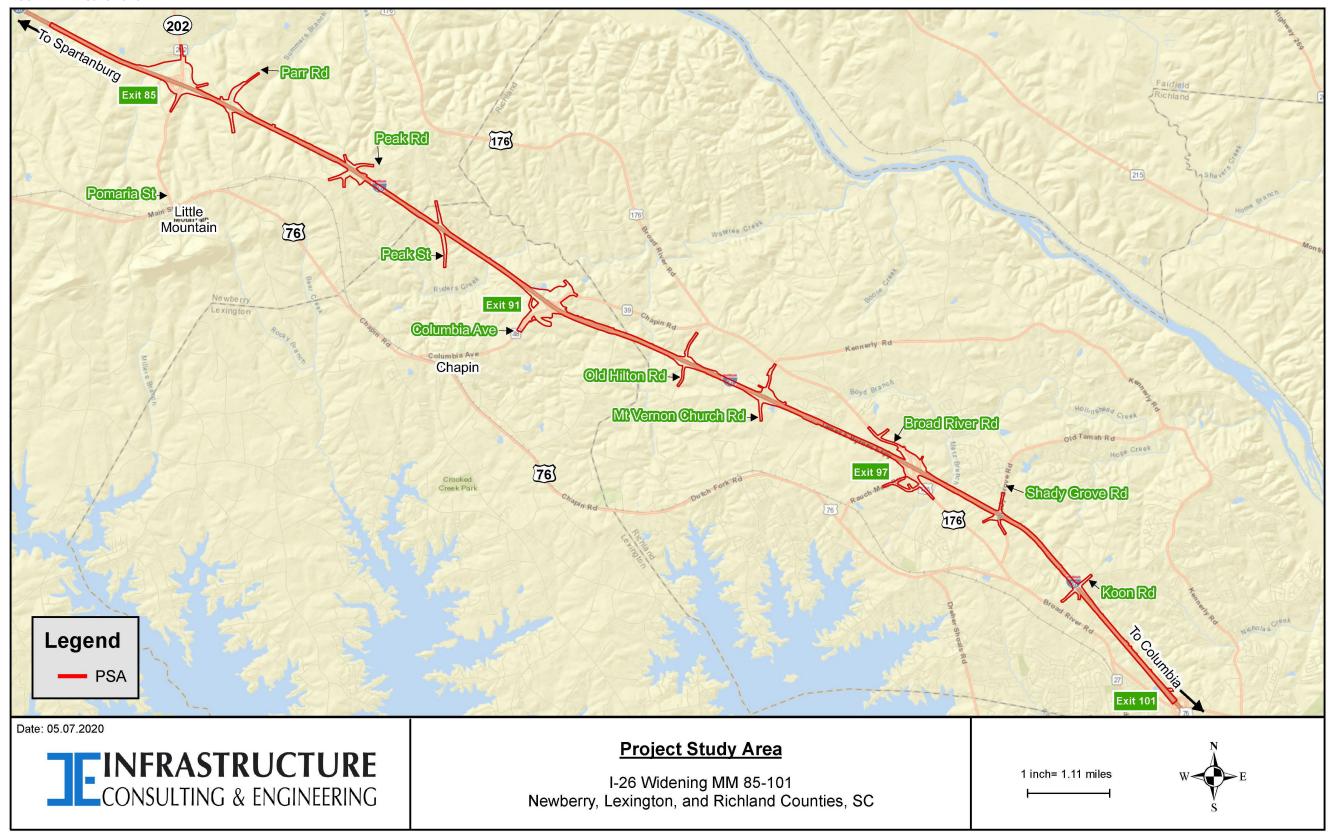
Project Description	1
Revisions Since Issuance of the FONSI	3
Design Modifications	3
Constructability/Bridge Replacements	7
Exit 91 Interchange	8
Revisions to PSA	12
Summary of Impacts Associated with the Final Project	14
Community/Traveling Public	14
Right-of-Way	16
Cultural Resources	
Waters of the United States	17
Impacts and Permitting	17
Jurisdictional Determination	21
Floodplains	22
Threatened and Endangered Species	
Hazardous Materials	
Noise	
Public Involvement	
Environmental Commitments	
LITATION INCIDENT COMMITTEE INCI	27
List of Figures	
Figure 1. Project study area	2
Figure 2. EA/FONSI PSA and re-evaluation PSA	
Figure 3. I-26 mainline 6-lane typical section	
Figure 4. I-26 mainline 8-lane typical section	
Figure 5. PSA and bridge locations	
Figure 6. Revised Exit 91 interchange design (proposed project)	
Figure 7. Preferred Alternative Exit 91 interchange design (from FONSI)	10
Figure 8. Exit 91 interchange impacts for proposed project	13

Figure 9. Old Hilton Road bridge detour route
Figure 10. Peak Street bridge detour route
Figure 11. SC 202 (Exit 85) bridge detour route
List of Tables
Table 1. Exit 91 intersection LOS
Table 2. Estimated WOUS impacts for the Preferred Alternative based on final design 18
Table 3. Estimated stream impacts and revisions since the FONSI
Table 4. Estimated wetland impacts and revisions since the FONSI
List of Attachments
Attachment A: Technical Memorandum: Traffic Detour Plans for I-26 Design-Build Project,
Richland, Lexington, and Newberry Counties, SC
Attachment B: Cultural Resources Addendum and Concurrences
Attachment C: Floodplain Coordination
Attachment D: Natural Resource Technical Memorandum Update
Attachment E: Noise Addendum
Attachment F: Stakeholder Meeting Summary
Attachment G: Interchange Modification Report for the Columbia Avenue [S-32-48] Over I-26
Interchange Improvement Project

ENVIRONMENTAL RE-EVALUATION

SUPPORTING DOCUMENTATION

I-26 Widening and Interchange Improvements Mile Marker 85 to 101 Newberry, Lexington, and Richland Counties, South Carolina Project ID P029208


Project Description

The South Carolina Department of Transportation (SCDOT) proposes improvements and upgrades to Interstate 26 (I-26) in Richland, Lexington, and Newberry Counties to support increasing traffic. SCDOT proposes widening I-26 and reconstructing three interchanges between mile marker (MM) 85 near Little Mountain and MM 101 near Irmo. Improvements would take place from 1.6 miles west of the SC 202 (Exit 85) interchange to the US 176 (Exit 101) interchange (Figure 1). The improvements would widen to a total of six lanes, three in each direction from Exit 85 to Exit 97 and to eight lanes, four in each direction from Exit 97 to Exit 101. The widening would be constructed towards the existing median. Interchange improvements would occur at Exits 85, 91, and 97. A total of seven overpasses that cross I-26 would be replaced, including Parr Road (S-32-49), Holy Trinity Church Road (S-36-39), Peak Street (S-32-49), Old Hilton Road (S-40-405), Mt Vernon Church Road (S-40-234), Shady Grove Road (S-40-80), and Koon Road (S-40-58). The overpasses at the Exit 85 (SC 202), Exit 91, and Exit 97 interchanges will also be replaced. The truck weigh station near MM 94 would be improved as a weigh-in-motion station.

The project is consistent with the Central Midlands Council of Governments Long Range Transportation Plan and is included in the Statewide Transportation and Rehabilitation Program (STIP) for Richland, Lexington, and Newberry Counties. The federal National Highway Performance Program (NHPP) identifies funds for construction in the system upgrade interstate program. The federal Advanced Construction program identifies funds for construction, also in the system upgrade interstate program. Additionally, funds are identified in the NHPP for with construction from the pavement and reconstruction program. Currently, \$530 million dollars are allocated in the STIP for the project.

An environmental assessment (EA) was prepared to comply with the National Environmental Policy Act (NEPA) of 1969, as amended, and in accordance with Federal Highway Administration (FHWA). Regulations in 23 Code of Federal Regulations (CFR) Part 771 and Council on Environmental Quality (CEQ) regulations in 40 CFR §§ 1500-1508. The EA was approved by FHWA on February 20, 2018 with a subsequent finding of no significant impact (FONSI) issued on August 22, 2018. A NEPA re-evaluation associated with the replacement of the S-36-167 (Parr Road) and the S-36-39 (Holy Trinity Church Road) overpass bridges was approved in March 2020.

FIGURE 1. PROJECT STUDY AREA

Revisions Since Issuance of the FONSI

Following issuance of the FONSI, SCDOT secured final delivery of the project through a Design-Build contract, which includes the final design and construction of the project. The Design-Build Team (DBT) has slightly modified various design elements of the Preferred Alternative to provide the most efficient and economical solution to SCDOT while minimizing impacts and complying with the EA and FONSI. In addition, the DBT developed specific means and methods and access for construction of the new bridges and roadway approaches. Therefore, since the FONSI, the Preferred Alternative has been modified by the DBT in conjunction with SCDOT and represents the "proposed project."

Design Modifications

Final design and delivery of the project included project enhancements (including wider shoulders and increased design speed for vertical curves) that increased the project footprint for the length of the project, resulting in an expanded project study area (PSA) (Figure 2) and additional environmental impacts. The FONSI design assumed a 10-foot-wide inside shoulder, while the final design modified shoulders to 12-feet-wide, which resulted in a 4-foot increase in the project footprint over the length of the project. The increased design speed required the profile to be raised to flatten the vertical curves, resulting in higher fill embankment and a wider footprint. These design enhancements resulted in expansion of the jurisdictional determination (JD) study area, and increased stream impacts from the FONSI design but will ultimately provide a safer and more desirable facility. The 12-foot shoulder widths provide additional area for emergency pull-offs, thus providing greater separation from the travel lanes. The 12-foot-wide shoulder would also function as a full width emergency travel lane that could accommodate emergency travel and first responders which would improve response times and minimize congestion and traffic delays. The additional shoulder width also increases area for vehicle recovery further enhancing the safety and operation of the facility (see I-26 mainline typical sections, Figures 3 and 4).

The impacts documented in the FONSI were based largely on preliminary roadway and drainage design. The environmental impacts increased during the final design development based on the complexity, size, and overall scope of the project. Final hydrology design included the need for armoring (rip-rap) the crossline pipes and culverts, which expanded the PSA and JD study area, and resulted in additional impacts to waters of the U.S. Final roadway design resulted in additional impacts as a result of incorporating final design criteria, including additional turn lanes for commercial development and required access points.

FIGURE 2. EA/FONSI PSA AND RE-EVALUATION PSA

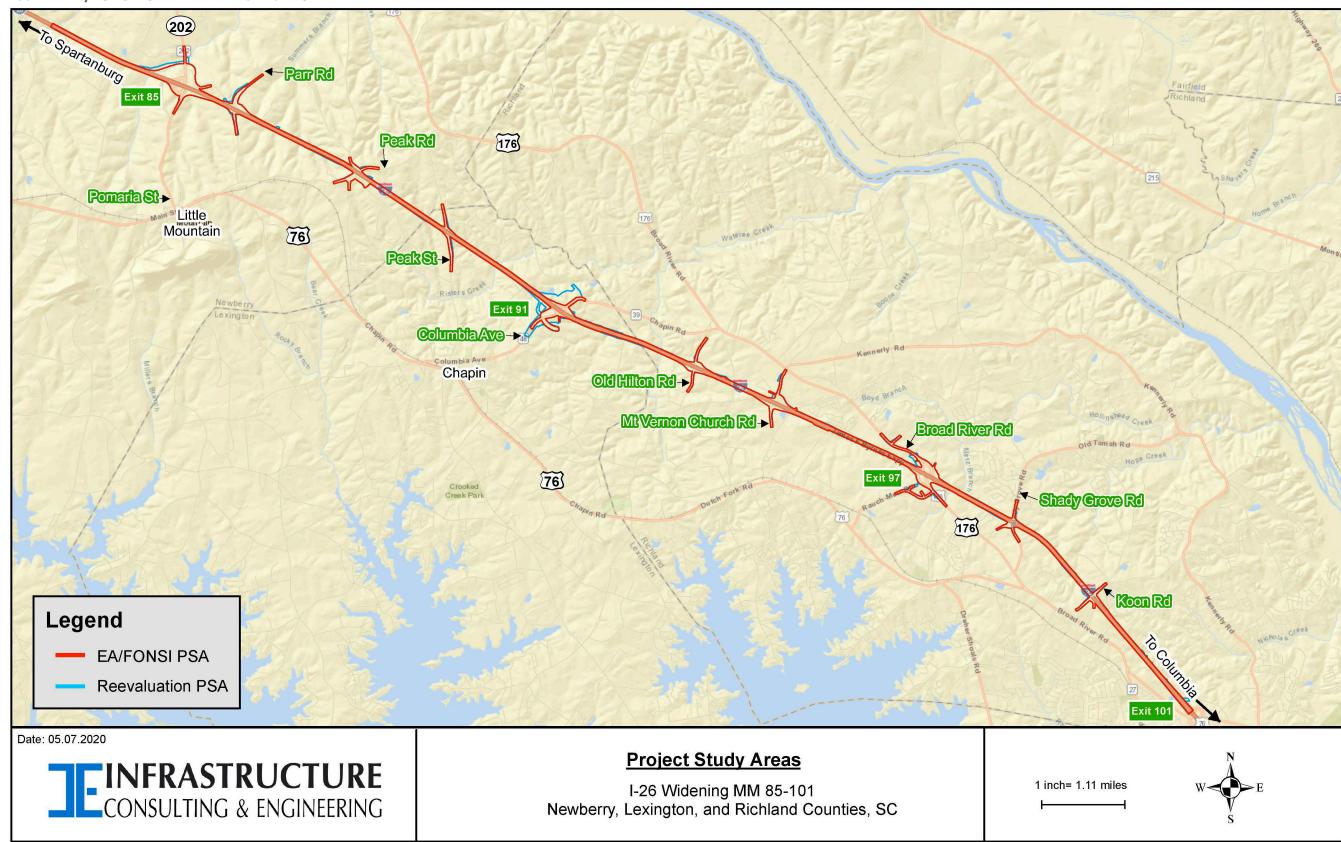


FIGURE 3. I-26 MAINLINE 6-LANE TYPICAL SECTION

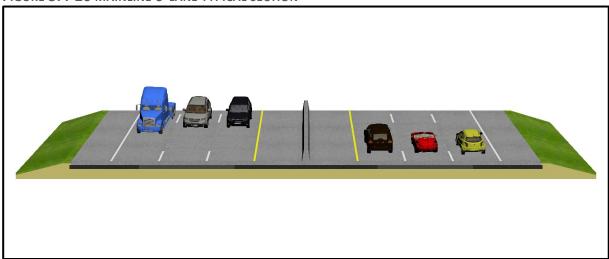


FIGURE 4. I-26 MAINLINE 8-LANE TYPICAL SECTION

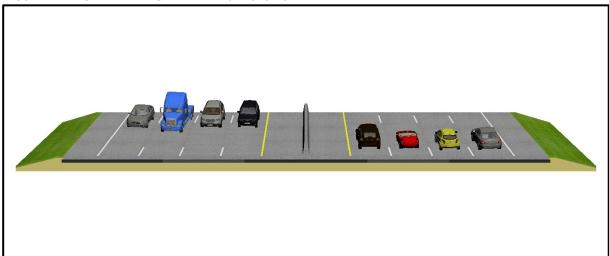
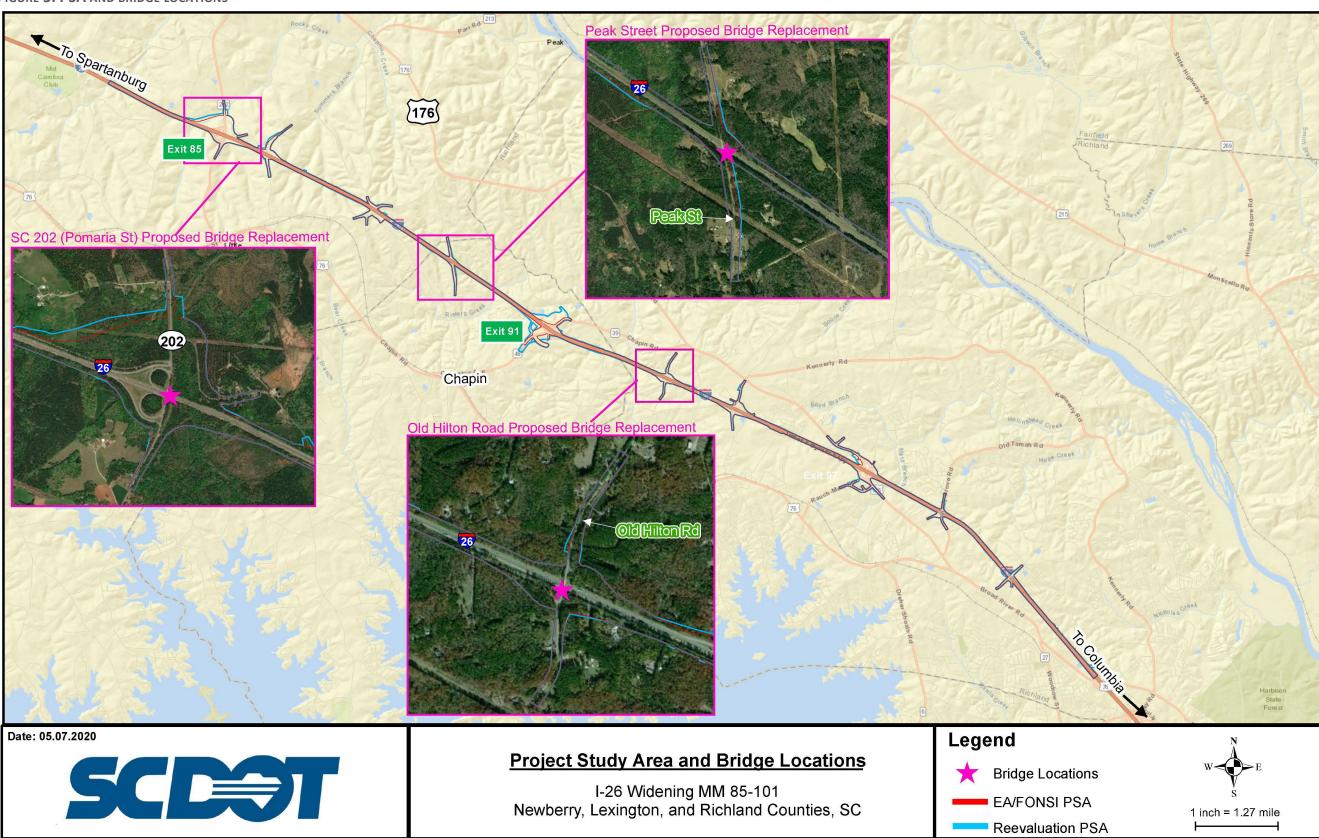



FIGURE 5. PSA AND BRIDGE LOCATIONS

Constructability/Bridge Replacements

The proposed project presents numerous challenges in constructability. Traffic disruptions are to be minimized due to the importance of the I-26 corridor and the associated interchanges. In addition, the DB contract details the specific restrictions and requirements that ultimately impact construction access, management of traffic, staging, etc. To improve constructability, safety, and efficiencies, several of the bridge overpasses were shifted from off-alignment to on-alignment construction. Since the bridges will be built on existing alignment, no new environmental impacts will result from the change in alignment. This shift in alignment would require bridge closures and detours, resulting in temporary interruptions for the traveling public. The bridge detours and construction are discussed in more detail below.

As previously mentioned, the DBT has developed specific means and methods and access for construction of the new bridges and roadway approaches. Since the FONSI, the replacement of five bridges (Holy Trinity Church Road, Parr Road, Old Hilton Road, Peak Street, and SC 202/Exit 85 interchange) have been modified from off-alignment to on-alignment bridge replacements with detours or have been modified to require detours. Two of the bridges (Holy Trinity Church Road and Parr Road bridges) were included in a previous re-evaluation (signed on March 30, 2020) due to an accelerated construction schedule. Old Hilton Road, Peak Street, and SC 202 (Exit 85) bridges over I-26 are included in this document (Figure 5).

The overall design and dimensions of the bridges would be similar to the preliminary design and will accommodate required minimum vertical clearance (17 feet) for I-26 traffic.

<u>Old Hilton Road Bridge:</u> The EA/FONSI documented that the Old Hilton Road bridge would be replaced off alignment, east of the existing bridge. The proposed bridge design is consistent with the EA/FONSI and would extend 176 feet long and approximately 41 feet wide and accommodate two 12-foot-wide travel lanes with 6-foot-wide shoulders. The bridge is proposed to be constructed off alignment but will now require a detour to accommodate construction staging.

<u>Peak Street Road Bridge:</u> The EA/FONSI documented that the Peak Street bridge would be replaced east of the existing bridge. The proposed activity would replace the Peak Street bridge on alignment while closing and detouring traffic. This alignment would avoid the alignment shift along Peak Street and minimize adjacent ROW impacts. The proposed design of the bridge is consistent with the EA/FONSI and would extend 250 feet long and approximately 41 feet wide and accommodate two 12-foot-wide travel lanes with 6-foot-wide shoulders.

<u>SC 202 (Exit 85) Bridge:</u> The EA/FONSI documented that the SC 202 bridge at Exit 85 would be replaced east of the existing bridge and would also require realignment of the roadway approaches, ramps, and side roads—Meadow Brook Road and State Road S-36-370—to accommodate a new diamond with partial cloverleaf interchange. The proposed activity would

replace the SC 202 bridge off alignment while closing and detouring traffic. The proposed design of the bridge is consistent with the EA/FONSI and would extend 176 feet long and approximately 62 feet wide and accommodate two 12-foot-wide travel lanes with 6-foot-wide shoulders.

There are several advantages of replacing the bridges on existing alignment:

- Minimizes area of new ROW
- Avoids additional utility relocations and disruptions
- More efficient and economical construction—shortens construction schedule; minimizes new fill embankments
- Safer conditions for motorists and workers during construction—avoids traffic shifts and other controls (i.e. barrier walls); removes traffic from work zone.

Exit 91 Interchange

The most substantial change in the proposed design is an alternate design configuration for the Exit 91 interchange (Columbia Avenue). SCDOT and the DBT identified an alternate interchange design that provides for improved operation while avoiding and minimizing business relocations. The new interchange configuration at Exit 91 results in the need for additional environmental studies due to the expanded PSA and change in impacts.

The proposed Exit 91 interchange design was revised from a diverging diamond interchange (DDI) to a partial cloverleaf to the west of the existing interchange (see Figures 6 and 7). A partial cloverleaf interchange was evaluated as a reasonable alternative (Alternative 2) in the EA/FONSI and presented to the public but determined not to be the preferred largely due to having the greatest impact to wetlands and streams. The DDI (Alternative 3) was selected as the Preferred Alternative in the EA/FONSI. However, since issuance of the FONSI, the proposed partial cloverleaf design was developed as a result of further analysis regarding constructability, maintenance of traffic, operational conditions, and impacts to local businesses. In addition, the proposed design and location differ from the preliminary partial cloverleaf design evaluated in the EA/FONSI and as a result, avoids and minimizes impacts. The proposed design was also included as a Formal Alternative Technical Concept (FATC) during the project procurement process, which required submittal and review of support documentation.

FIGURE 6. REVISED EXIT 91 INTERCHANGE DESIGN (PROPOSED PROJECT)

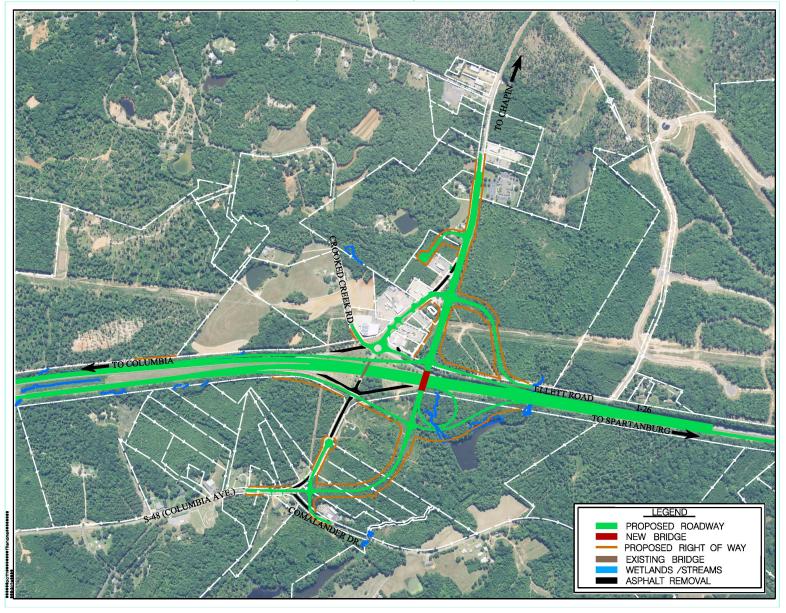
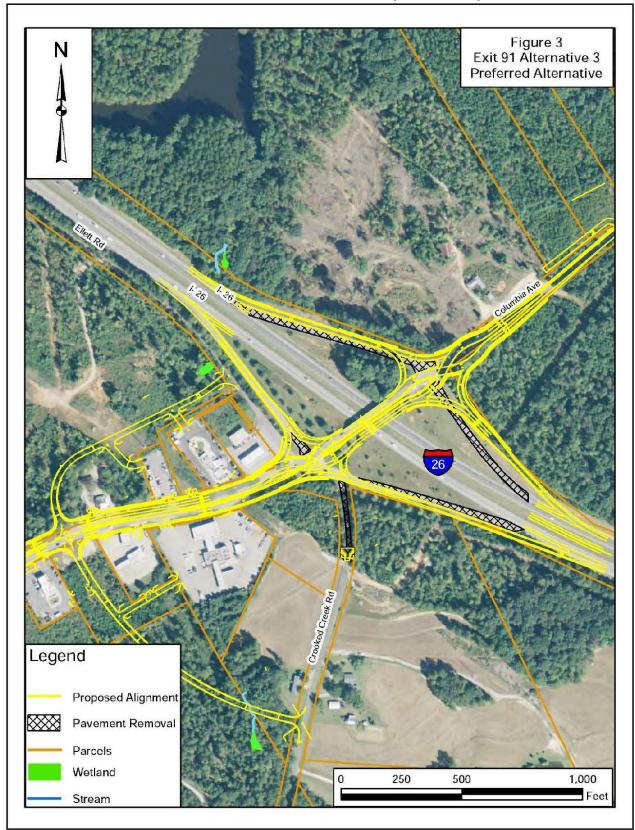



FIGURE 7. PREFERRED ALTERNATIVE EXIT 91 INTERCHANGE DESIGN (FROM FONSI)

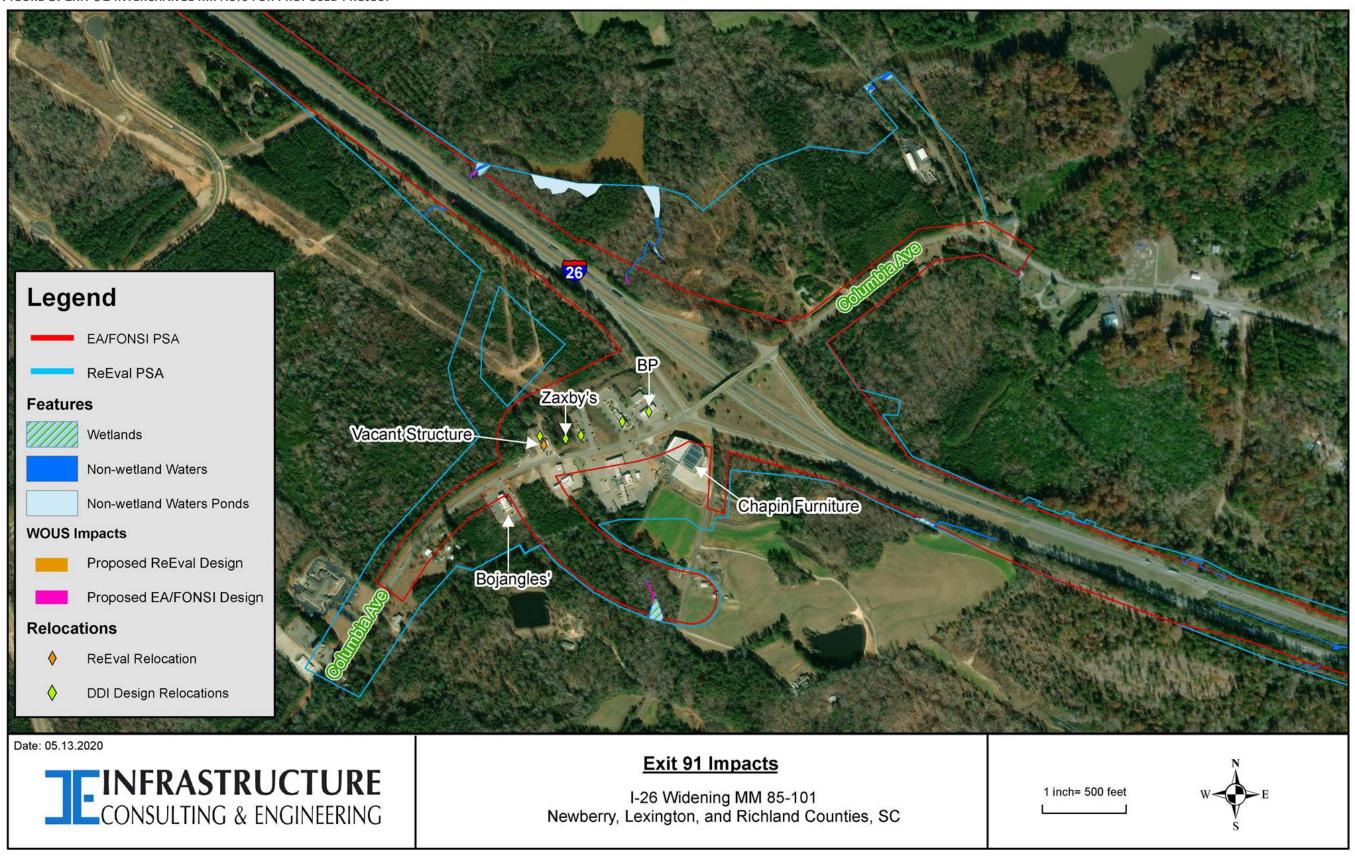
The constructability review associated with the preferred DDI presented numerous challenges since this configuration would require the interchange to be constructed along the existing interchange. This would require complicated staging and undesirable traffic patterns that would compromise safety and extend construction time. The new bridge would also be higher, resulting in additional obstructions and narrower lane widths. This results in new bridge construction activity taking place close to traffic, greatly increasing safety concerns. In addition, upon progressing the DDI design based on SCDOT requirements, it was determined that five commercial businesses along Columbia Avenue would have to be relocated. These relocations were not initially identified in the EA but resulted from final design and Request for Proposal criteria for the DDI. As a result of these challenges, an alternate design was developed that would allow the existing interchange to remain open throughout construction, avoided four of the business relocations, reduced construction time, and improved operational function of the interchange Modification Report for the Columbia Avenue [S-32-48] Over I-26 Interchange Improvement Project, April 2020) and is included as Attachment G.

The Exit 91 interchange would consist of a partial cloverleaf interchange approximately 1,000 feet west of the existing interchange and realign Columbia Avenue accordingly. In addition, Ellett Road and Comalander Drive would be relocated. The existing interchange, including overpass bridge, would be abandoned and demolished and a roundabout/cul-de-sac are proposed that would maintain access along existing Columbia Avenue. The proposed alternative would be constructed in one stage with traffic utilizing the existing interchange throughout construction. This would provide a more efficient construction schedule (10 months compared to 20 months for the DDI) and provide a safer environment for both the traveling public and the construction team.

Additional traffic analysis of the proposed design was conducted and included in the new (April 2020) interchange modification report. This analysis concludes that the proposed design would improve the intersection operation (level of service, or LOS) for all movements in the 2044 design year from LOS E-F (no-build) to LOS A-C (build), which are summarized in Table 1. LOS is a quality measure describing operational conditions within a traffic stream, generally in terms of speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. LOS is represented by six letter designations ranging between LOS A and LOS F. LOS A describes completely free-flowing conditions and LOS F describes very unstable flow conditions. In addition, the proposed design provides a slight improvement in traffic operation over the DDI. Specifically, the I-26 eastbound ramps would operate at LOS B while the DDI movement operates at LOS C. The mainline movements, including merge/diverge, for the proposed design would operate at LOS D or better, which is similar to the anticipated DDI conditions. The westbound intersection is expected to continue to operate at LOS C for the afternoon peak hour, but with improved delay.

TABLE 1. EXIT 91 INTERSECTION LOS

	2044 no-build conditions (LOS)		2044 build conditions (LOS)	
Intersection	a.m.	p.m.	a.m.	p.m.
Columbia Avenue & Ellet Road/Crooked Creek Road	F	F	С	С
Columbia Ave & I-26 eastbound ramps	F	F	В	В
Columbia Ave. & I-26 westbound ramps	F	F	С	С
Columbia Ave & Comalander Drive	Е	F	С	С
Crooked Creek Road & I-26 eastbound on-ramp	F	Е	-	-
New Frontage Road & Crooked Creek Road	-	-	Α	Α


The revised design of the Exit 91 interchange would result in an increase in impacts to waters of the U.S. but avoids four business relocations/displacements, as shown in Figure 8. To accommodate access for commercial buildings, the revised design also impacts three outbuildings associated with a former large residential property that has been rezoned to general commercial. While this alternative reduces impacts to businesses, it will result in an increase of approximately 117 linear feet of stream impacts, 0.014 acre of wetland, and 0.306 acre of open water due the construction of the loop ramp along the westbound off-ramp. Based on the overall benefits to the public and local businesses, this proposed design was determined to be the least environmentally damaging alternative.

As a result of the design change to the Exit 91 interchange, the PSA around the Exit 91 interchange was expanded, and additional environmental studies were conducted and are outlined in the Summary of Impacts Associated with the Final Project

Revisions to PSA

The previous PSA (EA/FONSI PSA) was approximately 1,073 acres and included an approximate 75-foot-wide buffer from the roadway centerline. The final project design has resulted in the expansion of the PSA to approximately 1,213 acres, which includes changes associated with the project enhancements, final drainage and roadway design, the new interchange configuration at Exit 91, and minimization of conflicts with SCDOT's Carolina Crossroads (CCR) project. Additional environmental studies were required as a result of the design changes and expansion of the PSA and are described in the following section. The expanded PSA for the entire project corridor is shown in Figure 2.

FIGURE 8. EXIT 91 INTERCHANGE IMPACTS FOR PROPOSED PROJECT

Summary of Impacts Associated with the Final Project

This section includes a summary of the anticipated beneficial and adverse environmental impacts of the proposed project on the human and natural environment. The proposed project modifications result in changes to environmental impacts since the FONSI, specifically related to the additional PSA around Exit 91, as shown in Figure 8.

Community/Traveling Public

The proposed project modifications result in changes to the final bridge design. The bridge replacements on existing alignment will result in bridge closures and detours around the area, which will affect the traveling public/communities. The current traffic volumes and detour routes are conducive to a close and detour, with the detour routes approved by SCDOT (Attachment A). Detour routes for each bridge closure were developed by SCDOT and are illustrated in Figures 9, 10, and 11. The detour for the Old Hilton Road Bridge will be 4.50 miles. The detour route for Peak Street Bridge will be 7.81 miles and the detour route for SC 202/Pomaria (Exit 85) bridge will be 11.50 miles. The detours are anticipated to last approximately 8 months for the bridges, with the detours for Peak Street and SC 202 (Exit 85) ending by May 2021 and the detour for Old Hilton Road bridge ending by November 2022. Additional details are documented in the *Technical Memorandum: Traffic Detour Plans for I-26 Design-Build Project, Richland, Lexington, and Newberry Counties, SC* (Attachment A).



FIGURE 9. OLD HILTON ROAD BRIDGE DETOUR ROUTE

FIGURE 10. PEAK STREET BRIDGE DETOUR ROUTE

FIGURE 11. SC 202 (EXIT 85) BRIDGE DETOUR ROUTE

As indicated in the traffic detour memo, existing traffic volumes were obtained from SCDOT's Traffic Count ArcGIS Online Portal. The 2018 average annual daily traffic (AADT) volume for the Old Hilton Road bridge is 1,350 vehicles per day. The AADT for Peak Street bridge is 1,300 vehicles per day and the AADT for SC 202 bridge is 2,400 vehicles per day. To determine the effects of the detour route on existing roads, a traffic analysis of the detour routes was conducted. The bridge detour traffic volumes were determined by applying the approved detour routes to existing conditions traffic volumes. Intersection operational analyses of the signalized and major unsignalized intersections were conducted along each detour route. The operational analysis results show that intersections would operate at or below traffic capacity in both morning and afternoon peak hours (see Attachment A).

For the Old Hilton Road bridge detour, the detour route conditions result in slight intersection delay increases compared to the existing conditions. Improvement recommendations have been made to provide more acceptable operations during the planned detour for Old Hilton Road. It is recommended that signal phasing be modified to include protected/permitted eastbound left turns. With these traffic signal modifications at the intersections, the traffic delays would be minimized along the detour routes. All other intersections along the proposed detour routes are projected to have acceptable delays or not significantly impact existing traffic operations. Therefore, no other modifications are required during the other planned detours. Appendices B-E of the traffic detour memo (Attachment A) included detailed intersection count data, turning movement count calculations, intersection LOS results, and detour route volume calculations, which support the proposed detour routes. Due to size those appendices are not included as part of Attachment A.

Right-of-Way

The area of proposed right-of-way (ROW) associated with the project enhancements and design modifications increased since issuance of the FONSI and extend beyond the EA/FONSI PSA. These areas of proposed ROW are approximately 0.23 acre for Old Hilton Road, 1.45 acres for Peak Street, and 8.39 acres for SC 202. A total of approximately 10.07 acres of new ROW would be required around the bridges. A few areas of anticipated ROW extend beyond the re-evaluation PSA for drainage improvements and did not warrant additional investigations. These areas of anticipated ROW beyond the re-evaluation PSA is approximately 0.29 acre for SC 202, 0.08 acre for Old Hilton Road, 0.05 acre for Peak Street, and 0.16 acre for Exit 91. As previously mentioned, the number of business relocations/displacements decreased from five to one (vacant structure) as a result of the Exit 91 alternate design (Figure 8).

Cultural Resources

A cultural resources survey report (*Phase I Cultural Resource Survey for Proposed Widening of Interstate 26*) to identify archaeological sites and record and evaluate all historic architectural resources (buildings, structures, objects, designed landscapes, and/or sites with above-ground components) in the PSA was completed in January 2018. In addition, surveys of Columbia Avenue (S-48) from I-26 to US Highway 76 (Chapin Road) were conducted in 2016 for the S-48 (Columbia Avenue) Corridor Improvements project in Lexington County (*Cultural Resources Survey of S-48 (Columbia*)

Avenue) Improvements, Lexington County, South Carolina and Addendum: Cultural Resources Survey of S-48 (Columbia Avenue) Improvement), which overlaps this PSA.

As a result of the proposed design change at Exit 91, a second addendum cultural resources survey report to the S-48 (Columbia Avenue) project (Second Addendum: Cultural Resources Survey of S-48 (Columbia Avenue) Improvements, Lexington County, South Carolina) was completed in April 2020 for an additional area that was not surveyed in the previous reports. The additional area is located on the east end of the original Columbia Avenue PSA, at Exit 91 and extends approximately 0.4 mile east and 0.6 mile west of I-26 along Columbia Avenue, including approximately 0.25 mile along Dan Comalander Drive. The additional area was surveyed to identify significant archaeological and historic architectural resources in its area of potential effects (APE). The APE consists of the PSA and its viewshed, which is defined by a 300-foot buffer. For the archaeological survey, the entire PSA was examined. For the architectural resources survey, the entire APE was examined. Background research indicated no previously recorded archaeological resources in the APE. Twenty-one historic architectural resources were previously surveyed within the APE and of those, eighteen remain extant. None were recommended eligible for listing on the NRHP. The archaeological survey of the additional area identified no new sites. The historic architectural survey recorded and evaluated three additional resources. However, the architectural resources lack qualities of significance that would qualify them for listing on the NRHP. Therefore, the State Historic Preservation Office (SHPO) concurred with the findings on April 20, 2020. Subsequent concurrences were received from the applicable Tribal Historic Preservation Offices (THPO). A copy of the Second Addendum and the concurrences are included as. Attachment B

Waters of the United States

The additional areas outside the EA/FONSI PSA were evaluated for wetlands and other waters of the U.S. (WOUS).

Impacts and Permitting

The project would result in unavoidable impacts to WOUS. The current projected impacts to WOUS based on final design is higher than the estimated impacts discussed in the FONSI. Based on preliminary design, the mainline widening and interchange improvements to I-26 was estimated to impact 0.599 acre of wetlands and 4,389 linear feet of streams. These impacts were calculated from approximate construction and ROW limits and were modified during final design. Total impacts to WOUS for the proposed project, including the increased impacts from final design, are estimated to be 1.061 acre of wetlands and 5,092 linear feet of non-wetland waters; an increase of 0.462 acre of wetland impacts and 703 linear feet of stream impacts. These additional impacts would result from widening the road, extending existing culverts, armoring (rip-rap), and replacing or constructing bridges, as illustrated in Tables 1-3.

Project design enhancements during final design, such as wider shoulders and changes to the vertical roadway profile, resulted in approximately 140 linear feet of additional stream impacts. Final hydrology design resulted the greatest increase in impacts due to the need for armoring (rip-rap) the

crossline pipes and culverts to reduce scour. It is estimated that final hydrology and rip-rap requirements resulted in 568 linear feet of stream impacts that were not captured in the EA/FONSI. The revised interchange design at Exit 91 results in an increase of approximately 117 linear feet of stream impacts, 0.014 acre of wetland impacts, and 0.23 acre of open water impacts. However, the proposed design was also able to minimize various impact areas through design strategies, mainly retaining walls and culvert construction. Tables 2, 3, and 4 summarize the impacts to WOUS within the expanded PSA and the changes since the FONSI.

TABLE 2. ESTIMATED WOUS IMPACTS FOR THE PREFERRED ALTERNATIVE BASED ON FINAL DESIGN

WOUS type	Impact quantity
Stream (linear feet)	5,092
Wetland (acres)	1.061

TABLE 3. ESTIMATED STREAM IMPACTS AND REVISIONS SINCE THE FONSI

	FONSI impact quantity	Revised impact quantity	Notes
Impact site number	(LF)	(LF)	
Non-wetland Water 4	50.4	147	Rip-rap, culvert extension
Non-wetland Water 7A	31.8	81	Rip-rap, culvert extension
Non-wetland Water 8A	65.6	17	Rip-rap
Non-wetland Water 8B	59.3	55	Rip-rap, roadway fill
Non-wetland Water 8C	73.5	0	No impact proposed
Non-wetland Water 10	3.7	0	Feature eliminated by JD revision
Non-wetland Water 12	177.3	137	Rip-rap, culvert extension
Non-wetland Water 13	82.9	159	Rip-rap, culvert extension
Non-wetland Water 15	32.6	49	Rip-rap
Non-wetland Water 17	375.8	121	Rip-rap, culvert extension, roadway fill
Non-wetland Water 18	22.9	77	Rip-rap, culvert extension
Non-wetland Water 19A	27.3	94	Rip-rap, culvert extension
Non-wetland Water 20	30.7	242	Rip-rap, culvert extension
Non-wetland Water 25A	55.1	0	Feature eliminated by JD revision
Non-wetland Water 26	36.1	150	Rip-rap, culvert extension
Non-wetland Water 27	18.9	132	Rip-rap, culvert extension, roadway fill
Non-wetland Water 28	41.9	113	Rip-rap, culvert extension
Non-wetland Water 29	30.3	0	No impact proposed
Non-wetland Water 30A	43.6	123	Rip-rap, culvert extension, roadway fill
Non-wetland Water 30B	1.9	0	No impact proposed
Non-wetland Water 32	26.6	0	Feature eliminated by JD revision
Non-wetland Water 33A	3.7	0	Feature eliminated by JD revision
Non-wetland Water 36A	302.1	60	Rip-rap, culvert extension

Impact site number	FONSI impact quantity (LF)	Revised impact quantity (LF)	Notes
Non-wetland Water 36B	17.1	145	Roadway fill
Non-wetland Water 36D	30.8	27	Rip-rap
Non-wetland Water 38A	42.2	0	No Impact proposed
Non-wetland Water 38B	10.3	0	No Impact proposed
Non-wetland Water 38D	8.1	0	No Impact proposed
Non-wetland Water 39A	61.8	0	Feature eliminated by JD revision
Non-wetland Water 40A	342.4	594	Rip-rap, culvert extension, roadway fill
Non-wetland Water 40D	60.1	0	Feature eliminated by JD revision
Non-wetland Water 40E	60.2	0	Feature eliminated by JD revision
Non-wetland Water 43	22.3	37	Rip-rap, culvert extension
Non-wetland Water 45A	339.4	321	Rip-rap, culvert extension
Non-wetland Water 45B	275.8	0	No Impact proposed
Non-wetland Water 54A	21.2	62	Rip-rap, pipe
Non-wetland Water 54B	12.9	55	Rip-rap, culvert extension
Non-wetland Water 54C	185.1	0	Feature eliminated by JD revision
Non-wetland Water 60	363.2	168	Culvert, roadway fill
Non-wetland Water 103	47.5	35	Rip-rap
Non-wetland Water 104	86.6	0	Feature eliminated by JD revision
Non-wetland Water 107	363.9	406	Roadway fill
Non-wetland Water 110	75.3	141	Rip-rap, culvert extension
Non-wetland Water D	102.4	0	No impact proposed
Non-wetland Water HA	51.4	53	Rip-rap, culvert extension
Non-wetland Water J	55.1	94	Rip-rap, culvert extension
Tributary 4 (NWW N)	142.6	0	No impact proposed
Non-wetland Water CB		22	Rip-rap, feature added by JD revision
Non-wetland Water 1A		50	Rip-rap
Non-wetland Water 2		16	Rip-rap
Non-wetland Water 9		17	Rip-rap
Non-wetland Water HB		26	Rip-rap, pipe
Non-wetland Water 25B		8	Pipe
Non-wetland Water CC		17	Rip-rap, feature added by JD revision
Non-wetland Water 6T		221	Pipe, impact due to reconfiguration of Exit 91
Non-wetland Water 31		104	Rip-rap, pipe
Non-wetland Water 33B		14	Rip-rap
Non-wetland Water 35		23	Rip-rap
Non-wetland Water 37		23	Rip-rap
Non-wetland Water 59		78	Pipe

Impact site number	FONSI impact quantity (LF)	Revised impact quantity (LF)	Notes
Non-wetland Water 47		555	Roadway fill
Non-wetland Water 109		23	Rip-rap, pipe
Total	4,371.7*	5,092	
Re-ev	aluation delta	703*	

^{*}Note: FONSI States 4,389 but math from FONSI Table 4 does not match.

TABLE 4. ESTIMATED WETLAND IMPACTS AND REVISIONS SINCE THE FONSI

FONSI		Revised	
Impact site number	impact	impact	Notes
(permit sheet #)	quantity (ac)	quantity (ac)	
Wetland B	0.1		No proposed impact
Wetland C	0.05		No proposed impact
Wetland D	0.197		No proposed impact
Wetland E	0.012		No proposed impact
Wetland G	0.01		No proposed impact
Wetland I	0.002		No proposed impact
Wetland J	0.009	0.027	Fill, clearing
Wetland L	0.001		No proposed impact
Wetland M	0.111		No proposed impact
Wetland O	0.057		No proposed impact
Wetland P	0.05		No proposed impact
Wetland F	0	0.004	Fill
Wetland H	0	0.048	Fill, clearing
Wetland M	0	0.293	Fill
Wetland CH	0	0.041	Fill, clearing
Wetland CF	0	0.013	Fill, clearing
Non-wetland Water			Fill, feature added from JD
Pond CA	0	0.306	revision
Wetland CC	0	0.025	Fill, clearing
Wetland CA	0	0.292	Fill
Wetland CB	0	0.011	Fill
Wetland K	Wetland K 0		Fill
Total	0.599	1.061	
Re-evaluation delta		0.462	

An individual permit application through Section 404 of the Clean Water Act was submitted on December 16, 2019 to the U.S. Army Corps of Engineers (USACE) for the unavoidable impacts to WOUS and subsequently put on public notice on January 23, 2020. Comments were received from USACE and

other agencies. Revisions to the permit application were requested in response to the comments received from the public notice and as a result of project updates and revisions from final design. The response to the comments and revisions to the permit application package as a result of final project design was submitted on May 22, 2020. ().

Jurisdictional Determination

USACE issued a preliminary jurisdictional determination (PJD) for the proposed project (SAC-2018-00748) on August 2, 2018 associated with the original 1,073-acre PSA, which was documented in the FONSI. As a result of the expanded PSA and proposed design changes for the project, SCDOT requested to revise the previously issued PJD to include additional areas fully encompassing the proposed construction limits based on further finalized design, map existing features more accurately, and to revise previously identified aquatic features. The expanded portions of the JD study area were surveyed, and aquatic features were delineated and included in a revised JD. The PSA for the PJD was revised from 1,078 acres to 1,210 acres and includes seven newly identified wetlands, four linear nonwetland waters, and one open water non-wetland water. The mapping of previously identified aquatic features was updated based on project topographic survey and other supplemental survey to reflect field conditions and project design more accurately. In addition, 26 previously identified aquatic features were re-evaluated and determined nonaquatic features based on hydrologic conditions, origin, and function. Site visits were conducted in 2019 to further evaluate and document WOUS. A field evaluation with USACE in September 2019 confirmed 72 non-wetland waters, 4 non-wetland water ponds, and 15 wetlands. These features total 24,806.73 linear feet (LF) of non-wetland waters, 1.24 acre of non-wetland water ponds and 2.45 acres of wetlands. The linear feet of non-wetland waters was reduced by 1,607.82 linear feet, the wetlands increased by 0.62 acre, and the open waters increased by 0.70 acre from the August 2018 PJD. USACE issued a revised PJD approval letter associated with SAC-2018-00748 on February 18, 2020, which is attached in Attachment D (as an appendix to the Natural Resource Technical Memorandum Update).

Final design associated with the project has progressed since issuance of the revised February 2020 PJD, with the identification of three isolated work areas that extend beyond the EA/FONSI PSA that was documented in the PJD approval. These areas total approximately 3 acres and have been subsequently identified and documented as "delineation only" areas or areas covered under the CCR project (SAC 2015-01080) in conjunction with the Section 404 permit application. The additional PSA areas are shown in the permit submittal package and in the Natural Resource Technical Memorandum (NRTM) Update (Attachment D). In summary, the three additional areas are as follows:

Additional PSA Area 1: This area is 1.78 acres and extends from the updated PSA north along Western Lane. This area was included in the PSA of the ongoing CCR project (SAC 2015-01080) with a PJD issued in June 2015. It was determined that work along westbound I-26 would need to be implemented with the proposed project to avoid reconstruction during the CCR project. Therefore, Tributary 2 and Freshwater Wetlands 56 and 57 were included in the additional

area and are shown on the CCR permit sheets (November 26, 2019 CCR public notice) and identified in the Section 404 permit application.

- Additional PSA Area 2 is 1.38 acres and is south of the I-26 mainline along Columbia Avenue and extends from the updated PSA southeast behind Bojangles. This area was expanded due to the need for an access road to Bojangles meet traffic requirements. This area was verified during an April 2020 desktop review to be uplands and has been documented as "delineation only" in the Section 404 permit application.
- Additional PSA Area 2 is 0.01 acre and extends from the updated PSA south along Non-wetland Water 59 (NWW 59). This area was added due to the need for an additional ditch to redirect the flows of NWW 59 more effectively into the proposed pipe extension inlet. NWW 59 was extended approximately 12 linear feet in this location. The area has also been documented as "delineation only" in the Section 404 permit application.

In summary, the February 2020 PJD revision totals include 2.45 acres of wetlands, 1.24 acres of open water, and 24,806.76 linear feet of non-wetland waters. Since the February 2020 PJD revision, 3 acres were added to the JD study area (to bring the PSA total to 1,213 acres) and NWW 59 was extended from 69.89 linear feet to 82.12 linear feet (increase of 12.23 linear feet) and added as "delineation only." Additionally, CCR Tributary 2 (42 linear feet), Wetland 56 (0.004 acre), and Wetland 57 (0.075 acre) were added in their entirety and are included in the individual permit application resubmitted in May 2020.

Floodplains

The EA/FONSI included the following environmental commitment regarding floodplain compliance:

The selected contractor will send a set of final plans and request for floodplain management compliance o the local County Floodplain Administrator.

This coordination effort has been completed with the determination that the project would result in no impact to regulated floodplains, with copies of the correspondences included in Attachment C.

Threatened and Endangered Species

The EA/FONSI identified nine federally protected species known to occur or that have a possibility of occurring in Lexington, Newberry, and/or Richland County. These species include the red-cockaded woodpecker (*Picoides borealis*), wood stork (*Mycteria americana*), Atlantic Sturgeon (*Acispenser oxyrinchus*), shortnose sturgeon (*Acipenser brevirostrum*), Canby's dropwort (*Oxypolis canbyi*), Michaux's sumac (*Rhus michauxii*), rough-leaved loosestrife (*Lysimachia asperulaefolia*), smooth coneflower (*Echinacea laevigata*), and the bald eagle (*Haliaeetus leucocephalus*). The bald eagle is no longer protected by the Endangered Species Act but is protected by the Bald and Golden Eagle Protection Act.

The EA/FONSI determined the project to have "no effect" on species identified as state and/or federally threatened or endangered. Updated species lists (updated April 27, 2020) for Lexington, Richland, and Newberry Counties were acquired from the U.S. Fish and Wildlife Service (USFWS). The updated lists show that Michaux's sumac and Atlantic sturgeon have been delisted for the applicable counties. In addition, a USFWS Information for Planning and Consultation (IPaC) report was generated from USFWS on March 10, 2020 for use in evaluating the expanded PSA. The IPaC species list identified five species as potentially occurring within the PSA: red-cockaded woodpecker, wood stork, Canby's dropwort, rough-leaved loosestrife, and smooth coneflower. The updated counties species lists and IPaC report can be found in the NRTM Update in Attachment D.

The data collected from online resources and databases, in addition to the field site visits, did not identify any species that may be found within or directly adjacent to the revised PSA. Suitable habitat for protected species was not identified in the PSA. It is recommended that the proposed project, including the revised PSA be determined to have "no effect" on species identified as state and/or federally threatened or endangered, like the original determination in the EA/FONSI.

Hazardous Materials

No additional hazardous sites were identified as a result of the design changes. Asbestos and lead-based paint surveys and a re-evaluation of the previously identified/documented sites will be conducted in the form of a Phase II Environmental Site Assessment prior to construction or demolition activities to evaluate the presence, or absence of, petroleum products or hazardous substances in the subsurface of the sites.

Noise

A noise addendum to the detailed noise analysis (Traffic Noise Analysis Report completed in January 2018 for the EA/FONSI) was completed to document the changes proposed from final design and the analysis and resulting changes to the design of two noise barriers. The noise barrier analysis for two walls (noise barrier 5 and 6) has been updated, including wall layout and requirements, as a result of the final roadway design information. The reasonableness and feasibleness and design of noise barriers 5 and 6 were re-evaluated. Noise barrier 5 would have a small decrease in square footage and length compared to the design from the 2018 noise analysis, and the construction cost for the wall would decrease. In addition, the number of impacted receivers decreased from 90 to 87 and the number of benefitted receivers increased from 138 to 188 due to the Exit 91 design change. Noise barrier 6 would have a minor decrease in square footage and length as well as construction costs compared to the design from the 2018 analysis. In addition, the total number of impacted receivers decreased from 41 to 37 and the number of benefitted receivers decreased from 68 to 64 due to the design change at Exit 91. In summary, the final design of noise barriers 5 and 6 would achieve an increase in 46 benefitted receivers (an increase of 50 benefitted receivers for noise barrier 5 and a net decrease of 4 benefitted receivers for noise barrier 5 for noise barrier 5.

As a result of the design change for Exit 91, the number of noise impacts changed. Approximately 12 receivers that were impacted under the 2018 noise analysis were found to no longer be impacted. One receiver that was not impacted under the 2018 noise analysis was found to be impacted under the final design. Impacts to the remaining receivers did not change. In summary, the number of total receivers impacted as a result of the design change at Exit 91 decreased from 13 to 2. Therefore, there is an overall reduction in project level impacts from 271 to 260 as a result of the alternate design at Exit 91. The total number of benefitted receivers increased from 206 to 252. The noise addendum is attached for reference (Attachment E).

Public Involvement

To notify the public of the change in bridge construction and the resulting detours in the PSA, SCDOT will post signs at each bridge 30 days prior to construction, mail post cards to property owners along the detour routes 15 days prior to commencement of the detours, and will provide information regarding the bridge closures and detours on the project website: scdotmidlandsconnection.com. Coordination with the Town of Chapin has been conducted and is ongoing. A stakeholder meeting was held on October 29, 2019 for the Exit 91 interchange modifications. The stakeholder meeting was attended by nine people. No conflicts or opposition was raised regarding the proposed design (see stakeholder meeting summary in Attachment F).

Environmental Commitments

SCDOT and FHWA previously identified various environmental commitments to avoid and minimize impacts to the surrounding human and natural environments. These commitments are documented in the EA/FONSI as well as the contract documents associated with the design-build procurement. Additional environmental commitments regarding the detour notices and implementation has also been added. The comprehensive list of environmental commitments is included in the front of this document. An Environmental Compliance Plan (ECP) specific to the project has been drafted and will be completed upon acquisition of the permits. The ECP ensures compliance with all commitments, and the Environmental Commitment Form will be updated and maintained accordingly.

ATTACHMENT A:

TECHNICAL MEMORANDUM: TRAFFIC DETOUR PLANS FOR I-26 DESIGN-BUILD PROJECT, RICHLAND, LEXINGTON, AND NEWBERRY COUNTIES, SC

Technical Memorandum

FROM: Jonathan Reid, PE (#37192), PTOE (Arcadis)

DATE: April 14, 2020

SUBJECT: Traffic Detour Analysis for I-26 Design-Build Project – Final Report

Richland & Lexington Counties, SC

This memorandum documents the methodology, analysis and conclusions from the study conducted to determine the impacts of temporary bridge closures during construction of the I-26 Design-Build project, located in Richland and Lexington Counties, northwest of Columbia SC. There are six bridges crossing I-26 that will be closed while a replacement bridge is built in place. The bridge closures will occur in two phases (1A and 1B). Note that per RFI 0006, the Holy Trinity Church Road and Parr Road bridges closures, though consecutive crossings of I-26, can occur at the same time (in Phase 1A), as detour traffic is served by detour routes that do not overlap. Table 1 below lists each bridge name, construction phase and the annual average daily traffic (AADT) being served by each bridge.

Table 1: Routes with Bridge Detours

No	Route Bridge Serves	Closure Phase	2018 AADT
1	Koon Road Bridge	Phase 1A	7,600
2	Old Hilton Road Bridge	Phase 1A	1,350
3	Peak Street Bridge	Phase 1B	1,300
4	Holy Trinity Church Road Bridge	Phase 1A	475
5	Parr Road Bridge	Phase 1A	850
6	SC 202 (Pomaria St) Bridge	Phase 1B	2,400

Development of Detour Routes

Detour routes for each bridge closure were developed and approved by SCDOT and each route is displayed in **Appendix A**. Intersection operational analyses at signalized and major unsignalized intersections along each detour route were conducted using Synchro under both current (Existing) and bridge closure detour (Bridge Detour) conditions. Detour route signing plans for each route are being developed separately and will be submitted with final design plans for each phase of the project.

Determination of Traffic Volumes

Peak hour turning movement counts (TMC's) were collected at 13 intersections (12 signalized and 1 unsignalized) during the week of February 16, 2020 and used for analysis. The intersection count data collected is included in **Appendix B**. The intersections counted include:

Signalized:

- Koon Rd at US 76
- Broad River Rd at US 76
- Broad River Rd at Shady Grove Rd
- Koon Rd at Old Tamah Rd
- Portrait Hill Dr at US 176
- Mt Vernon Church Rd at US 176
- Mt Vernon Church Rd at US 76

- Three Dog Rd at US 76
- · Wessinger/Old Hilton Rd at US 76
- Columbia Ave at I-26 WB Ramps
- Columbia Ave/Amicks Ferry Rd at US 76
- SC 773 at US 76

Unsignalized:

Columbia Ave at I-26 EB Ramps

The remaining intersections are low volume intersections where peak hour TMC data are not available and only AADT data are available. For these intersections, peak hour turn movement volumes were estimated using NCDOT's Intersection Analysis Utility (IAU) spreadsheet tool. The IAU spreadsheet provides peak hour volumes based on AADT, daily turn volumes, K, D and peak direction assumptions. The assumptions for K, D and peak direction. The AADT data for each route were obtained from the SCDOT Traffic Count ArcGIS Online Portal. The AADT volumes were converted to peak hour volumes using a conservative assumption for the K and D factors for different AADT threshold as shown below:

- for AADT > 5,000, K = 0.10 and D = 60%
- for AADT between 5,000 and 1,000, K = 0.11 and D = 65%
- for AADT < 1,000, K = 0.12 and D = 70%

The daily turn volumes were estimated utilizing another NCDOT spreadsheet tool called Intersection Analysis Buddy (IAB). This tool is based on NCHRP 255 report's nondirectional volume method for estimating two-way turn movement volume and produces two-way turning volumes at an intersection given two-way link volumes and an estimate of the total vehicle turning percentage. The IAB spreadsheet has sliders for NW & SE and NE & SW quadrants which allow shifting daily traffic between the respective set of turn and through volumes and thus letting the user choose total vehicle turning percentage indirectly. For the purpose of this study, the sliders for both set of quadrants were set at zero, the default value for the tool, which implies 60% through and 40% turns as proportion of the total entering and exiting (two-way link) intersection volume. These calculations are provided in **Appendix C**. The collected and derived existing AM and PM peak hour intersection volumes are summarized in Table 2.

The Bridge Detour Conditions traffic volumes were determined by applying the approved detour routes to Existing conditions traffic volumes. For each bridge detour route, three figures in **Appendix D** illustrate 1) existing intersection and link ADT volumes, 2) turning movement changes due to the detour and 3) intersection and link ADT volumes with the detour in place. The AM and PM peak hour intersection turning movement volumes with the detour routes in place are also provided in Table 2.

Intersection Analysis and Operational Results

The Existing Conditions and Bridge Detour Conditions intersection volumes were used as the basis for intersection operational analysis in Synchro. Current geometry at each intersection location was coded into a Synchro network to conduct intersection operational analysis. Current intersection geometry and intersection controls (TWSC or signal) and phasing were input into the Synchro model. Signal phase splits and offsets were optimized at each intersection. The SCDOT Synchro defaults listed in Figure 1 were used where no overriding data was available.

Network Settings

- Peak Hour Factor 0.90
- Yellow 4 seconds
- Red 2 seconds
- Offset style Beginning of Yellow
- Simulation taper length 100 feet
- Crosswalk width 10 feet
- Minimum green time for through phases 22 seconds
- Minimum green time for left turn phases 15 seconds
- Consider Lead/Lag optimization only if no left turn trap situation
- If no system in place set, as Actuated uncoordinated; If system in place, set as Actuated Coordinated

Detector Templates

- Left turn lane- Detector 1 0 feet from stop bar, length 30 feet
- Generally, for side streets, use loops at stop bar (leading to 0)
- Edit template phases 2 Southbound, 4 Westbound or as shown on signal plan

SimTraffic Intervals and Volumes:

• Seed 10 min*, record 60 or record 4 15-minute intervals; large networks seeding should cover saturating network

All other default settings within Synchro should be used unless approved by SCDOT.

(Source: SCDOT-TSM Manual 2018, Page 6-10)

Table 2: AM & PM Peak Hour Intersection Volumes for Existing and Detour Conditions

Intersection / Closure	AM Peak Hour – Existing Conditions	PM Peak Hour – Existing Conditions	AM Peak Hour - Bridge Detour Conditions	PM Peak Hour – Bridge Detour Conditions		
Koon Road Bridge Detour Route	NBL NBT NBR SBL SBT SBR EBL EBT EBR WBL WBT WBR Tota	tal NBL NBT NBR SBL SBT SBR EBL EBT EBR WBL WBT WBR Total N	NBL NBT NBR SBL SBT SBR EBL EBT EBR WBL WBT WBR Total N			
1. Coolger Rd @ Koon Rd	12 220 190 12 290 5 10 8 17 88 5 60 917	7 15 165 74 4 188 8 5 5 9 161 8 15 657	0 0 0 210 0 18 27 8 0 0 5 148 416	0 0 0 75 0 23 14 5 0 0 8 176 301		
2. US-76 (Broad River) @ Koon Rd	10 15 10 146 14 235 301 856 2 7 344 106 2046	46 26 12 13 115 13 230 183 648 3 15 827 59 2144 :	25 0 10 0 0 0 0 1007 20 7 450 0 1519	38 0 13 0 0 0 0 727 12 15 886 0 1691		
3. US-76 (Broad River) @ Farming Creek	91 0 277 0 0 0 0 950 54 79 510 0 1961	61 60 0 90 0 0 0 0 710 98 135 938 0 2031 1	163 0 205 0 0 0 0 866 86 47 428 0 1795	80 0 70 0 0 0 0 635 127 106 808 0 1826		
4. US-76 (Broad River) @ Broad River Rd	50 74 68 264 57 10 53 504 65 70 283 196 1694	94 85 72 55 253 68 13 9 555 99 86 563 280 2138 9	50 74 68 427 57 10 53 257 65 70 80 389 1600	85 72 55 334 68 13 9 399 99 86 362 371 1953		
5. Shady Grove Rd @ Broad River Rd	60 199 13 162 173 71 11 166 145 64 175 83 1322	22 132 204 9 114 177 36 28 197 150 47 200 131 1425 (60 446 13 325 407 71 11 166 145 64 175 276 2159	132 360 9 195 321 36 28 197 150 47 200 222 1897		
6. Shady Grove Rd @ Old Tamah Rd	56 317 0 0 442 100 22 0 106 0 0 0 1043	43 70 152 0 0 233 39 38 0 181 0 0 0 713 :	56 708 0 0 703 100 22 0 106 0 0 0 1695	70 310 0 0 369 39 38 0 181 0 0 0 1007		
7. Old Tamah Rd @ Koon Rd	200 102 215 115 282 157 76 218 65 64 185 52 1731	31 89 18 75 22 22 25 7 94 89 88 139 18 686 2	217 57 121 115 71 369 76 447 227 32 217 52 2000	170 9 38 22 11 36 7 254 86 44 183 18 878		
8. US-76 (Dutch Fork) @ Shady Grove Rd	5 33 10 166 30 186 150 442 10 16 206 89 1343	43 10 56 10 160 20 194 138 525 5 10 480 151 1759	5 33 10 166 30 420 397 195 10 16 3 89 1374	10 56 10 160 20 338 294 369 5 10 279 151 1702		
Old Hilton Road Bridge Detour Route						
1. Chapin Rd @ Old Hilton Rd	44 3 83 19 8 6 4 142 79 102 96 8 594	04 79 8 102 8 3 4 6 96 44 83 142 19 594	0 0 0 19 0 6 4 221 0 0 200 8 458	0 0 0 8 0 4 6 140 0 0 166 19 343		
2. Chapin Rd @ US-176 (Broad River)	139 228 0 0 352 44 45 0 221 0 0 0 1029	29 223 353 0 0 229 42 41 0 141 0 0 0 1029 1	141 236 0 0 352 44 22 0 240 0 0 0 1035	164 357 0 0 229 42 23 0 112 0 0 0 926		
3. US-176 (Broad River) @ Portrait Hill Dr	150 4 230 66 7 26 5 356 263 193 269 41 1610	10 27 1 53 57 1 13 21 316 15 41 412 82 1039 1	150 4 230 66 7 26 5 375 263 193 279 41 1639	27 1 53 57 1 13 21 287 15 41 357 82 955		
4. US-176 (Broad River) @ Mt Vernon CH	181 51 222 34 131 109 48 357 182 185 406 6 1912	12 57 28 91 26 19 27 56 318 71 285 444 26 1448 2	293 51 450 34 131 109 48 297 261 287 304 6 2271	85 28 110 26 19 27 56 245 115 368 361 26 1466		
5. US-76 (Dutch Fork) @ Mt Vernon CH	60 92 9 109 40 79 110 727 37 7 331 124 1725	25 47 25 21 54 39 189 63 541 22 10 741 49 1801	60 92 9 109 40 260 442 727 37 7 323 132 2238	47 25 21 54 39 316 106 541 22 10 737 53 1971		
6. US-76 (Dutch Fork) @ Three Dog Rd	209 131 266 0 164 9 22 671 199 45 381 2 2099	99 88 14 41 5 35 26 13 595 94 72 891 5 1879 2	209 131 266 0 164 9 22 1003 199 45 554 2 2604	88 14 41 5 35 26 13 638 94 72 1014 5 2045		
7. US-76 (Dutch Fork) @ Old Hilton	82 228 350 6 21 62 104 460 16 106 444 8 1887	87 59 19 158 7 118 41 24 482 76 304 553 4 1845	82 0 578 0 0 0 0 564 16 106 625 0 1971	59 0 177 0 0 0 0 506 76 304 680 0 1802		
Peak Street Bridge Detour Route						
1. Holy Trinity Church Rd @ Peak Street	20 0 32 0 0 0 0 70 46 35 32 0 235	35 46 0 35 0 0 0 0 32 20 32 70 0 235	0 0 0 0 0 0 0 0 116 0 0 61 0 177	0 0 0 0 0 0 0 52 0 0 111 0 163		
2. US-176 (Broad River) @ Holy Trinity CH	46 0 59 0 0 0 0 125 42 29 68 0 369	69 42 0 29 0 0 0 0 68 45 59 125 0 368 4	46 0 105 0 0 0 0 167 0 29 251 0 598	42 0 49 0 0 0 0 113 0 41 191 0 436		
3. US-176 (Broad River) @ Martin Road	47 0 57 16 0 19 8 388 102 78 247 6 968	68 101 0 79 6 0 8 16 246 46 57 388 19 966 2	259 0 57 16 0 19 8 388 190 107 218 6 1268 3	208 0 79 6 0 8 16 246 111 116 329 19 1138		
4. Columbia Ave @ Martin Road	0 0 0 58 0 101 61 208 0 0 208 64 700	00 0 0 0 63 0 61 101 114 0 0 114 58 511	0 0 0 58 0 218 93 208 0 0 28 244 849	0 0 0 63 0 185 154 114 0 0 60 112 688		
5. Columbia Ave @ I-26W Ramps	424 1 12 0 0 0 88 279 0 0 286 54 1144	44 664 0 13 0 0 0 86 182 0 0 135 11 1091 4	424 1 12 0 0 0 88 311 0 0 223 54 1113	664 0 13 0 0 0 86 235 0 0 205 11 1214		
6. Columbia Ave @ I-26E Ramps	3 0 24 10 3 72 0 333 679 21 689 0 1834	34 0 0 7 25 10 61 0 236 459 34 765 0 1597	3 0 24 10 3 72 0 365 679 21 626 0 1803	0 0 7 25 10 61 0 289 459 34 835 0 1720		
7. Columbia Ave @ E Boundary St	66 0 50 0 0 0 0 645 54 26 364 0 1205	05 51 0 30 0 0 0 0 308 61 55 555 0 1060	66 0 50 0 0 0 0 677 54 26 301 0 1174	51 0 30 0 0 0 0 361 61 55 625 0 1183		
8. Columbia Ave @ Peak St / Clark St	8 3 62 51 12 44 29 586 22 87 163 180 1247	47 19 12 88 20 3 28 41 261 7 63 489 54 1085	8 0 65 0 0 0 0 615 22 87 280 0 1077	19 0 100 0 0 0 0 302 7 63 613 0 1104		
Holy Trinity Church Bridge Detour Route						
1. Holy Trinity CH at Cumlander Crossing	9 0 11 0 0 0 0 87 24 15 44 0 191	91 24 0 16 0 0 0 0 44 8 11 87 0 191	46 0 0 0 0 0 0 0 0 111 0 0 0 157	106 0 0 0 0 0 0 0 52 0 0 0 158		
2. US-76 at Cumlander Crossing	0 0 0 21 0 20 11 327 0 0 214 8 602	02 0 0 0 9 0 9 17 215 0 0 326 24 601	0 0 0 108 0 20 0 338 0 0 229 45 741	0 0 0 53 0 9 0 232 0 0 337 106 738		
3. US-76 at St Peters Church	146 0 84 0 0 0 0 507 128 33 280 0 1178	78 127 0 80 0 0 0 0 439 144 121 507 0 1418 1	146 0 84 0 0 0 0 605 128 33 332 0 1328	127 0 80 0 0 0 0 500 144 121 600 0 1572		
4. US-76 at Columbia Ave/Amicks Ferry	21 400 157 12 96 87 244 339 8 130 205 24 1723	23 30 165 136 16 285 199 141 353 25 206 399 16 1971 :	21 400 157 12 96 139 342 339 8 130 205 24 1873	30 165 136 16 285 292 202 353 25 206 399 16 2125		
5. Columbia Ave at Peak St	8 3 62 51 12 44 29 586 22 87 163 180 1247	47 19 12 88 20 3 28 41 261 7 63 489 54 1085	8 3 62 51 12 76 127 586 22 87 183 160 1377	19 12 88 20 3 98 102 261 7 63 535 31 1239		
6. Holy Trinity Church Rd at Peak St	20 0 32 0 0 0 0 70 46 35 32 0 235	35 46 0 35 0 0 0 0 32 20 32 70 0 235	0 0 130 0 0 0 0 0 0 67 0 0 197	0 0 96 0 0 0 0 0 0 102 0 0 198		
Parr Road Bridge Detour Route			· · · · · · · · · · · · · · · · · · ·			
1 Holy Trinity Church Rd at Parr Road	0 0 0 39 0 24 19 78 0 0 43 17 220	20 0 0 0 19 0 21 23 43 0 0 78 37 221	0 0 0 0 0 0 0 132 0 0 60 0 192	0 0 0 0 0 0 0 65 0 0 115 0 180		
2. Church Road at Pomaria St (SC 202)	0 95 29 66 41 0 0 0 0 10 0 56 297	07 0 41 10 56 95 0 0 0 0 28 0 66 296	0 95 29 101 53 0 0 0 0 10 0 73 361	0 41 10 55 107 0 0 0 0 28 0 103 344		
3. I-26E Ramps at Pomaria St (SC 202)	198 96 0 0 82 56 26 0 34 0 0 0 492	22 24 62 0 0 109 25 36 0 41 0 0 0 297 1	198 113 0 0 129 56 26 0 34 0 0 0 556	24 99 0 0 120 25 36 0 41 0 0 0 345		
4. I-26W Ramps at Pomaria St (SC 202)	62 61 0 0 117 22 11 0 21 0 0 0 294	04 18 81 0 0 57 60 38 0 77 0 0 0 331	62 78 0 0 164 22 11 0 21 0 0 0 358	18 118 0 0 68 60 38 0 77 0 0 0 379		
5. US-176 at Pomaria St (SC 202)	27 0 37 0 0 0 0 151 63 41 74 0 393	3 63 0 41 0 0 0 0 74 27 37 151 0 393 :	27 0 54 0 0 0 0 151 63 88 74 0 457	63 0 78 0 0 0 0 90 11 64 151 0 457		
6. US-176 at Parr Road (SC 213)	12 25 20 126 65 77 86 68 35 22 26 54 616	6 35 65 22 54 25 86 77 26 12 20 68 126 616	5 10 8 126 30 112 103 87 16 10 38 54 599	16 31 10 54 10 101 114 49 5 8 80 126 604		
SC 202 (Pomaria St) Bridge Detour Rout	SC 202 (Pomaria St) Bridge Detour Route					
1. US-76 (Main St) @ Pomaria (SC 202)	6 8 15 90 5 77 130 244 6 8 131 82 802	02 6 5 8 82 8 129 77 131 6 15 244 90 801	6 8 15 90 5 77 95 244 6 8 193 21 767	6 5 8 82 8 129 31 131 6 15 262 72 755		
2. US-76 (Main St) @ Mountain Dr	0 0 0 26 0 23 13 329 0 0 215 9 615	5 0 0 0 11 0 11 20 216 0 0 328 29 615	0 0 0 26 0 23 13 294 0 0 277 9 641	0 0 0 11 0 11 20 170 0 0 346 29 587		
3. US-76 (Main St) @ Mt Pilgrim Church	21 0 24 0 0 0 0 318 38 27 207 0 635	35 35 0 30 0 0 0 0 207 19 26 319 0 636 :	21 0 24 0 0 0 0 283 38 27 269 0 661	35 0 30 0 0 0 0 161 19 26 337 0 608		
4. US-76 (Main St) @ SC 773	0 0 0 186 0 60 117 287 0 0 241 99 990	00 1 0 1 47 0 90 96 128 0 0 142 25 530	0 0 0 186 0 60 152 252 0 0 241 161 1052	1 0 1 47 0 90 142 82 0 0 142 43 548		
5. I-26W Ramps @ SC 773	0 147 99 72 273 0 25 1 44 0 0 0 661	61 0 115 71 62 206 0 65 2 30 0 0 0 551	0 244 99 210 273 0 51 1 44 0 0 0 922	0 179 71 196 206 0 101 2 30 0 0 0 785		
6. I-26E Ramps @ SC 773	39 134 0 0 254 83 0 0 0 91 3 76 680	80 13 167 0 0 192 62 0 0 0 76 2 115 627 1	101 195 0 0 254 83 0 0 0 229 3 76 941	31 249 0 0 192 62 0 0 0 210 2 115 861		
7. US-176 (Broad River) @ SC 773	68 0 89 0 0 0 0 76 133 97 42 0 505	05 133 0 97 0 0 0 0 42 68 89 76 0 505	68 0 150 0 0 0 0 76 133 97 42 0 566	133 0 179 0 0 0 0 42 68 89 76 0 587		
8. US-176 (Broad River) @ SC 202	29 0 41 0 0 0 0 142 59 46 78 0 395	95 59 0 46 0 0 0 0 78 29 42 142 0 396		59 0 46 0 0 0 0 160 29 42 142 0 478		
9. I-26W Ramps @ SC 202	62 61 0 0 117 22 11 0 21 0 0 0 294	04 18 81 0 0 57 60 38 0 77 0 0 0 331	0 0 0 0 0 139 11 0 0 0 0 150	0 0 0 0 0 117 38 0 0 0 0 0 155		
10. I-26E Ramps @ SC 202	198 96 0 0 82 56 26 0 34 0 0 0 492			24 0 0 0 0 0 0 0 175 0 0 199		

Synchro was used to determine intersection delay and level of service (LOS) for existing condition and detour route scenarios during both AM and PM peak. Full intersection LOS analysis results are provided in **Appendix E** and are summarized in Table 3. Intersection LOS is based on a scale of A to F, with A being optimal conditions and F indicating over-capacity intersection operations. At LOS E, the intersection is considered to be operating at capacity, with moderate to significant delays expected in peak periods.

Table 3: Synchro Intersection Operational Analysis Results

				Existing Conditions Delay / LOS		With Detour Routes Delay / LOS	
	ID	Intersection	Existing Control	AM	PM	AM	PM
	1	Coolger Rd @ Koon Rd	4-leg minor stop	4.4 / A	5.6 / A	8.8 / A	8.3 / A
<u>e</u>	2	US-76 (Broad River) @ Koon Rd	4-leg signalized	17.7 / B	30.0 / C	6.1 / A	5.6 / A
	3	US-76 (Broad River) @ Farming Creek Rd	3-leg minor stop	45.2 / E	298.4 / F	45.7 / E	42.1 / E
losr	4	US-76 (Broad River) @ Broad River Rd	4-leg signalized	25.8 / C	27.1 / C	25.6 / C	26.6 / C
© €		, , <u>, , , , , , , , , , , , , , , , , </u>				26.1 / C	17.5 / B
ridg ise `	5	Shady Grove Rd @ Broad River Rd	4-leg signalized	14.4 / B	14.1 / B	[32.2 / C]	[23.3 / C]
Koon Rd Bridge Closure (Phase 1A)	6	Shady Grove Rd @ Old Tamah Rd	3-leg minor stop	2.8 / A	5.0 / A	4.0 / A [3.0 / A]	4.8 / A [4.0 / A]
Koon	7	Old Tamah Rd @ Koon Rd	4-leg signalized	17.9 / B	12.1 / B	32.5 / C [22.9 / C]	14.9 / B [15.6 / B]
1 1	8	US-76 (Dutch Fork Rd) @ Shady Grove Rd	4-leg signalized	10.9 / B	11.4 / B	13.2 / B	12.0 / B
	1	Chapin Rd @ Old Hilton Rd	3-leg minor stop	5.2 / A	6.0 / A	0.7 / A	0.5 / A
∂g (r	2	Chapin Rd @ US-176 (Broad River)	3-leg minor stop	7.3 / A	6.3 / A	6.1 / A	4.2 / A
3rid e 1	3	US-176 (Broad River) @ Portrait Hill Dr	4-leg signalized	14.2 / B	8.1 / A	14.3 / B	8.1 / A
d E	4	US-176 (Broad River) @ Mt Vernon Ch Rd	4-leg signalized	11.1 / B	7.4 / A	15.5 / B	8.5 / A
Old Hilton Rd Bridge Closure (Phase 1A)		, , ,				42.6 / D	20.0 / B
I HII	5	US-76 (Dutch Fork) @ Mt Vernon/Lowman	4-leg signalized	15.8 / B	15.0 / B	[26.3 / C]	[19.6 / B]
8 8	6	US-76 (Dutch Fork) @ Three Dog Rd	4-leg signalized	17.5 / B	9.6 / A	31.7 / C	10.8 / B
	7	US-76 (Dutch Fork) @ Wessinger/Old Hilton	4-leg signalized	19.7 / B	17.9 / B	21.2 / C	12.1 / B
Ф	1	Holy Trinity Church Road @ Peak Street	3-leg minor stop	3.2 / A	4.4 / A	0.0 / A	0.0 / A
sar	2	US-176 (Broad River) @ Holy Trinity Ch Rd	3-leg minor stop	3.6 / A	3.4 / A	3.4 / A	3.1 / A
පි ක	3	US-176 (Broad River) @ Martin Road	4-leg minor stop	4.1 / A	6.7 / A	100.1 / F	54.4 / E
dge e 11	4	Columbia Ave @ Martin Road	3-leg minor stop	3.9 / A	4.7 / A	5.5 / A	6.8 / A
St Bridge C (Phase 1B)	5	Columbia Ave @ I-26WRamps	4-leg signalized	16.8 / B	18.9 /B	16.6 / B	22.1 / C
St P	6	Columbia Ave @ I-26E Ramps	4-leg minor stop	2.2 / A	3.7 / A	2.0 / A	5.4 / A
Peak St Bridge Closure (Phase 1B)	7	Columbia Ave @ E Boundary St	3-leg minor stop	3.5 / A	2.5 / A	3.5 / A	2.8 / A
	8	Columbia Ave @ Peak St / Clark St	4-leg minor stop	7.6 / A	4.6 / A	2.3 / A	2.6 / A
e (1	Holy Trinity Ch Rd at Cumlander Crossing	3-leg minor stop	1.6 / A	2.4 / A	2.6 / A	6.1 / A
Holy Trinity Bridge Closure (Ph 1A)	2	US-76 at Cumlander Crossing	3-leg minor stop	1.0 / A	0.7 / A	2.8 / A	1.3 / A
Ph (Ph	3	US-76 at St Peters Church	3-leg minor stop	6.5 / A	20.3 / C	9.3 / A	38.8 / D
i i e	4	US-76 at Columbia Ave/Amicks Ferry Rd	4-leg signalized	29.0 / C	23.7 / C	39.2 / D	29.8 / C
ly T	5	Columbia Ave at Peak St	3-leg minor stop	7.6 / A	4.6 / A	19.1 / B	7.7 / A
[운 ^C]	6	Holy Trinity Church Road at Peak St	3-leg minor stop	3.2 / A	4.4 / A	8.3 / A	8.0 / A
	1	Holy Trinity Church Road at Parr Road	3-leg minor stop	3.4 / A	2.5 / A	0.0 / A	0.0 / A
idg 1,	2	Church Road at Pomaria St (SC 202)	3-leg minor stop	3.8 / A	4.5 / A	4.5 / A	5.0 / A
d Br	3	I-26E Ramps at Pomaria St (SC 202)	3-leg minor stop	5.0 / A	3.2 / A	4.6 / A	2.9 / A
Soa(4	I-26W Ramps at Pomaria St (SC 202)	3-leg minor stop	2.8 / A	3.8 / A	2.3 / A	3.4 / A
rr F Sure	5	US-176 at Pomaria St (SC 202)	3-leg minor stop	2.6 / A	3.7 / A	3.6 / A	4.7 / A
Parr Road Bridge Closure (Phase 1A)	6	US-176 at Parr Road (SC 213)	4-leg minor stop	10.6 / B	8.0 / A	9.4 / A	6.8 / A
	1	US-76 (Main St) @ Pomaria St (SC 202)	4-leg minor stop	6.8 / A	6.3 / A	6.5 / A	5.6 / A
202 (Pomaria St) Bridge Closure (Phase 1B)	2	US-76 (Main St) @ Mt Tabor/Mountain Dr	3-leg minor stop	1.2 / A	0.8 / A	1.2 / A	0.8 / A
	3	US-76 (Main St) @ Mt Pilgrim Church Rd	3-leg minor stop	1.3 / A	1.7 / A	1.3 / A	1.8 / A
	4	US-76 (Main St) @ SC 773	3-leg signalized	15.5 / B	10.5 / B	14.8 / B	11.2 / B
	5	I-26W Ramps @ SC 773	3-leg minor stop	2.5 / A	3.5 / A	5.7 / A	8.2 / A
ma (P	6	I-26E Ramps @ SC 773	3-leg minor stop	4.2 / A	4.1 / A	26.1 / C	12.0 / B
Pc (Pc	7	US-176 (Broad River) @ SC 773	3-leg minor stop	5.3 / A	7.3 / A	6.1 / A	8.5 / A
188	8	US-176 (Broad River) @ Pomaria (SC 202)	3-leg minor stop	2.8 / A	3.8 / A	2.6 / A	3.4 / A
SC 2	9	I-26W Ramps @ SC 202	3-leg Minor Stop	2.7 / A	3.8 / A	0.7 / A	2.2 / A
	10	I-26E Ramps @ SC 202	3-leg Minor Stop	4.8 / A	3.2 / A	8.2 / A	8.8 / A
$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		1. 202 . Kampo (a) 00 202	t leg illinor etop		J.2 / / \	J / / \	0.0771

Note: [0.0 / A] denotes delay/LOS after improvement(s) made

The results in Table 3 show that all existing intersections are operating below capacity (LOS D or better) during both AM and PM peak periods, with the exception of one intersection (discussed in the next section). In some cases, intersection and/or LOS improves during detour operations. In many other cases, intersection delay increases slightly from existing to detour route conditions during one or both peak periods, and in some cases intersection LOS decreases (worsens) by one letter grade. In two cases, the intersection LOS drops two letter grades (but not beyond LOS D), and at one intersection LOS A conditions drops to LOS F / E in the AM / PM peak hour, respectively.

Delay/LOS and SimTraffic Observations and Recommended Mitigation

The Synchro delay/LOS and SimTraffic simulation results were also reviewed to observe any deficiencies created during AM or PM peak hour conditions under the detour route operations. Synchro delay/LOS analysis and SimTraffic observations of all traffic detour models led to improvement recommendations at the following location(s) to provide acceptable operations during the planned detours:

1. Old Tamah at Koon Road

The Koon Road detour reroutes a significant volume of traffic onto Old Tamah Road. This added volume causes operational concerns at the intersection of Old Tamah at Koon Road. At this intersection, the AM peak period delay and LOS is 32.5 / C, indicating acceptable intersection operations during detour operations. However, SimTraffic results show significant queuing in the AM peak period, particularly in the eastbound direction, that extends upstream through the Shady Grove intersection.

With an additional right turn bay on eastbound Old Tamah and a right turn phase overlapping the NB left turn phase, AM peak hour intersection delay decreases from 32.5 to 22.9 average seconds delay (remaining at LOS C) and eastbound queues are significantly reduced, as illustrated in Figure 2 below.

Figure 2: Old Tamah / Koon Road Operations with and without Right Turn Bay Improvement

2. Old Tamah at Shady Grove Road

Due to the same increase in traffic on Old Tamah / Shady Grove Road, the stop-controlled approach on Shady Grove Road operates at LOS F and SimTraffic shows extensive queuing on this intersection approach during detour operations. With the aforementioned Old Tamah/Koon Road improvements and the addition of a southbound left turn bay on Shady Grove Road, overall intersection delay is reduced from 4.0 to 3.0 seconds of average delay, remaining at LOS A. The southbound stop-controlled approach remains at LOS F, but queues are reduced, as illustrated in Figure 3. It should be noted that with the right turn bay, stop-control delays will still exist as there are few gaps on the main roadway (Old Tamah), both currently and with the detour condition in place. A signal warrant study should be conducted at this intersection to determine if signalization is a good long-term solution.

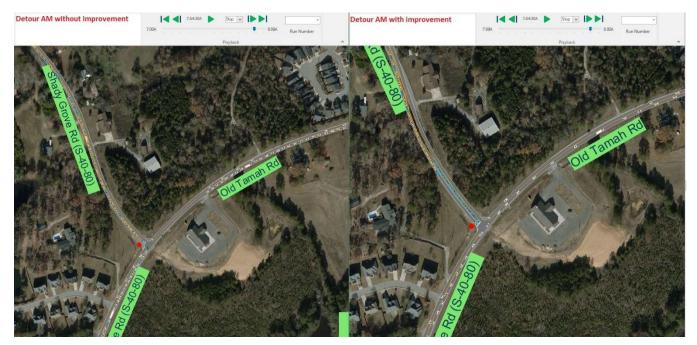


Figure 3: Old Tamah / Shady Grove Road Operations with and w/o Turn Bay Improvements

3. Broad River Road at Shady Grove Road

The Koon Road detour reroutes a significant volume of traffic onto Shady Grove. At the Broad River/Shady Grove Road intersection, the intersection operates at 26.1 / C in the AM peak hour, indicating acceptable intersection operations during detour operations. However, SimTraffic results show significant queuing on southbound Shady Grove in the AM peak period due to an increase in southbound left turns at this intersection. With the addition of a southbound protected/permitted left turn phase, intersection delays slightly increase to 32.3 / C and 23.3 / C in the AM and PM peak hours respectively, but southbound queues are significantly reduced, as illustrated in Figure 4 below.

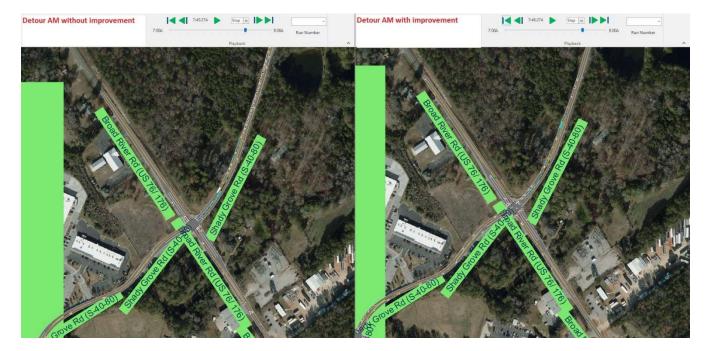


Figure 4: Broad River/Shady Grove Rd Operations with and w/o LT Signal Phase Improvements

4. US-176 (Broad River Road) at Martin Road

At this minor street (Martin Road) stop-controlled intersection, the peak hour intersection operations decreased from LOS A in both peak periods to LOS F / LOS E in the AM / PM peak hours respectively during the Peak Street bridge detour. However, SimTraffic observations, illustrated in Figure 5, showed the LOS reduction is overstated, as the maximum vehicle queues on Martin Road was shown to be less than 10 vehicles during the AM peak period. No improvement recommendations are recommended for this intersection.

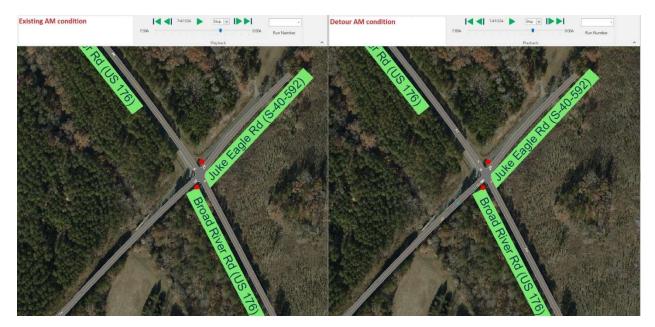


Figure 5: Maximum PM Peak Queue on NB Martin Road at US-176 During Detour Conditions

5. US-76 (Chapin Rd) at St Peters Church Rd

Operational analysis showed that during the Holy Trinity Church detour, the LOS decreases from LOS C to LOS D during the PM peak. However, observations in SimTraffic, illustrated in Figure 6, showed the maximum vehicle queues on the stop-controlled approach (St. Peters Church) to be less than 10 vehicles during the PM peak period. No improvement recommendations are recommended for this intersection.

Figure 6: Maximum PM Peak Queue on NB St. Peters Church at US-76 During Detour Conditions

6. US-76 (Dutch Fork) at Mt. Vernon/Lowman Road

Despite acceptable delay and LOS at this intersection with the detour in place (42.6 / D and 20.0 / B in the AM / PM peak hours respectively), a review of SimTraffic operations showed that during the Old Hilton Road detour, southbound approach queues exceeded one-half mile in the AM peak hour. The addition of an eastbound left turn protected/permitted phase significantly reduces both eastbound and southbound queues, as illustrated in Figure 7. With this improvement, intersection delay improves from 42.6 / D to 26.3 / C in the AM peak hour and southbound approach queues are substantially reduced.

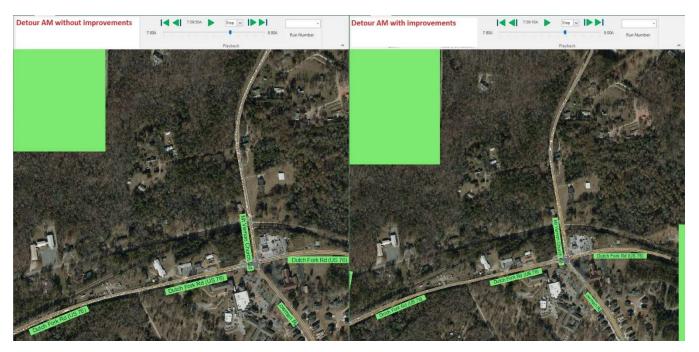


Figure 7: US-76 / Mt. Vernon / Lowman Intersection Operations with and Without Improvement

Other SimTraffic Observations

As part of the delay/LOS SimTraffic observations, several locations were identified that have poorly performing intersections with lengthy queues in the AM and/or PM existing conditions that are not worsened by the detour route traffic conditions. The following locations may be of interest to the Department for further investigation and consideration of future operational improvements:

- US-76 at Farming Creek Road (northbound queues on Farming Creek Road); however, these delays
 may be overstated as northbound left turn vehicles use the center left turn lane to complete two-stage
 left turns that is not able to be captured in the SimTraffic model.
- US-76/Dutch Fork Road at Three Dog Road (northbound queuing in the AM peak)
- US-76 at Columbia Avenue/Amicks Ferry (northbound Amick Ferry queuing)

Conclusions

Based on the proposed bridge closure route operational analyses, the following recommendations are made for the detour conditions:

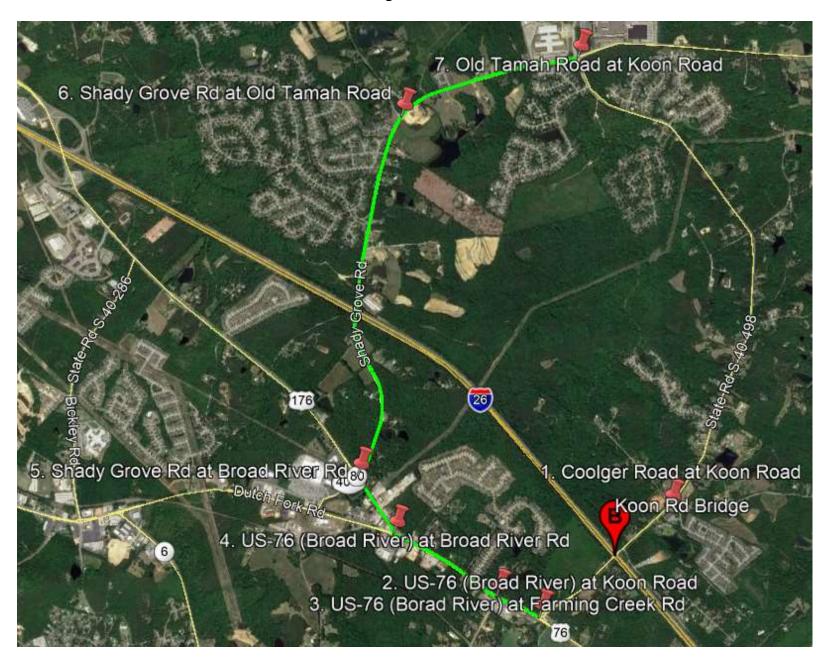
- During the Koon Road detour, it is recommended that eastbound right turn bay and right turn signal phase (overlapping the NB left turn) be added at the Old Tamah / Koon Road intersection.
- During the Koon Road detour, it is recommended that a left turn bay be added on southbound (stop-controlled) Shady Grove Road approach at the Shady Grove / Old Tamah intersection.

- During the Koon Road detour, it is recommended that a protected/permitted signal phase be added on southbound Shady Grove at the Shady Grove / Broad River Road intersection.
- During the Old Hilton Road detour, it is recommended that a protected/permitted signal phase be added on eastbound US-76 at the US-76 / Mt. Vernon / Lowman Road intersection.

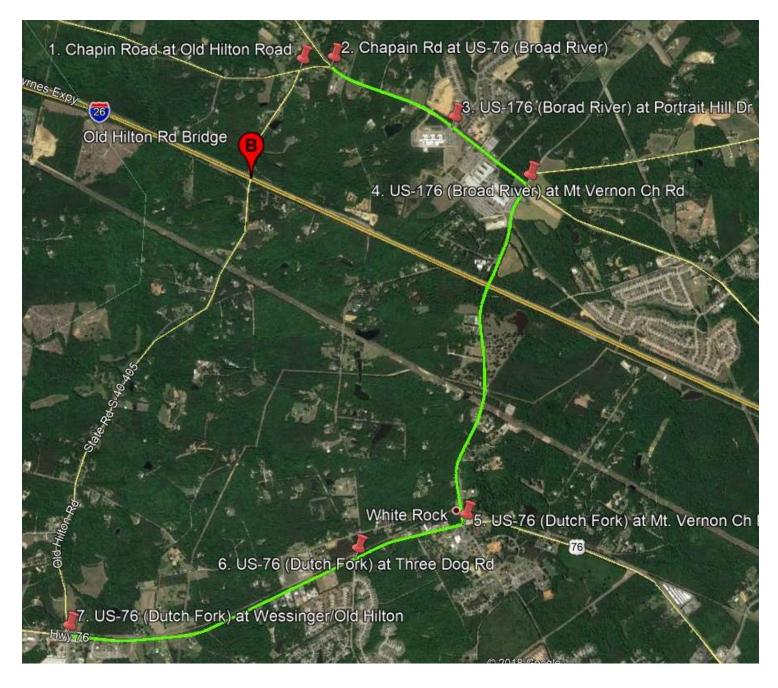
All other intersections along the proposed detour routes are projected to have acceptable delays / LOS or otherwise not significantly impact existing traffic operations. Therefore, no other intersection geometric or control modifications are required during any of the planned bridge detours.

Sincerely,

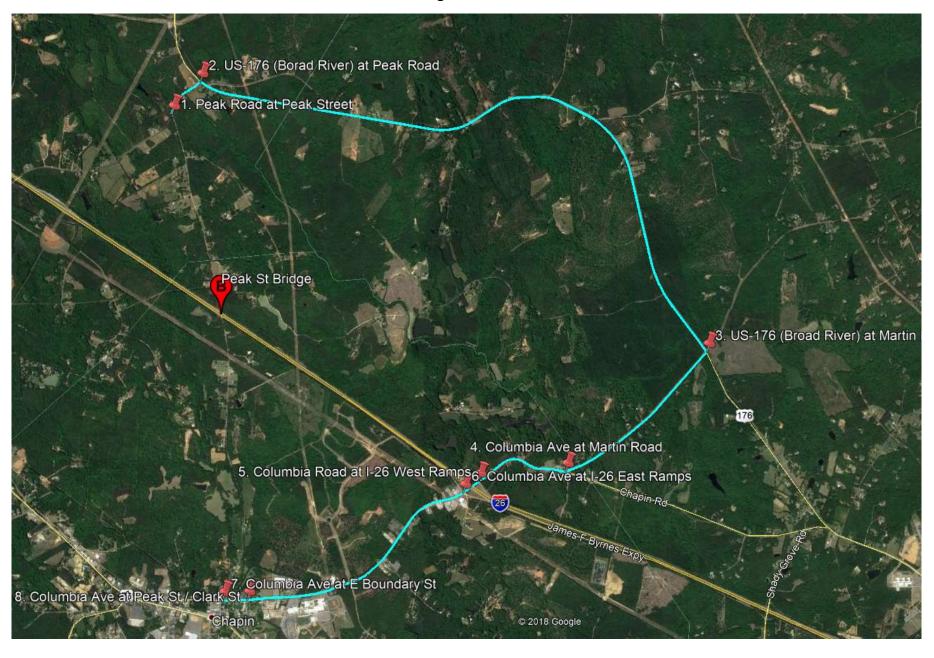
Arcadis

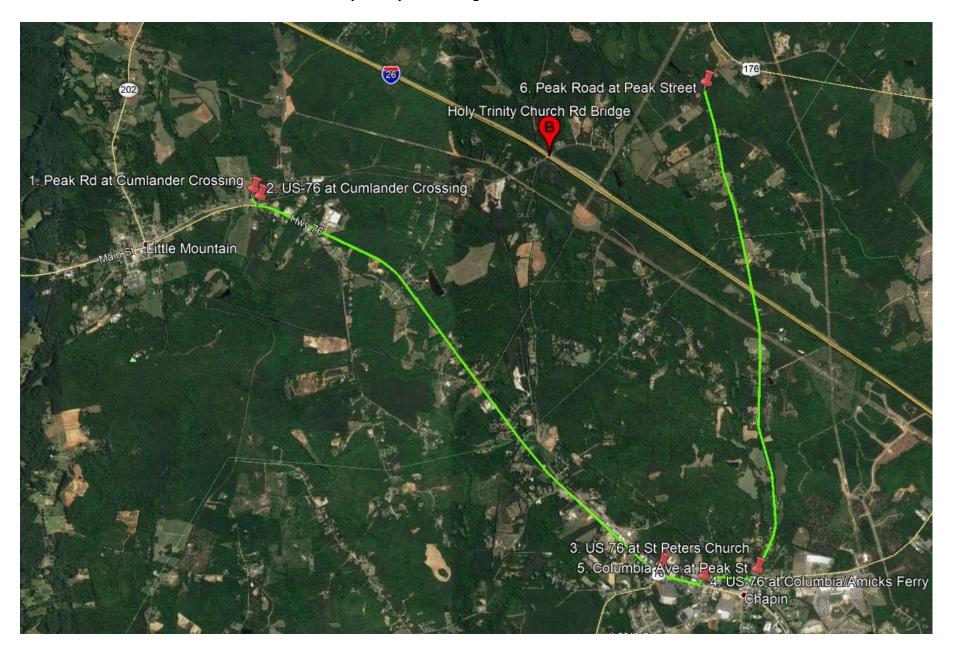

Jonathan Reid, PE, PTOE

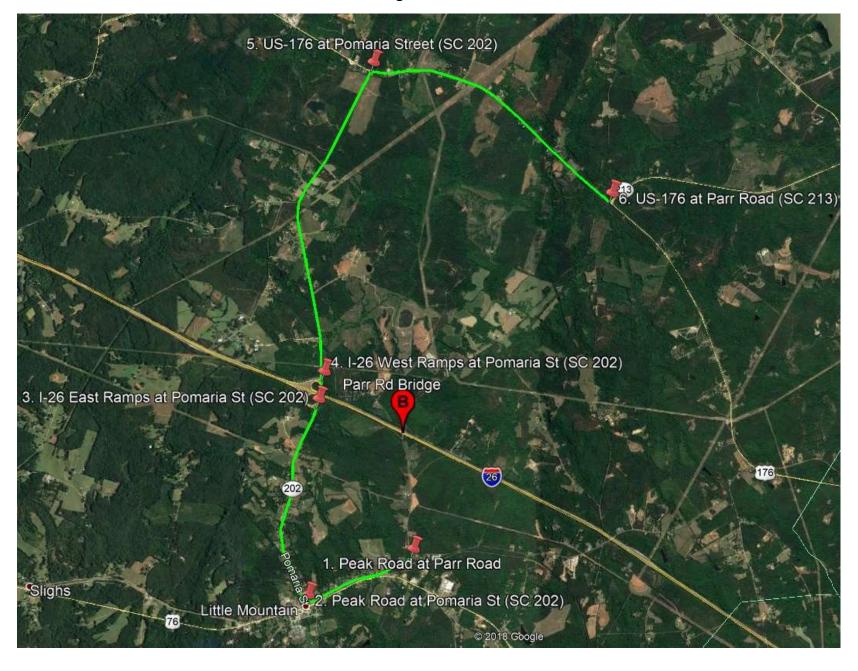
onal D. Reid

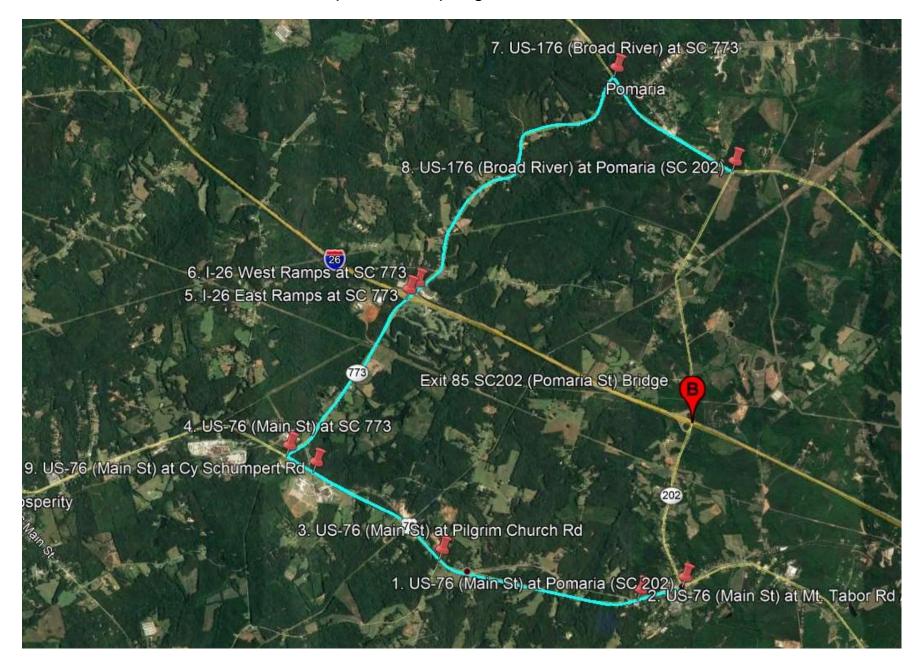

Appendix A

Approved Detour Routes


Koon Road Bridge Closure Detour Route


Old Hilton Road Bridge Closure Detour Route


Peak Street Bridge Closure Detour Route


Holy Trinity Road Bridge Closure Detour Route

Parr Road Bridge Closure Detour Route

SC 202 (Pomaria Street) Bridge Closure Detour Route

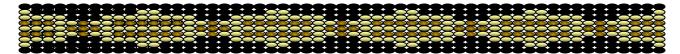
Appendix B

Intersection Count Data Collected (not included)

Appendix C

AADT to Turning Movement Count Calculations (not included)

Appendix D


Detour Route Volume Calculation Diagrams (not included)

Appendix E

HCM Level of Service Reports (not included)

ATTACHMENT B:

CULTURAL RESOURCES ADDENDUM AND CONCURRENCES

Office 803-328-2427 Fax 803-328-5791

May 26, 2020

Attention: Tracy Martin

SCDOT

P.O. Box 191

Columbia, SC 29202

Re. THPO#

TCNS#

Project Description

2020-66-13

Second Addendum: Cultural Resources Survey of S-48 Improvements, Lexington Co.

Dear Ms. Martin,

The Catawba have no immediate concerns with regard to traditional cultural properties, sacred sites or Native American archaeological sites within the boundaries of the proposed project areas. However, the Catawba are to be notified if Native American artifacts and / or human remains are located during the ground disturbance phase of this project.

If you have questions please contact Caitlin Rogers at 803-328-2427 ext. 226, or e-mail Caitlin.Rogers@catawba.com.

Sincerely,

Wenonah G. Haire

Tribal Historic Preservation Officer

Cattle Rogers for

CHEROKEE NATION®

P.O. Box 948 • Tahlequah, OK 74465-0948 918-453-5000 • www.cherokee.org Office of the Chief

Chuck Hoskin Jr.
Principal Chief

Bryan WarnerDeputy Principal Chief

May 18, 2020

Tracy Martin North Carolina Department of Transportation P.O. Box 191 Columbia, SC 29201-3959

Re: Second Addendum to S-48 (Columbia Avenue) Improvements, Lexington County

Dear Tracy Martin:

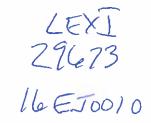
The Cherokee Nation (Nation) is in receipt of your correspondence about and related report for **Second Addendum to S-48 (Columbia Avenue) Improvements, Lexington County**, and appreciates the opportunity to provide comment upon this project. Please allow this letter to serve as the Nation's interest in acting as a consulting party to this proposed project.

The Nation maintains databases and records of cultural, historic, and pre-historic resources in this area. Our Historic Preservation Office reviewed this project, cross referenced the project's legal description against our information, and found no instances where this project intersects or adjoins such resources. Thus, the Nation does not foresee this project imparting impacts to Cherokee cultural resources at this time.

However, the Nation requests that the North Carolina Department of Transportation (NCDOT) halt all project activities immediately and re-contact our Offices for further consultation if items of cultural significance are discovered during the course of this project.

Additionally, the Nation requests that NCDOT conduct appropriate inquiries with other pertinent Tribal and Historic Preservation Offices regarding historic and prehistoric resources not included in the Nation's databases or records.

If you require additional information or have any questions, please contact me at your convenience. Thank you for your time and attention to this matter.


Wado.

Elizabeth Toombs, Tribal Historic Preservation Officer Cherokee Nation Tribal Historic Preservation Office

elizabeth-toombs@cherokee.org

918.453.5389

April 20, 2020

Ms. Elizabeth Johnson Director, Historical Services, D-SHPO State Historic Preservation Office SC Department of Archives & History 8301 Parklane Road Columbia, SC 29223

RE: Second Addendum: Cultural Resources Survey of S-48 (Columbia Avenue) Improvements, Lexington County, South Carolina.

Dear Ms. Johnson:

Please find attached a copy of the above-referenced report that describes cultural resources investigations conducted in an expanded area for additional improvements to S-48 (Columbia Avenue). This project is located in **Lexington County**, South Carolina.

The section addressed in this addendum is located to the east of the original project area. This expanded the survey area to approximately .70 miles along I-26 to the north of the intersection with Columbia Avenue and .60 miles along Columbia Avenue to the west of the intersection. This includes approximately 42 acres to the north of Columbia Avenue between I-26 and Dan Comalander Drive and about 12 acres to the west of I-26 and north of Columbia Avenue. The architectural survey boundary was a 300-foot buffer surrounding the project area.

The cultural resources survey did not identify any new archeological sites. A total of three new architectural resources were recorded and evaluated within the architectural survey boundary (Resource Numbers 1004, 1005, and 1006). Resource 1004 is a Colonial Revival Linear Ranch House constructed in 1968; Resource 1005 is a Linear Ranch House built in 1965; and Resource 1006 is a residential garage constructed about 1965. All three resources were found to lack historical associations that would qualify them for listing on the National Register of Historic Places under Criteria A and B and none have significant qualities that warrant significance under Criterion C. All of these aboveground resources have been assessed as **not eligible** for inclusion in the National Register of Historic Places.

Based on the results of the background research and field investigations, the Department has determined that **no historic properties will be affected** by the proposed undertaking.

Per the terms of the Section 106 Programmatic Agreement executed on October 6, 2017, the Department is providing this information on behalf of the Federal Highway Administration. It is requested that you review the enclosed material, and, if appropriate, indicate your concurrence in the Department's findings. Please respond within 30 days if you have any objections or if you have need of additional information.

Sincerely,

Mary Man

Tracy Martin Archaeologist

M- John Date: 4/20/2020

TAM:tam

I (desert) concur in the above determination.

Signed:

ec: Shane Belcher, FHWA

Russell Townsend, Eastern Band of Cherokee Indians Stephen J. Yerka, Eastern Band of Cherokee Indians

Elizabeth Toombs, Cherokee Nation

LeeAnne Wendt, Muscogee (Creek) Nation

Karen Pritchett, United Keetoowah Charlotte Wolfe, United Keetoowah

cc: Wenonah G. Haire, Catawba Nation

Keith Derting, SCIAA

File: ENV/TAM

Second Addendum:

Cultural Resources Survey of S-48 (Columbia Avenue) Improvements

Lexington County, South Carolina

New South Associates, Inc.

Second Addendum: Cultural Resources Survey of S-48 (Columbia Avenue) Improvements

Lexington County, South Carolina

ъ .	4 4	
Report	submitted	to:

Infrastructure, Consulting, and Engineering • 1021 Briargate Circle • Columbia, SC 29210

Report prepared by:

New South Associates • 1819 Hampton Street • Columbia, South Carolina 29201

Natalie Adams Pope – Principal Investigator

Katie Dykens Quinn – Historian and Co-Author Kelly Higgins – Archaeologist and Co-Author

April 10, 2020 • Final Report New South Associates Technical Report 3037

ABSTRACT

This second addendum report addresses an additional area not surveyed and discussed in New South Technical Reports #2535 and 2617, Cultural Resources Survey of S-48 (Columbia Avenue) Improvements, Lexington County, South Carolina and Addendum: Cultural Resources Survey of S-48 (Columbia Avenue) Improvements (Dykens and Sipe 2017; Pope et al. 2017). The section addressed in this second addendum report is located on the east end of the original project area, expanding the survey area to approximately .70-miles along I-26 to the north of the intersection with Columbia Avenue and .60-miles along Columbia Avenue to the west of the intersection. This includes approximately 42 acres to the north of Columbia Avenue between I-26 and Dan Comalander Drive, and approximately 12 acres to the west of I-26 and north of Columbia Avenue.

New South Associates, Inc. completed a cultural resources survey of the additional section of the project corridor in order to identify significant archaeological and historic architectural resources in its Area of Potential Effects (APE). This report describes the goals, methods, results, and recommendations for the additional surveyed area.

Background research indicated no archaeological resources were previously recorded inside the project APE. Twenty-one historic architectural resources were previously surveyed within the APE. Eighteen remain extant. None were recommended eligible for the National Register of Historic Places (NRHP).

This archaeological survey identified no sites. The historic architectural survey recorded and evaluated three additional resources. The resources lack qualities of significance that would qualify them for NRHP listing under Criterion A, B, or C. Therefore, New South does not recommend any further consideration regarding these three resources.

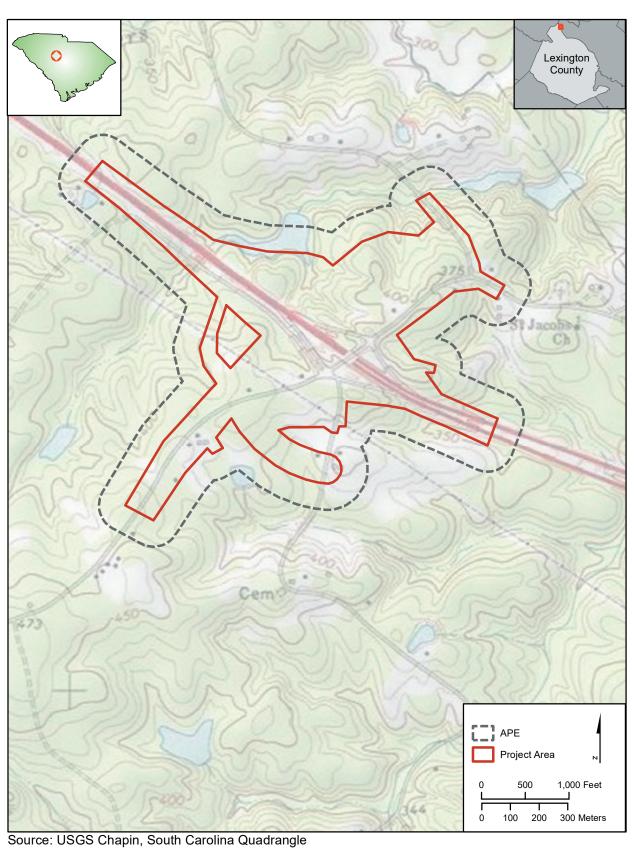
Intentionally Left Blank

TABLE OF CONTENTS

ABSTRACT	i
TABLE OF CONTENTS	iii
LIST OF FIGURES AND TABLES	
I. INTRODUCTION	
II. PREVIOUS RESEARCH	
PREVIOUSLY SURVEYED RESOURCES	
	_
III. SURVEY RESULTS	
ARCHAEOLOGICAL SURVEY RESULTS	7
HISTORIC ARCHITECTURAL SURVEY RESULTS	7
Newly Surveyed Resources	11
Resource 1004: 556 Columbia Avenue	11
Resource 1005: 469 Brentwood Court	
Resource 1006: 471 Brentwood Court – Garage	
IV. RESULTS AND RECOMMENDATIONS	17
REFERENCES CITED	10
REFERENCES CHED	19

LIST OF FIGURES AND TABLES

Figure 1. Map of Project Area	2
Figure 2. Previously Recorded Cultural Resources Within 0.5 Mile of the APE	4
Figure 3. Survey Coverage Map	
Figure 4. Survey Conditions	9
Figure 5. Previously and Newly Recorded Architectural Resources Within the APE	10
Figure 6. Resource 1004: 556 Columbia Avenue	12
Figure 7. Resource 1005: 469 Brentwood Court	14
Figure 8. Resource 1006: 471 Brentwood Court – Garage	15
Table 1. Previously Recorded Architectural Resources within the APE	5
Table 2. Newly Surveyed Architectural Resources Surveyed Within the APE	11


I. INTRODUCTION

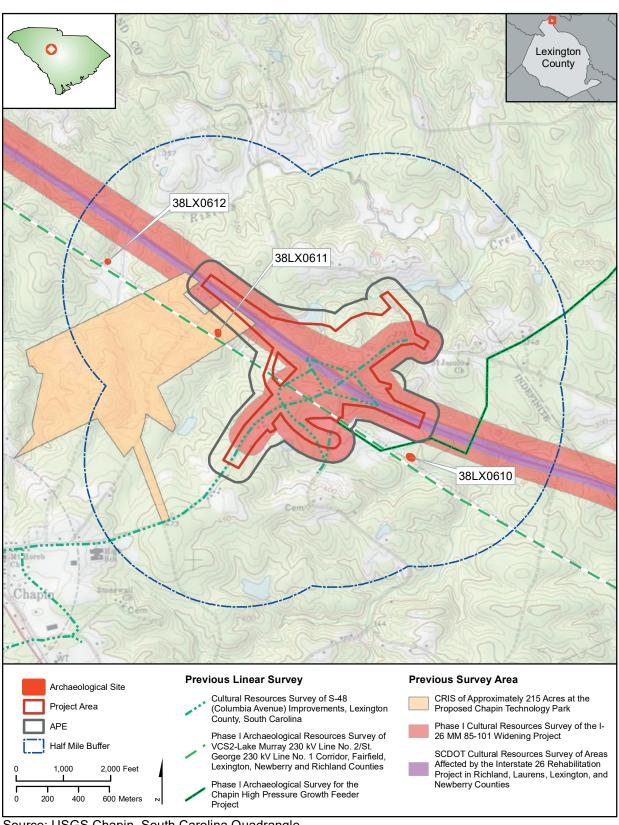
This second addendum report addresses an additional area not surveyed and discussed in New South Technical Reports #2535 and 2617, Cultural Resources Survey of S-48 (Columbia Avenue) Improvements, Lexington County, South Carolina and Addendum: Cultural Resources Survey of S-48 (Columbia Avenue) Improvements (Dykens and Sipe 2017; Pope et al. 2017). The section addressed in this second addendum report is located on the east end of the original project area and includes an expanded area along I-26 in both directions as well as north of Columbia Avenue near Dan Comalander Drive (Figure 1). The Area of Potential Effects (APE) consists of the project area and its viewshed, which is defined by a 300-foot buffer. For the archaeological survey, the entire project area was examined. For the historic architectural resources survey, the entire APE was examined.

The goal of this Phase I survey was to identify significant cultural resources in the project's APE and to assess project effects. Specific tasks included background research, fieldwork, and reporting. Background research entailed reviews of previously recorded archaeological sites and historic resources, along with development of prehistoric and historic contexts for the project area. These contexts, which are available in the original report, provided information necessary for survey planning as well as interpreting and evaluating cultural resources identified during the fieldwork. The fieldwork comprised archaeological and historic architectural resources surveys of the APE.

Natalie Adams Pope served as Principal Investigator, while Kelly Higgins served as the Project Archaeologist and Katie Dykens Quinn served as the Architectural Historian. This second addendum describes the objectives and results of this survey, and is organized into four chapters, including this introduction. Previous research can be found in Chapter II, while results of the survey are provided in Chapter III. A summary and recommendations are presented in Chapter IV.

Figure 1. Map of Project Area

II. PREVIOUS RESEARCH


PREVIOUSLY SURVEYED RESOURCES

Background research sought to identify all previously recorded cultural resources located within or near the APE (including the project area and 300-foot viewshed). New South reviewed ArchSite, the digital site files and GIS database maintained by the South Carolina Institute of Archaeology and Anthropology (SCIAA) and the South Carolina Department of Archives and History (SCDAH), to identify previously recorded cultural resources within 0.5 miles of the APE. Available historical maps were also geo-referenced and reviewed to determine the location of potential archaeological and historic resources. These archival sources also provided information on how the project area's built environment changed over time.

A number of studies have been conducted within 0.5 miles of the project area (Figure 2). In recent years, portions of the project area have been examined twice already, in 2017 during the *Cultural* Resources Survey of S-48 (Columbia Avenue) Improvements and in 2018 during the Phase I Cultural Resources Survey of the I-26 MM 85-101 Widening Project (Pope et al. 2017; 2018). Also of note is the first addendum to the S-48 report, Addendum: Cultural Resources Survey of S-48 (Columbia Avenue) Improvements, which examined an area roughly 1.5 miles southwest of the current project area but which is associated with this report (Dykens and Sipe 2017). One Phase I archaeological survey conducted by Brockington and Associates in 2011 for a transmission line crosses the project area to the east of I-26 (Pappas and Bailey 2011). A Cultural Resources Identification Survey was conducted by S&ME to the northwest of the project area in 2012. This survey identified two archaeological sites, one of which is in the half-mile search radius (Green and Jones 2012). Finally, in 2016, AECOM conducted a Phase I survey to the south and east of the project area (Arnhold 2016).

Three previously recorded archaeological sites are located within the 0.5-mile search radius, though not in the project area itself (Figure 2). These three sites, 38LX610, 38LX611, and 38LX612, were identified in 2011 by Brockington and Associates as part of a Phase I survey (Pappas and Bailey 2011). Sites 38LX610 and 38LX611 are small prehistoric lithic scatters located along the existing power line corridor, while site 38LX612 is a historic artifact and prehistoric lithic scatter identified during a surface inspection. None of these sites were recommended eligible for inclusion in the National Register of Historic Places (NRHP).

Figure 2. Previously Recorded Cultural Resources within 0.5 Mile of the APE

Source: USGS Chapin, South Carolina Quadrangle

Table 1. Previously Recorded Architectural Resources within the APE

Resource Number	Name/Address	Resource Use	Construction Date	NRHP Recommendation	Significant Changes
0888	645 Columbia Avenue	Residential (Commercial)	Circa 1915	Not Eligible	Vacant; appears to be in process of tear-down
0888.01	645 Columbia Avenue – Log Barn	Agricultural	Circa 1915	Not Eligible	No Longer Extant
0889	1201 Crooked Creek Road	Residential	Circa 1920	Not Eligible	None
0889.01	1201 Crooked Creek Road – Beauty Parlor	Commercial	Circa 1950	Not Eligible	None
0889.02	1201 Crooked Creek Road - Single Crib Barn	Agricultural	Circa 1940	Not Eligible	None
0889.03	1201 Crooked Creek Road - 1.5 Story Barn	Agricultural	Circa 1920	Not Eligible	None
0889.04	1201 Crooked Creek Road - Agricultural Structure	Agricultural	Circa 1920	Not Eligible	Roof has partially collapsed
0889.05	1201 Crooked Creek Road One-Story Barn #1	Agricultural	Circa 1920	Not Eligible	None
0889.06	1201 Crooked Creek Road -	Agricultural	Circa 1920	Not Eligible	None
	One-Story Barn #2				
0906	1232 Crooked Creek Road	Residential	1966	Not Eligible	None
0906.01	1232 Crooked Creek Road – Tobacco Barn	Agricultural	Circa 1900	Not Eligible	None
0906.02	1232 Crooked Creek Road - Equipment Shed	Residential	Circa 1950	Not Eligible	None
0974	810 Columbia Avenue – Old House	Residential (Vacant)	Circa 1900	Not Eligible	Porch has partially collapsed
0974.01	810 Columbia Avenue – Shed	Agricultural	Circa 1901	Not Eligible	None
0974.02	810 Columbia Avenue – Outbuilding	Agricultural	Circa 1940	Not Eligible	None
0974.03	810 Columbia Avenue – Barn	Agricultural	Circa 1901	Not Eligible	None
0975	803 Columbia Avenue	Residential	1962	Not Eligible	None
0976	1232 Crooked Creek	Residential	1966	Not Eligible	Duplicate – 0906
0976.01	1232 Crooked Creek – Garage	Residential	1966	Not Eligible	Duplicate – 0906.02
0977	471 Brentwood Court	Residential	1965	Not Eligible	Vacant and in process of tear-down or remodel
0978	Bridge Carrying S-48 over I-26	Structure	1959	Not Eligible	None

Twenty-one previously recorded architectural resources were located within 0.5 miles of the project area, all within the APE and are shown in Figure 2 and Table 1. One is no longer extant, while two of the resources, 0976 and 0976.01, were found to be duplicates of resources 0906 and 0906.02, making a total of 18 resources. None of these resources were recommended as eligible for the NRHP.

All of the resources were surveyed less than five years ago as a result of one of two surveys, the original *Cultural Resources Survey of S-48 Improvements* or *Phase I Cultural Resources Survey of the I-26 MM 85-101 Widening Project* (Pope et al. 2017; 2018). Each previously recorded resource was revisited during the field survey and any significant physical changes since its previous recording are described in Table 1. The current study concurs with the original NRHP eligibility recommendations for all 19 extant resources.

III. SURVEY RESULTS

ARCHAEOLOGICAL SURVEY RESULTS

The archaeological survey was conducted from September 19–24, 2019. Three hundred and seven (307) shovel test locations were placed in the project area, which were located along transects placed at 30-meter intervals (Figure 3). Shovel tests were either excavated or documented (in cases of development or disturbance) at 30-meter intervals. There were two general soil profiles observed. The first soil profile consisted of approximately 15 centimeters (cm) of strong brown (7.5YR 4/6) sandy clay loam (Ap horizon) overlying 10+ cm, or 15-25+ centimeters below the surface (cmbs), of strong brown (7.5YR 5/8) sandy clay subsoil (Bt horizon), while the second consisted of approximately 10 cm of yellowish red (5YR 5/6) silty loam (Ap horizon) followed by 10+ cm (10-20+ cmbs) of reddish yellow (5YR 6/8) clay subsoil (Bt horizon). Vegetation in the project area consisted of mixed pines and hardwoods, as well as dense undergrowth in the northeast portion of the project area. Additionally, commercial and residential development was present along Columbia Avenue (Figure 4). Topography in the project area ranged from 350 feet above mean sea level (amsl) in the northeastern and southeastern portions of the project area to 400 ft amsl in the central portion of the survey tract. As a result of the archaeological survey, no sites or isolated finds were identified.

HISTORIC ARCHITECTURAL SURVEY RESULTS

On August 29, 2019, the architectural historian surveyed the additional APE to identify previously unrecorded historic architectural resources (Figure 5). The added project area contains a mix of building types, both historic and non-historic. Development on S-48 north of I-26 is relatively sparse and consists primarily of single-family homes. Development on S-48 to the south of I-26 is denser and contains a mix of modern commercial, historic and modern residential properties.

As a result of the survey, three individually surveyed architectural historic resources were recorded and evaluated. Twenty-one previously recorded resources were also identified within the APE. All resources are shown in Figure 5 and discussed in detail below.

Figure 3. Survey Coverage Map

Source: Bing Aerial Hybrid (2019)

Figure 4. Survey Conditions

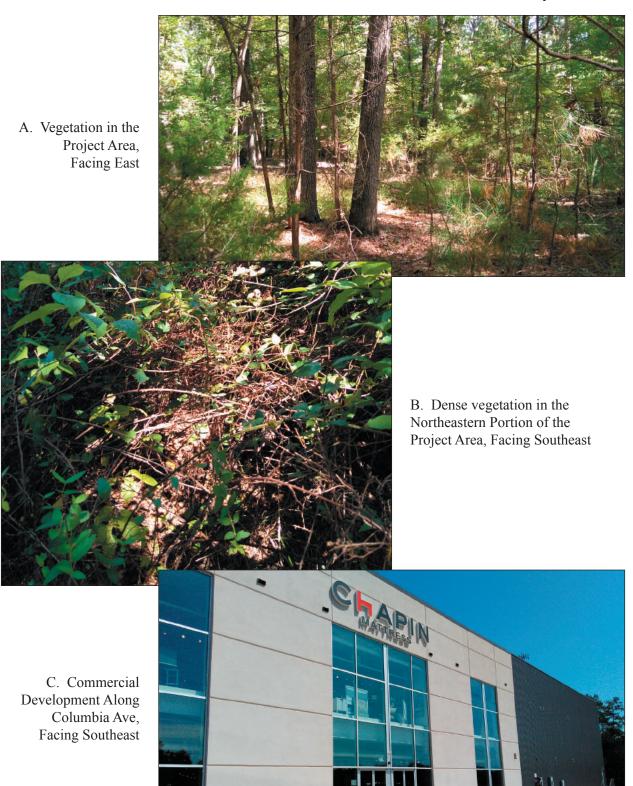
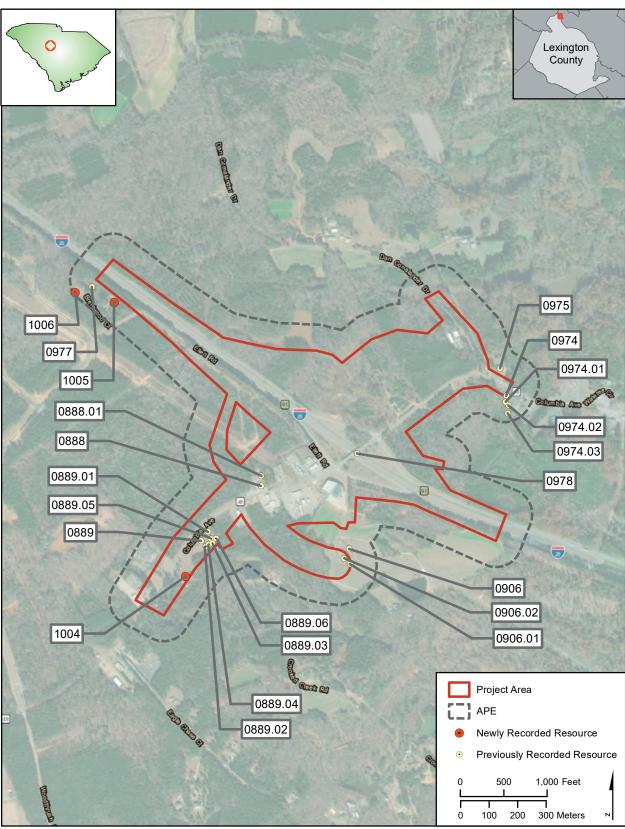



Figure 5. Previously and Newly Recorded Architectural Resources within the APE

Source: ESRI Resouce Data

NEWLY SURVEYED RESOURCES

The survey identified three previously unrecorded individual historic resources. The location of these resources is shown in Figure 5 and they are listed in Table 2, which lists the address, date of construction and NRHP recommendation. A discussion of each individually surveyed historic resource follows the table. None of the newly surveyed resources recorded as part of this study are recommended eligible for the NRHP.

Name/Address	Resource Use	Date of Construction	NRHP Eligibility Recommendation
556 Columbia Avenue	Residential	1968	Not Eligible
469 Brentwood Court	Residential	1965	Not Eligible
471 Brentwood Court – Garage	Residential	Circa 1965	Not Eligible

Table 2. Newly Surveyed Architectural Resources Surveyed Within the APE

Resource 1004: 556 Columbia Avenue

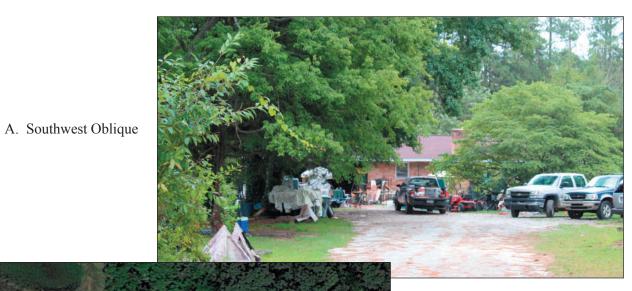
Resource 1004 is a 1968 Colonial Revival Linear Ranch House located approximately 0.2 miles north of the intersection of Columbia Avenue and Eagle Chase Court. It faces west towards Columbia Avenue. It is one story tall and roughly rectangular in plan with a laterally gabled composition shingle roof and brick veneer cladding (Figure 6). Windows throughout are modern vinyl one-over-one double-hung sashes with louvered shutters. A large, front-gabled porch with columnar supports and wood siding in the gable end is located in the center of the front elevation. It shelters the wood panel front door and a window to either side. Two windows are located to the north and south of the porch, and the building is slightly stepped back on either side, forming two very shallow wings. A brick slab interior chimney rises from the roofline and the foundation is concealed.

Resource 1004 is located on a two-acre lot that is landscaped with a grass lawn to the front and wooded buffer to the rear. Several outbuildings are located to the rear of the property; however, it is surrounded by a locked chain link fence and the rear of the property could not be accessed. Although Resource 1004 is a Colonial Revival Linear Ranch House, it is not a distinctive or noteworthy example of this house type which is common in South Carolina. Its integrity is further impacted by the replacement of its original windows. It was not found to embody the distinctive characteristics of a period or method of construction and does not possess significance for its engineering or materials. It is not known to be associated with events or persons significant in the past. Therefore, the resource is recommended as not individually eligible for the NRHP under Criterion A, B, or C.

Figure 6. Resource 1004: 556 Columbia Avenue

Resource 1005: 469 Brentwood Court

Resource 1005 is a 1965 Linear Ranch House located approximately 200 feet northwest of the intersection of Brentwood Court and Ellett Road. It faces south towards Brentwood Court. It is one story tall and roughly rectangular in shape with a laterally gabled composition shingle roof and brick veneer cladding (Figure 7). Windows throughout are horizontal two-over-two aluminum frame double-hung sashes. The wood panel door is located in the rough center of the building. The section of the building to the east of the door is obscured by trees and bushes. To the west of the door there is an exterior slab brick chimney, a single window, and an engaged two-car garage. Aerial photos indicate a front-gabled section to the rear and a shed-roofed porch or addition.


Resource 1005 is sited on a 1.2-acre parcel and has a generous setback of roughly 220 feet. The lot is landscaped with a grass lawn and numerous trees and overgrown shrubs. Although Resource 1005 is a Linear Ranch House, it is not a distinctive or noteworthy example of this house type which is common in South Carolina. It was not found to embody the distinctive characteristics of a style, period, or method of construction, and does not possess significance for its engineering or materials. It is not known to be associated with events or persons significant in the past. Therefore, the resource is recommended as not individually eligible for the NRHP under Criterion A, B, or C.

Resource 1006: 471 Brentwood Court – Garage

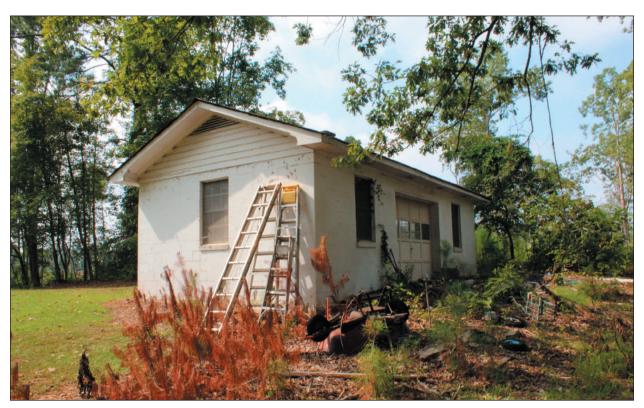
Resource 1006 is a circa 1965 one-story shed located to the northeast of the terminus of Brentwood Court. It faces west. It is one story tall and rectangular in plan with a laterally gabled composition roof and wood frame six-over-six double-hung sash windows throughout (Figure 8). It is of concrete block construction with a one-flue concrete brick chimney at the center of the roofline. The building is accessed by an original metal and glass window garage door on the south elevation and a modern rolling garage door on the west elevation. The door on the west elevation is flanked by a window to either side. There is vinyl siding in the gable ends.

Resource 1006 is located on a roughly 4-acre lot that it shares with Resource 0977, although Resource 0977 is located on the other side of Brentwood Court. The southwestern side of the lot is landscaped with a grass lawn and a wooded buffer on the north and west sides. Resource 1006 was not found to embody the distinctive characteristics of a type, period, or method of construction, and does not represent the work of a master or possess high artistic value. It is not known to be associated with events or persons significant in the past. Therefore, the resource is recommended as not individually eligible for the NRHP under Criterion A, B, or C.

Figure 7. Resource 1005: 469 Brentwood Court

B. Aerial View

Source: Google Earth 2018



C. South Elevation

Figure 8. Resource 1006: 471 Brentwood Court – Garage

A. Southeast Oblique

B. Southwest Oblique

Intentionally Left Blank

IV. RESULTS AND RECOMMENDATIONS

As a result of the archaeological survey, no new archaeological sites were identified within the additional project area. The additional historic architectural survey identified and evaluated three resources that reflected twentieth-century domestic functions. All three resources lack historical associations that would qualify for NRHP listing under Criteria A and B, and none have qualities of significance under Criterion C.

Intentionally Left Blank

REFERENCES CITED

Arnhold, Nicholas

2016 Phase I Archaeological Survey for the Chapin High Pressure Growth Feeder Project. AECOM, Columbia, South Carolina.

Dykens, Katie and Ryan Sipe

2017 Addendum: Cultural Resources Survey of S-48 (Columbia Avenue) Improvements, Lexington County, South Carolina. New South Associates, Columbia, South Carolina.

Green, William and Heather Jones

2012 Cultural Resource Identification Survey of Approximately 215 Acres at the Proposed Chapin Technology Park. S&ME, Inc., Columbia, South Carolina.

Pappas, Andrew and Ralph Bailey

2011 Phase I Archaeological Resources Survey of VCS2-Lake Murray 230 kV Line No. 2/St. George 230 kV Line No. 1 Corridor, Fairfield, Lexington, Newberry, and Richland Counties, South Carolina. Brockington and Associates, Inc., Mt. Pleasant, South Carolina.

Pope, Natalie Adams, Brad Botwick, Terri D. Gillett, and Katie Dykens Quinn

2017 Cultural Resources Survey of S-48 (Columbia Avenue) Improvements, Lexington County, South Carolina. New South Associates, Stone Mountain, Georgia.

Pope, Natalie Adams, Katie Dykens, and James Stewart

2018 Phase I Cultural Resources Survey of the I-26 MM 85-101 Widening Project. New South Associates, Inc., Stone Mountain, Georgia.

I-26 Widening and Interchange Improvements EA Re-evaluation Project ID P029208

ATTACHMENT C:

FLOODPLAIN COORDINATION

NEWBERRY COUNTY PLANNING & ZONING DEPT.

FEMA Floodplain Management 1512 Martin Street, P. O. Box 1014 Newberry, SC 29108 Telephone – (803) 321-2166 Facsimile – (803) 321-2682

October 10th, 2019

Ronnie Smoak, PE Infrastructure Consulting and Engineering 1021 Briargate Circle Columbia, SC 29210

This letter is in reply to your letter dated September 30th, 2019 stating that there will be no impact on the flood zone A by the construction of new and modifications to existing culverts relating to the road widening construction of I-26 from mile marker 85-101.

From the information given in this letter, I, as FEMA Floodplain Administrator for Newberry County, concur that a 'no-impact' certification and other relevant FEMA correspondence will not be required for this road widening project.

Sincerely,

Anne Peters, CFM

FEMA Floodplain Administrator

ers, chin

County of Lexington

Community Development Floodplain Management

November 26, 2019

RE: I-26 Widening MM 85-101 Project

Ronnie Smoak, PE Infrastructure Consulting and Engineering 1021 Briargate Circle Columbia, SC 29210

Mr Smoak,

The County Hydrologist and I have reviewed the submitted data in support of this project. We concur that a no-impact certification or other FEMA correspondence will not be required for this widening project.

Sincerely,

Christopher J. Stone, CFM

Lexington County Floodplain Manager

212 Southlake Drive Suite 401

Lexington, SC 29072

Phone 803-785-8121

Fax 803-785-5186

RICHLAND COUNTY COMMUNITY PLANNING & DEVELOPMENT

2020 Hampton Street Columbia, SC 29204

April 7, 2020

Ronnie Smoak, PE Infrastructure Consulting and Engineering 1021 Briargate Circle Columbia SC 29210

Re: Interstate 26 Widening MM 85 – 101 (Segment 1)

Design-Build Project Project ID 029208

Community Number: 450170

Dear Mr. Smoak:

The County Engineer and I have reviewed the submitted No Impact Certification for the Interstate 26 Widening MM 85-101 (Segment 1) project. The information provided indicates that the project will meet the minimum provisions of section 26-106 of the Richland County Land Development Code.

Richland County approves the project based on the submitted no-impact certification.

Please be advised that the project will still need to comply with all local, state and federal permitting requirements with regards to Floodplain and Wetland permitting if applicable.

If you have additional questions or need assistance please do not hesitate to contact me at 803-576-2158 or by email at brown.heather@richlandcountysc.gov.

Sincerely,

Heather Brown, CFM Floodplain Manager Richland County 2020 Hampton St PO Box 192 Columbia SC 29204

Deather Brown

(803) 576-2158

I-26 Widening and Interchange Improvements EA Re-evaluation Project ID P029208

ATTACHMENT D:

NATURAL RESOURCE TECHNICAL MEMORANDUM UPDATE

To: Will McGoldrick, SCDOT ESO

From: Barrett Stone, ICE Date: May 15, 2020

Re: I-26 Widening MM 85 to 101 (P029208) – NRTM Update

A Natural Resource Technical Memorandum (NRTM) was completed in January 2018 in conjunction with the Environmental Assessment (EA). This document serves to outline the natural resources and environment surrounding the project corridor. The I-26 Widening from mile marker 85-101 is currently being delivered through a design build contract. The development of the final design has resulted in minor modifications of the previously identified preferred alternatives. As a result, the original NEPA project study area (PSA) has been expanded, resulting in the need for further evaluation. The purpose of this report is to provide an addendum to the original NRTM in regard to protected species and other natural resources within the expanded PSA.

Project Description:

The proposed project includes improvements and upgrades to I-26 to accommodate existing and projected traffic volumes. SCDOT proposes widening I-26 and reconstructing three interchanges from mile marker (MM) 85 near Little Mountain to MM 101 near Irmo in Newberry, Lexington, and Richland counties. Improvements would take place from 1.6 miles west of the SC 202 (Exit 85) interchange to the US 176 (Exit 101) interchange. The improvements would widen the mainline of I-26 from Exit 85 (MM 85) to Exit 101 (MM 101). I-26 would be widened to a total of six lanes, three in each direction from Exit 85 to Exit 97 and to eight lanes, four in each direction from Exit 97 to Exit 101. The widening would be constructed towards the existing median, minimizing impacts and areas of new disturbance. Interchange improvements would be provided at Exits 85, 91, and 97. A total of seven overpasses that cross I-26 would be replaced including S-36-167 (Parr Road), S-36-39 (Holy Trinity Church Road), S-32-49 (Peak Street), S-40-58 (Old Hilton Road), S-40-234 (Mt. Vernon Church Road), S-40-80 (Shady Grove Road), and S-40-58 (Koon Road). The truck weigh station near MM 94 would be improved as a weigh-in-motion station.

Changes to PSA:

The previous PSA, evaluated in May and June of 2017, was developed in conjunction with the Environmental Assessment (EA) regarding proposed improvements documented above. As the project progressed through the final design phase and design build delivery, various design modifications have been implemented resulting in proposed work extending beyond

NRTM Addendum Page 1 of 4

the original PSA. The new PSA has been evaluated to determine the potential presence of any waters of the U.S. (WOUS), as well as the potential presence of any protected species listed under the Endangered Species Act (ESA). The previous findings and new revisions are summarized below along with attached figures (Attachment A) providing further illustrations.

The previous PSA encompassed approximately 1073-acres along the I-26 corridor, with an approximate 75-foot buffer from the centerline of existing right-of-way. The final design of the project has resulted in the expansion of the PSA to bring the total evaluated area to approximately 1,213-acres. Specifically, this new PSA includes changes associated with variable scope items, finalized roadway geometry, Exit 91 change from a diverging diamond to a partial cloverleaf, accommodation and minimization of conflicts with SCDOT's Carolina Crossroads (CCR) project, as well as the incorporation of final drainage design. The expanded PSA accurately captures all proposed improvements associated with the I-26 widening project.

Waters of the US (WOUS):

The South Carolina Department of Transportation (SCDOT) received a Preliminary Jurisdictional Determination (PJD) (SAC-2018-00748) for the original PSA (1,073-acres) from the USACE on August 8, 2018. This PJD superseded other existing PJDs within the PSA, including SAC-2014-01110 and SAC-2016-00168.

The SCDOT identified the need to revise the SAC-2018-00748-PJD to the additional PSA; more accurately map existing features; and to revise previously identified aquatic features. In summary, the PJD was revised to 1,210 acres to fully encompass the extents of the disturbed area required for the project construction. This revised 1,210-acre PSA included seven newly identified wetlands, four linear non-wetland waters, and one open water non-wetland water. These features total 24,806.73 linear feet (LF) of non-wetland waters, 1.24 acre of non-wetland water ponds and 2.45 acres of wetlands. The mapping of previously identified aquatic features has been updated based on project topographic survey and other supplemental survey to more accurately reflect field conditions and project design. In addition, 26 previously identified aquatic features have been re-evaluated and determined non-aquatic features based largely on hydrologic conditions, origin, and function.

Site visits were conducted during project development in June, July and August 2019 to further evaluate and document the potential WOUS. A field visit was conducted on September 17, 2019 with the United States Army Corps of Engineers (USACE) to field verify the documented aquatic features. The field evaluation confirmed 72 non-wetland waters, 4 non-wetland water ponds, and 15 wetlands.

Numerous aquatic features identified in PJD – SAC-2018-00748 were updated based on project topographic survey and additional field mapping. Specifically, these updates provide more accurate depictions of these features and will directly correlate with project design. These updates are captured in the attached WOUS Revisions table (Attachment B).

NRTM Addendum Page **2** of **4**

USACE issued a revised PJD associated with SAC-2018-00748 that supersedes all previous approvals. The approval letter dated February 18, 2020 can be found in Attachment C.

Final design associated with the project has progressed since issuance of the revised 2020 PJD, with the identification of isolated work areas that extend beyond the PSA documented in the PJD approval. These areas total approximately 3-acres and have been subsequently identified and documented as delineation only areas in conjunction with the 404 permit. The three isolated areas are further described below.

- Additional PSA Area 1: Additional PSA Area 1 is 1.78 acres and extends from the updated PSA north along Western Lane. Specifically, this area was included within the PSA of the ongoing SCDOT CCR project (SAC #2015-01080) with a PJD issued in June 2018. Upon further project coordination and evaluation, it was determined that work along the westbound I-26 would need to be implemented with the I-26 project to avoid reconstruction during the CCR project. As such, the additional area includes Tributary 2, Freshwater Wetland 56, and Freshwater Wetland 57. This area depicted on the CCR permit sheets (6,7 and 8 of 78) was included in the November 26, 2019 public notice.
- Additional PSA Area 2: Additional PSA Area 2 is 1.38 acres and is located south of the mainline I-26 along Columbia Avenue and extends from the updated PSA southeast behind the Bojangles. The need for expansion of the PSA in this area was identified due to the need for an access road to Bojangles to meet traffic requirements. A desktop review of available mapping (NWI, topo, and soils) and field reconnaissance in April 2020 found that the PSA consists only of uplands. The PSA consisted of a mixed upland pine stand, as well as a disturbed buffer directly adjacent to the Bojangles parking lot. An upland data point was collected within the additional PSA area as well as pictures to document the existing conditions of the area.
- <u>Additional PSA Area 3:</u> Additional PSA Area 3 is 0.01 acre and extends from the updated PSA south along NWW 59. The need for expansion of the PSA in this area was identified due to the need for an additional ditch to more effectively redirect the flows of NWW 59 into the inlet of the proposed pipe extension. NWW 59 was extended from 69.89 LF to 82.12 LF in this location.

Threatened and Endangered Species:

The EA documented the threatened and endangered species for the original PSA boundary. The USFWS species list from the EA identified nine federally protected species known to occur or that have a high possibility of occurring in Lexington, Newberry, and/or Richland County:

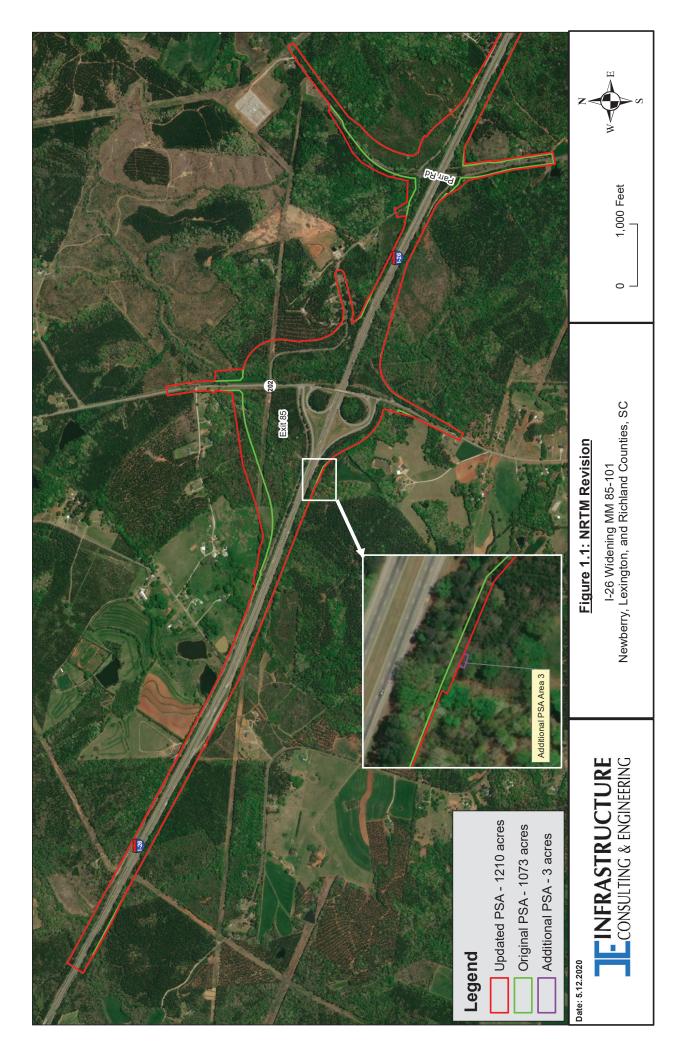
• Bald eagle (Haliaeetus leucocephalus) – Bald and Golden Eagle Protection Act

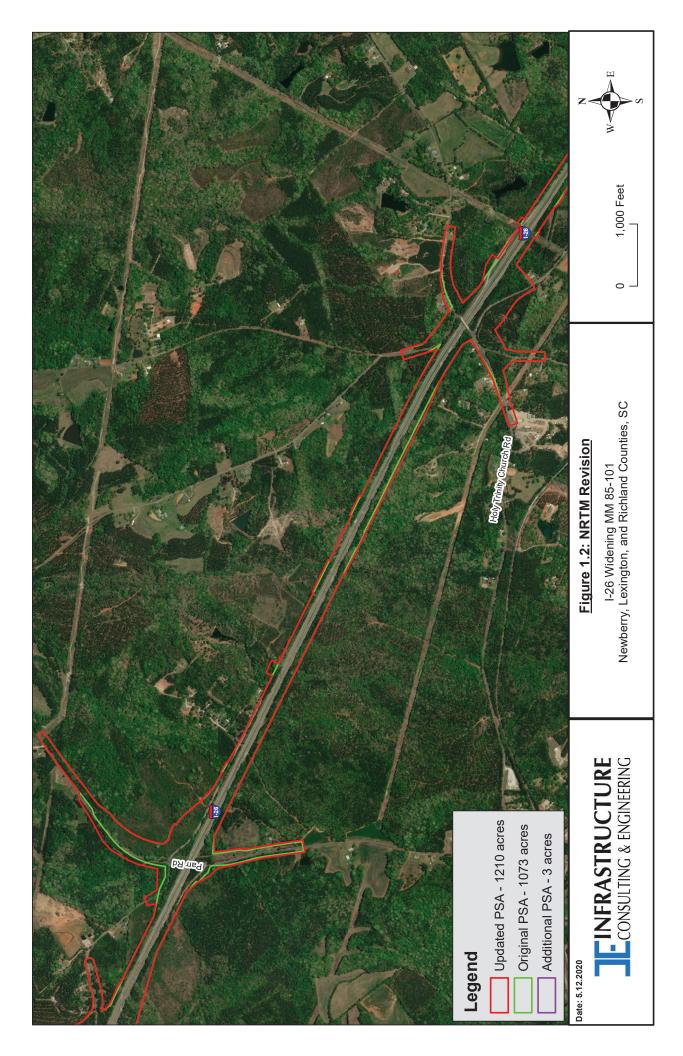
NRTM Addendum Page **3** of **4**

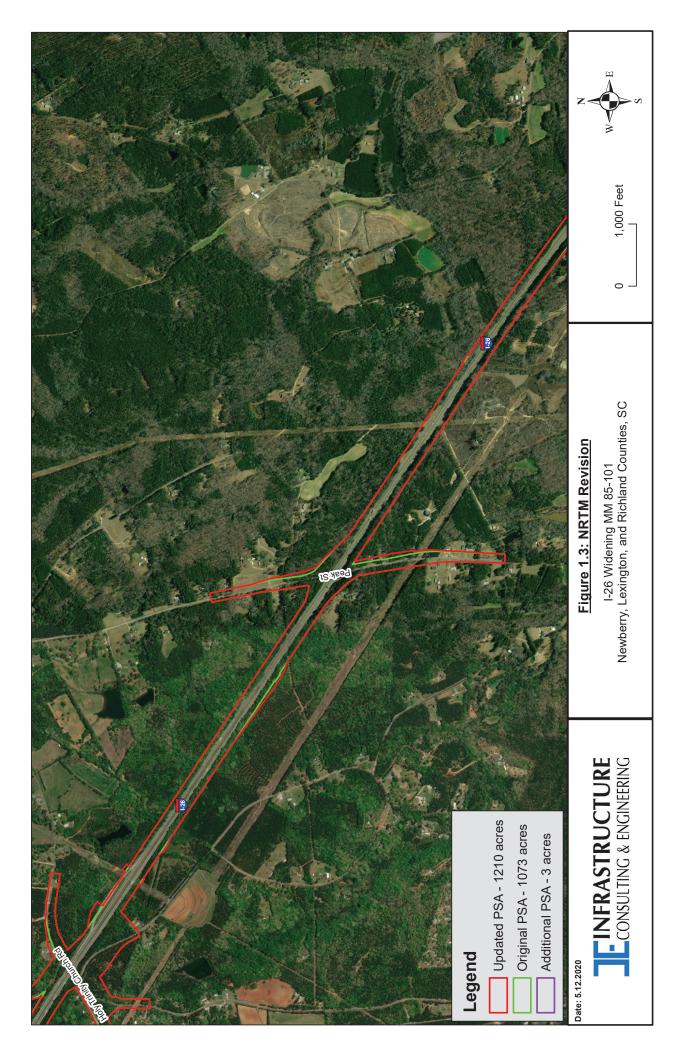
- Red-cockaded woodpecker (Picoides borealis) Federal/State Endangered
- Wood stork (*Mycteria americana*) Federal Threatened
- Atlantic Sturgeon (Acispenser oxyrinchus) Federal Endangered
- Shortnose sturgeon (Acipenser brevirostrum) Federal Endangered
- Canby's dropwort (Oxypolis canbyi) Federal Endangered
- Michaux's sumac (Rhus michauxii) Federal Endangered
- Rough-leaved loosestrife (Lysimachia asperulaefolia) Federal Endangered
- Smooth coneflower (Echinacea laevigata) Endangered

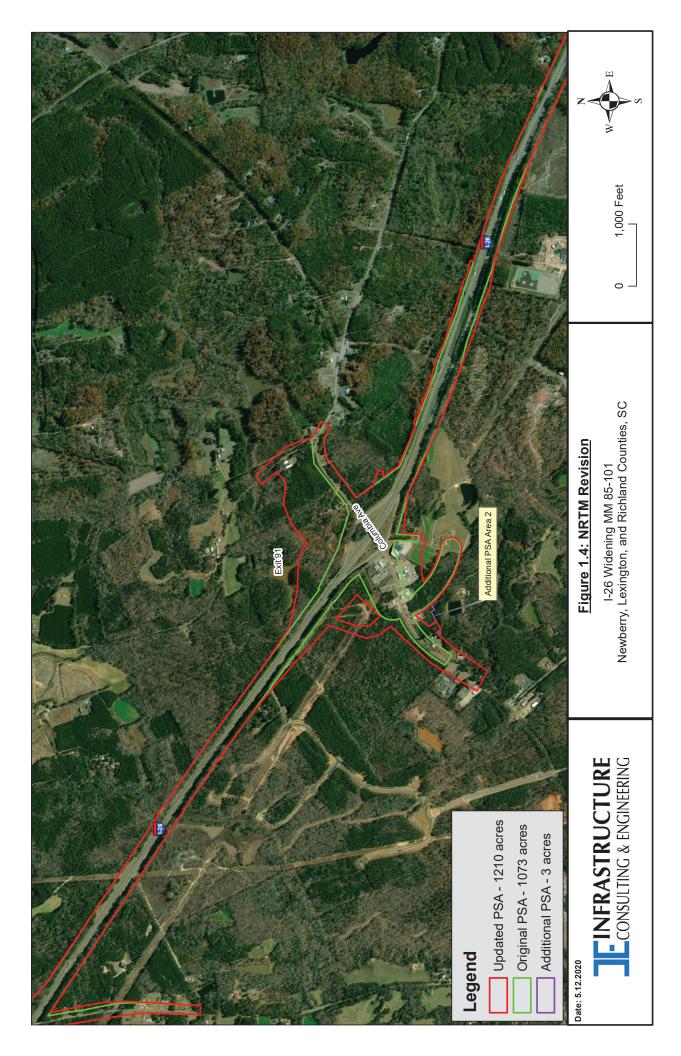
According to the EA/FONSI the project was determined to have "no effect" on species identified as state and/or federally threatened or endangered.

An updated counties species list was acquired from USFWS that was updated April 27, 2020. The updated list shows that Michaux's sumac and Atlantic sturgeon have been delisted for the applicable counties. In addition, an IPAC report was generated from USFWS on March 10, 2020 for use in evaluating the additional PSA area. The IPAC species list identified five species as potentially occurring within the PSA: red-cockaded woodpecker, wood stork, Canby's dropwort, rough-leaved loosestrife, and smooth coneflower. The updated counties species lists and IPAC report can be found in Attachment D.

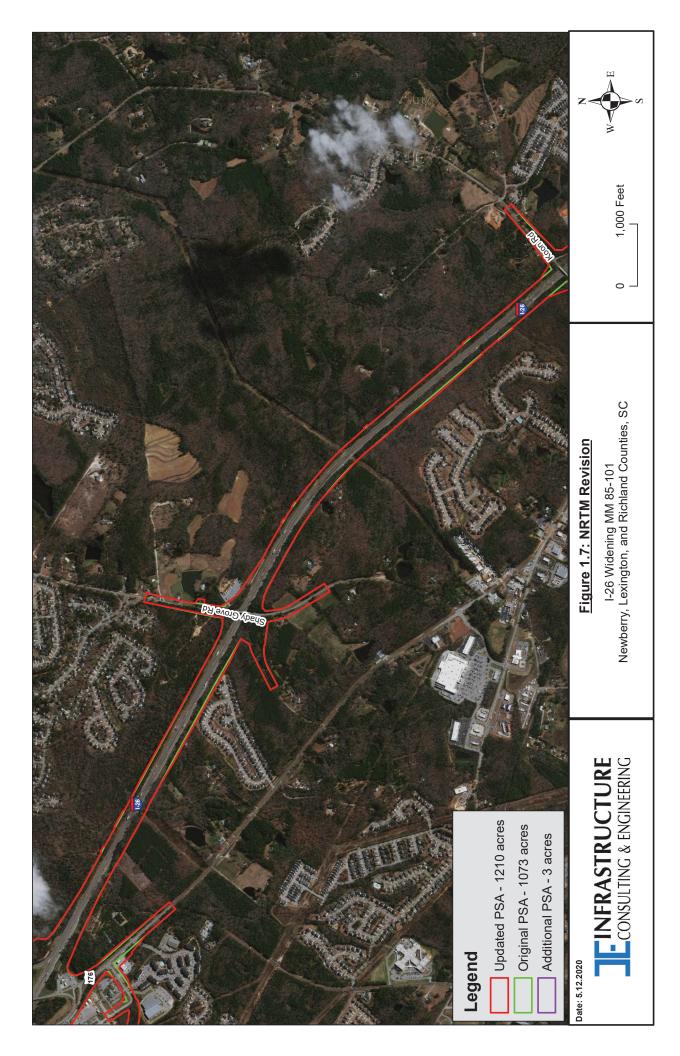

The data collected from online resources and databases, in addition to the field site visits, did not identify species that may be found within or directly adjacent to the revised PSA. Suitable habitat for protected species was not identified within the PSA. It is recommended that the proposed project, including the revised PSA be determined to have "no effect" on species identified as state and/or federally threatened or endangered, similar to the original determination in the EA/FONSI.

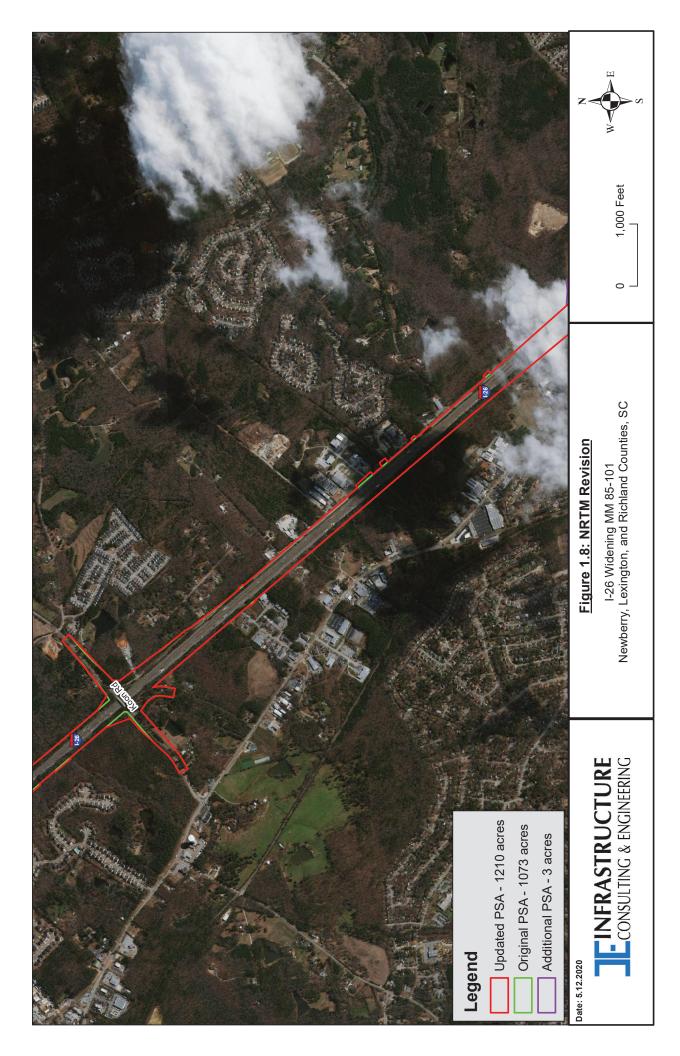

Summary


In summary, the additional PSA area was assessed for any changes in findings regarding natural resources. The additional area led to a modification to the PJD which has been approved by USACE, with further expanded area being evaluated in conjunction with the 404 permit, and the updated threatened and endangered species information led to a reduction in number of species from nine to five with the recommendation that the previous "no effect" determination for the listed species remain applicable for the project.


NRTM Addendum Page 4 of 4

Attachment A: Figures





Attachment B: PJD Revisions Table

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Previously estimated amount of aquatic resource in review area (acreage and linear feet, if applicable)	imated quatic iew area near feet,	Pevious PJD coverage	Estimated amount of aquatic resource in review area (acreage and linear feet, if applicable) Revised Aug 2019	nount of ource in (acreage feet, if Revised	Type of aquatic resource (i.e., wetland vs. non- wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)	Change in previously estimated amount of aquatic resource to new estimated amount of aquatic resource (acreage and linear feet if applicable)
Non-wetland waters 1A	34.110834	-81.186329	200.38	5	SAC-2018-00748 AUG 02 2018	222.30	H.	Non-wetland Water	Section 404	21.92
Non-wetland waters 1B	34.112197	-81.189096	42.3087	5	SAC-2018-00748 AUG 02 2018	36.47	5	Non-wetland Water	Section 404	-5.84
Non-wetland waters IC	34.112276	-81.189254	120.58/2	<u>.</u>	SAC-2018-00/48 AUG 02 2018	46.24	5 !	Non-wetland Water	Section 404	-/4.35
Non-wetland waters 1D	34.106366	-81.183077	43.6764	"	SAC-2018-00748 AUG 02 2018	35.50	5 !	Non-wetland Water	Section 404	-8.17
Non-wetland waters 2	34.11714	-81.192914	74.029	± ±	SAC-2018-00748 AUG 02 2018	47.46	± ±	Non-wetland Water	Section 404	-26.57
Non-wetland waters 4	34.149497	-01.2330307	46.1343	5 4	SAC-2018-00/48 AUG 02 2018	39 75	5 4	Non-wetland Water	Section 404	-26.48
Non-wetland waters 7A	34.125921	-81.202096	169.69	5 5	SAC-2018-00748 AUG 02 2018	161.93	5 5	Non-wetland Water	Section 404	-27.76
Non-wetland waters 7B	34.125145	-81.202446	113.2471	5 5	SAC-2018-00748 AUG 02 2018	24.81	5 5	Non-wetland Water	Section 404	-88.43
Non-wetland waters 8A	34.131084	-81.207426	166.73	5	SAC-2018-00748 AUG 02 2018	135.04	4	Non-wetland Water	Section 404	-31.69
Non-wetland waters 8B	34.130977	-81.207271	83.9399	'n	SAC-2018-00748 AUG 02 2018	62.69	LF.	Non-wetland Water	Section 404	-16.25
Non-wetland waters 8C	34.130475	-81.207914	139.5987	5	SAC-2018-00748 AUG 02 2018	72.93	5	Non-wetland Water	Section 404	-66.67
Non-wetland waters 9	34.134321	-81.211493	219.55	5 !	SAC-2018-00/48 AUG 02 2018	11.527	<u>.</u>	Non-wetland Water	Section 404	5.56
Non-wetland waters 10	34.134805	-81.212378	105.81	<u> </u>	SAC-2018-00/48 AUG 02 2018	0.00	5 5	Non-wetland Water	Section 404	-105.81
Non-wetland waters 11	34.138604	-81.220784	380.89	5 4	SAC-2018-00/48 AUG 02 2018	379.09	5 4	Non-wetland Water	Section 404	-500.53 -1 80
Non-wetland waters 13	34.142706	-81.230024	224.01	5 4	SAC-2018-00748 AUG 02 2018	248.17	5 4	Non-wetland Water	Section 404	24.16
Non-wetland waters 15	34.152706	-81.255487	216.57	i 5	SAC-2018-00748 AUG 02 2018	188.03	i 5	Non-wetland Water	Section 404	-28.54
Non-wetland waters 18	34.162244	-81.296459	150.71	T.	SAC-2018-00748 AUG 02 2018	168.61	LF	Non-wetland Water	Section 404	17.90
Non-wetland waters 19A	34.168681	-81.296459	425.5841	T.	SAC-2018-00748 AUG 02 2018	983.65	LF.	Non-wetland Water	Section 404	558.07
Non-wetland waters 19B	34.168866	-81.296499	100.7297	5	SAC-2018-00748 AUG 02 2018	42.65	5	Non-wetland Water	Section 404	-58.08
Non-wetland waters 19C	34.168428	-81.295787	165.897	5	SAC-2018-00748 AUG 02 2018	0.00	5	Non-wetland Water	Section 404	-165.90
Non-wetland waters 20	34.103600	-81.29272	520.47	5 4	SAC-2018-00/48 AUG 02 2018 SAC-2018-00748 AUG 02 2018	502.04	5 <u>L</u>	Non-wetland Water	Section 404	74.88
Non-wetland waters 25A	34.172058	-81.305806	77.5016	5 5	SAC-2018-00748 AUG 02 2018	0.00	5 5	Non-wetland Water	Section 404	-77.50
Non-wetland waters 25B	34.171948	-81.308319	28.9979	-LF	SAC-2018-00748 AUG 02 2018	74.19	LF	Non-wetland Water	Section 404	45.19
Non-wetland waters 26	34.173185	-81.309908	264.54	-F	SAC-2018-00748 AUG 02 2018	564.92	LF	Non-wetland Water	Section 404	300.38
Non-wetland waters 27	34.174324	-81.313541	1157.422	5	SAC-2018-00748 AUG 02 2018	1019.07	5	Non-wetland Water	Section 404	-138.35
Non-wetland waters 28	34.186381	-81.337543	96.3934	5	SAC-2018-00748 AUG 02 2018	229.96	<u>"</u>	Non-wetland Water	Section 404	133.56
Non-wetland waters 29	34.18/304	-81.339186	432.8848	<u> </u>	SAC-2018-00/48 AUG 02 2018 SAC-2018-00748 AUG 02 2018	326.39	5 4	Non-wetland Water	Section 404	38b.88 289.47
Non-wetland waters 30B	34.189046	-81.343761	156.0062	5 5	SAC-2018-00748 AUG 02 2018	175.00	5 5	Non-wetland Water	Section 404	19.00
Non-wetland waters 31	34.19523	-81.353547	831.617	5	SAC-2018-00748 AUG 02 2018	405.43	4	Non-wetland Water	Section 404	-426.19
Non-wetland waters 32	34.196927	-81.356752	291.6689	'n	SAC-2018-00748 AUG 02 2018	0.00	LF.	Non-wetland Water	Section 404	-291.67
Non-wetland waters 33A	34.200204	-81.36266	587.6989	5	SAC-2018-00748 AUG 02 2018	0.00	5	Non-wetland Water	Section 404	-587.70
Non-wetland waters 338	34.199056	-81.360594	/52.//6/	± ±	SAC-2018-00/48 AUG 02 2018	/63.43	± ±	Non-wetland Water	Section 404	10.66
Non-wetland waters 33D	34.198181	-81.360497	59.5288	5 5	SAC-2018-00748 AUG 02 2018	50.11	5 5	Non-wetland Water	Section 404	9.42
Non-wetland waters 35	34.206453	-81.374711	479.335	5	SAC-2018-00748 AUG 02 2018	225.86	5	Non-wetland Water	Section 404	-253.47
Non-wetland waters 36A	34.207705	-81.377707	383.44	T.	SAC-2018-00748 AUG 02 2018	414.01	LF.	Non-wetland Water	Section 404	30.57
Non-wetland waters 36B	34.207532	-81.377273	367.5944	T.	SAC-2018-00748 AUG 02 2018	143.06	LF	Non-wetland Water	Section 404	-224.54
Non-wetland waters 36C	34.20803	-81.379984	132.4025	5	SAC-2018-00748 AUG 02 2018	0.00	5	Non-wetland Water	Section 404	-132.40
Non-wetland waters 36D	34.207884	-81.379827	90.8191	"	SAC-2018-00748 AUG 02 2018	162.52	5 !	Non-wetland Water	Section 404	71.70
Non-wetland waters 37	34.209984	-81.383	110.92	± ±	SAC-2018-00/48 AUG 02 2018 SAC-2018-00748 AUG 02 2018	139.27	± <u> </u>	Non-wetland Water	Section 404	-37.98
Non-wetland waters 38B	34.211837	-81.389611	438.6744	; <u>"</u>	SAC-2018-00748 AUG 02 2018	392.92	; 5	Non-wetland Water	Section 404	-45.76
Non-wetland waters 38C	34.211507	-81.389071	60.8738	T.	SAC-2018-00748 AUG 02 2018	12.79	T.	Non-wetland Water	Section 404	-48.08
Non-wetland waters 38D	34.211537	-81.388925	114.0294	IF.	SAC-2018-00748 AUG 02 2018	115.97	LF.	Non-wetland Water	Section 404	1.94
Non-wetland waters 39A	34.212337	-81.388967	79.3628	H	SAC-2018-00748 AUG 02 2018	0.00	Ŧ.	Non-wetland Water	Section 404	-79.36

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Previously estimated amount of aquatic resource in review area (acreage and linear feet, if applicable)	timated quatic iew area hear feet, ble)	Pevious PJD coverage	Estimated amount of aquatic resource in review area (acreage and linear feet, if applicable) Revised Aug 2019	mount of ource in (acreage feet, if Revised 319	Type of aquatic resource (i.e., wetland vs. non- wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)	Change in previously estimated amount of aquatic resource to new estimated amount of aquatic resource (acreage and linear feet if applicable)
Non-wetland waters 40A	34.224184	-81.409541	2291.55	LF	SAC-2018-00748 AUG 02 2018	2613.58	LF	Non-wetland Water	Section 404	322.03
Non-wetland waters 40B	34.221169	-81.408927	133.8686	T.	SAC-2018-00748 AUG 02 2018	135.66	LF	Non-wetland Water	Section 404	1.79
Non-wetland waters 40C	34.220609	-81.408544	232.0763	Ŀ	SAC-2018-00748 AUG 02 2018	244.94	LF	Non-wetland Water	Section 404	12.86
Non-wetland waters 40D	34.21925	-81.40851	59.9361	LF	SAC-2018-00748 AUG 02 2018	0	LF	Non-wetland Water	Section 404	-59.94
Non-wetland waters 40E	34.218672	-81.408309	267.7515	LF	SAC-2018-00748 AUG 02 2018	0	LF	Non-wetland Water	Section 404	-267.75
Non-wetland waters 43	34.222495	-81.414865	259.83	LF	SAC-2018-00748 AUG 02 2018	290.97	LF	Non-wetland Water	Section 404	31.14
Non-wetland waters 44	34.223033	-81.413705	249.9278	LF	SAC-2018-00748 AUG 02 2018	258.03	LF	Non-wetland Water	Section 404	8.10
Non-wetland waters 45A	34.223477	-81.414117	2287.5326	LF	SAC-2018-00748 AUG 02 2018	2848.86	LF	Non-wetland Water	Section 404	561.33
Non-wetland waters 45B	34.224191	-81.413337	265.2399	T.	SAC-2018-00748 AUG 02 2018	252.76	LF	Non-wetland Water	Section 404	-12.48
Non-wetland waters 46	34.223195	-81.418078	144.9112	5	SAC-2018-00748 AUG 02 2018	103.58	LF	Non-wetland Water	Section 404	-41.33
Non-wetland waters 47	34.223732	-81.420274	946.9449	5	SAC-2018-00748 AUG 02 2018	554.52	LF	Non-wetland Water	Section 404	-392.43
Non-wetland waters 48	34.231245	-81.438614	78.51	5	SAC-2018-00748 AUG 02 2018	93.02	H	Non-wetland Water	Section 404	14.51
Non-wetland waters 49	34.231205	-81.440527	113.09	5	SAC-2018-00748 AUG 02 2018	133.65	4	Non-wetland Water	Section 404	20.56
Non-wetland waters 51A	34.230666	-81.439229	54.2145	5	SAC-2018-00748 AUG 02 2018	842.73	H	Non-wetland Water	Section 404	788.52
Non-wetland waters 51B	34.230713	-81.439146	61.703	5	SAC-2018-00748 AUG 02 2018	0.00	H	Non-wetland Water	Section 404	-61.70
Non-wetland waters 51C	34.229976	-81.437652	168.6555	5	SAC-2018-00748 AUG 02 2018	0	F	Non-wetland Water	Section 404	-168.66
Non-wetland waters 54A	34.223085	-81.420266	3032.02	5	SAC-2018-00748 AUG 02 2018	1931.66	F	Non-wetland Water	Section 404	-1100.36
Non-wetland waters 54B	34.22247	-81.418196	72.3604	5	SAC-2018-00748 AUG 02 2018	73.00	LF.	Non-wetland Water	Section 404	0.64
Non-wetland waters 54C	34.222299	-81.417505	422.292	5 !	SAC-2018-00748 AUG 02 2018	0.00	.	Non-wetland Water	Section 404	-422.29
Non-wetland waters 59	34.221487	-81.41513	0.0019	5	SAC-2018-00748 AUG 02 2018	69.89	5 !	Non-wetland Water	Section 404	69.89
Non-wetland waters 60	34.218582	-81.411321	595.396	<u>.</u>	SAC-2018-00/48 AUG 02 2018	232.34	- L	Non-wetland Water	Section 404	-363.06
Non-wetland waters 103	34.126158	-81.2034/1	115.77	<u> </u>	SAC-2018-00/48 AUG 02 2018	182.07	± :	Non-wetland Water	Section 404	66.30
Non-wetland waters 104	34.100053	-81.291292	436.7189	5 4	SAC-2018-00/48 AUG 02 2018 SAC-2018-00748 AUG 02 2018	401 61	I.F	Non-wetland Water	Section 404	-123.74
Non-wetland waters 105	34.213791	-81.394398	129.73895	i 5	SAC-2018-00748 AUG 02 2019	0.00	5	Non-wetland Water	Section 404	-129.74
Non-wetland waters 108	34.103077	-81.178291	87.78	5	SAC-2018-00748 AUG 02 2018	117.03	LF	Non-wetland Water	Section 404	29.25
Non-wetland waters 109	34.224593	-81.424935	65.87	H	SAC-2018-00748 AUG 02 2018	70.01	LF	Non-wetland Water	Section 404	4.14
Non-wetland waters 110	34.168164	-81.290997	107.325	-LF	SAC-2018-00748 AUG 02 2018	170.97	LF	Non-wetland Water	Section 404	63.65
Non-wetland waters D	34.14583	-81.23515	241.4175	5	SAC-2018-00748 AUG 02 2018	0.00	LF	Non-wetland Water	Section 404	-241.42
Non-wetland waters 17/NWW H	34.157695	-81.268643	930.0606	5	SAC-2018-00748 AUG 02 2018	452.21	H	Non-wetland Water	Section 404	-477.85
Non-wetland waters HB/NWW IB	34.148852	-81.243557	373.066031	5	SAC-2018-00748 AUG 02 2018	84.80	H.	Non-wetland Water	Section 404	-288.27
Non-wetland waters HA/NWW IA	34.148277	-81.243841	152.368584	5	SAC-2018-00748 AUG 02 2018	191.79	5	Non-wetland Water	Section 404	39.42
Non-wetland waters J	34.180253	-81.328249	80.325	<u>.</u>	SAC-2018-00/48 AUG 02 2018	313.27	- L	Non-wetland Water	Section 404	232.95
Non-wetland waters 6T	34.173000	-81 324678	324	<u> </u>	SAC-2015-01451-03 JAN 20 2017	536.17	<u> </u>	Non-wetland Water	Section 404	391.42
Wetland 1	34.173464	-81.324265	0.472	Acre	SAC-2015-01451-DS JAN 20 2017	0.16	Acre	Wetland	Section 404	-0.31
Wetland 2	34.178973	-81.324707	0.023	Acre	SAC-2015-01451-DS JAN 20 2017	0	Acre	Wetland	Section 404	-0.02
Wetland 3	34.177774	-81.324943	0.043	Acre	SAC-2015-01451-DS JAN 20 2017	0	Acre	Wetland	Section 404	-0.04
Wetland A	34.119468	-81.195281	0.0186	Acre	SAC-2018-00748 AUG 02 2018	0	Acre	Wetland	Section 404	-0.02
Wetland B	34.121156	-81.196849	0.1082	Acre	SAC-2018-00748 AUG 02 2018	0	Acre	Wetland	Section 404	-0.11
Wetland C	34.014599	-81.244278	0.0146	Acre	SAC-2018-00748 AUG 02 2018	0	Acre	Wetland	Section 404	-0.01
Wetland D	34.145767	-81.235359	0.2156	Acre	SAC-2018-00748 AUG 02 2018	0	Acre	Wetland	Section 404	-0.22
Wetland E	34.140223	-81.253795	0.0633	Acre	SAC-2018-00748 AUG 02 2018	0.03	Acre	Wetland	Section 404	-0.03
Wetland F	34.152798	-81.253795	0.0249	Acre	SAC-2018-00748 AUG 02 2018	0.01	Acre	Wetland	Section 404	-0.01
Wetland G	34.207884	-81.377932	0.0344	Acre	SAC-2018-00/48 AUG 02 2018	0.02	Acre	Wetland	Section 404	-0.01
Wetland H	34.15/981	-81.26/682	0.08/4	Acre	SAC-2018-00/48 AUG 02 2018	0.11	Acre	Wetland	Section 404	0.02
Wetland	34.14831	-81.243893	0.0118	Acre	SAC-2018-00/48 AUG 02 2018	0 7	Acre	Wetland Wotland	Section 404	-0.01
Wetland J	34.160034	-01.327747	0.0300	ACIE Acre	3AC-2018-00/48 AUG 02 2018	1.0	Acre	Wedand	Section 404	0.0
)		1			1)

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Previously estimated amount of aquatic resource in review area (acreage and linear feet, if applicable)	mated luatic ew area ear feet,	Pevious PJD coverage	Estimated amount of aquatic resource in review area (acreage and linear feet, if applicable) Revised Aug 2019	mount of ource in (acreage feet, if Revised	Type of aquatic resource (i.e., wetland vs. non- wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)	Change in previously estimated amount of aquatic resource to new estimated amount of aquatic resource (acreage and linear feet if applicable)
Wetland L	34.180694	-81.327747	0.1159	Acre	SAC-2018-00748 AUG 02 2018	0	Acre	Wetland	Section 404	-0.12
Wetland M	34.167748	-81.291172	0.1111	Acre	SAC-2018-00748 AUG 02 2018	0.32	Acre	Wetland	Section 404	0.21
Wetland O	34.224365	-81.424345	0.067	Acre	SAC-2018-00748 AUG 02 2018	0	Acre	Wetland	Section 404	-0.07
Wetland P	34.16948	-81.290957	0.05	Acre	SAC-2018-00748 AUG 02 2018	0	Acre	Wetland	Section 404	-0.05
Non-wetland WaterPond A	34.10465	-81.181329	0.138	Acre	SAC-2018-00748 AUG 02 2018	0.11	Acre	Non-wetland Water	Section 404	-0.03
Non-wetland Water Pond B	34.170007	-81.290194	0.141	Acre	SAC-2018-00748 AUG 02 2018	0.12	Acre	Non-wetland Water	Section 404	-0.02
Non-wetland Water Pond C	34.158044	-81.270726	0.257	Acre	SAC-2018-00748 AUG 02 2018	0.23	Acre	Non-wetland Water	Section 404	-0.03
Non-wetland Water Pond CA	34.180332	-81.324271	N/A	N/A	N/A	0.78	Acre	Non-wetland Water	Section 404	N/A
Non-wetland Water CA	34.182112	-81.320001	N/A	N/A	N/A	114.68	LF	Non-wetland Water	Section 404	N/A
Non-wetland Water CB	34.106258	-81.181586	N/A	N/A	N/A	86.06	LF	Non-wetland Water	Section 404	N/A
Non-wetland Water CC	34.175341	-81.316847	N/A	N/A	N/A	278.87	LF	Non-wetland Water	Section 404	N/A
Non-wetland Water CD	34.111408	-81.1869	N/A	N/A	N/A	41.82	LF	Non-wetland Water	Section 404	N/A
Wetland CA	34.219	-81.4102	N/A	N/A	N/A	0.39	Acre	Wetland	Section 404	N/A
Wetland CB	34.2239	-81.4146	N/A	N/A	N/A	0.99	Acre	Wetland	Section 404	N/A
Wetland CC	34.2068	-81.3771	N/A	N/A	N/A	0.16	Acre	Wetland	Section 404	N/A
Wetland CD	34.3201	-81.1822	N/A	N/A	N/A	0.04	Acre	Wetland	Section 404	N/A
Wetland CE	34.2239	-81.4146	N/A	N/A	N/A	0.02	Acre	Wetland	Section 404	N/A
Wetland CF	34.1794	-81.3242	N/A	N/A	N/A	0.02	Acre	Wetland	Section 404	N/A
Wetland CG	34.173	-81.3084	N/A	N/A	N/A	0.02	Acre	Wetland	Section 404	N/A
				Totals			Change			
Indicates Eliminated Feature		Non-wetland Water LF	26949.05487		Non-wetland Water LF	24806.734 -2142.32	-2142.32			
Indicates New Feature		Non-wetland Water ac	0.536		Non-Wetland Water ac	1.24	0.704			
		Wetland ac	1.5524		Wetland ac	2.45	0.8976			
				•						

Attachment C: PJD Approval

DEPARTMENT OF THE ARMY

CHARLESTON DISTRICT, CORPS OF ENGINEERS 69A HAGOOD AVENUE CHARLESTON, SC 29412

18 February 2020

Regulatory Division

Mr. Sean Connolly SC Department of Transportation P.O. BOX 191 Columbia, South Carolina 29202 ConnollyMS@scdot.org

Dear Mr. Connolly:

This is in response to your request for a Preliminary Jurisdictional Determination (PJD) (SAC-2018-00748) received in our office on August 23, 2019, for a 1,210-acre site located on and along an approximately 16-mile long segment of Interstate 26 (I-26) from Mile Marker 85 to Mile Marker 101 (SCDOT ID# P029208) in Newberry, Lexington and Richland Counties, South Carolina (Latitude: 34.181373°, Longitude: -81.323797°). A PJD is used to indicate the approximate location(s) and boundaries of wetlands and/or other aquatic resources presumed to be waters of the United States on a site pursuant to Section 404 of the Clean Water Act (CWA) (33 U.S.C. § 1344) and/or navigable waters of the United States pursuant to Section 10 of the Rivers and Harbors Act of 1899 (RHA) (33 U.S.C. § 403).

The site is shown on the attached depictions entitled Figures 5.1 to 5.53 entitled "Aquatic Features I-26 Widening MM85-101 Newberry, Lexington, and Richland Counties, SC" and dated September 20, 2019, and prepared by Infrastructure, Consulting and Engineering. Based upon on-site inspection, a review of aerial photography, topographic maps, National Wetlands Inventory maps, soil survey information, and Wetland Determination Data Forms, we conclude the boundaries shown on the referenced depictions are a reasonable approximation of the aquatic resources found within the site that are presumed to be subject to regulatory jurisdiction of the Corps of Engineers. The site contains a total of approximately 3.69 acres and 24,806.76 linear feet of federally defined wetlands and other aquatic resources that are presumed to be waters of the United States subject to Corps' jurisdiction under Section 404 of the CWA. Of these aquatic resources, the site contains approximately 2.45 acres of federally defined wetlands, approximately 1.24 acres of open water (pond, lake, etc.), and 24,806.76 linear feet of other aquatic resources that are presumed to be waters of the United States subject to Corps' jurisdiction under Section 404 of the CWA.

You are cautioned the boundaries of the delineated wetlands and/or other aquatic resources presumed to be subject to regulatory jurisdiction of the Corps of Engineers shown on the attached depiction are approximate and subject to change. Also, please be aware that due to revisions to the project area and/or delineated waters, this PJD supersedes the former PJDs, including the PJD the Corps provided SCDOT for the I-26 from Mile Marker 85 to Mile Marker 101 project dated August 2, 2018 and any previous PJDs that included segments of I-26 within this project boundary (Mile Marker 85 to Mile Marker 101).

By providing this PJD, the Corps of Engineers is making no legally binding determination of any type regarding whether jurisdiction exists over the particular aquatic resource(s) in question. This PJD is not a definitive determination of the presence or absence of areas within the Corps of Engineers' jurisdiction, and, therefore, it does not have an expiration date. Also note this PJD is not an appealable action under the Corps of Engineers' administrative appeal procedures defined at 33 CFR 331 as it is not a final action. A PJD is "preliminary" in the sense that a recipient of a PJD can later request and obtain an Approved Jurisdictional Determination (AJD) for a definitive, official determination of the presence or absence of jurisdictional aquatic resources on a site, including the identification of the geographic limits of the jurisdictional aquatic resources. To receive a definitive determination of jurisdiction, you must submit an AJD request.

Be aware a permit from this office may be required for certain activities in the areas identified as wetlands and/or other aquatic resources that are presumed to be subject to regulatory jurisdiction of the Corps of Engineers. These areas may further be subject to restrictions or requirements of other state or local government agencies. A PJD may be used as the basis of a permit decision however, when computing impacts, compensatory mitigation requirements, and other resource protection measures, a permit decision made on the basis of a PJD will treat all aquatic resources affected in any way by the permitted activity as jurisdictional. If you intend to request an AJD in the future, you are advised not to commence work in these wetlands and/or other aquatic resources presumed to be jurisdictional prior to receiving the AJD. Attached is a Preliminary Jurisdictional Determination Form describing the areas in question and clarifying the option to request an AJD.

If you submit a permit application as a result of this PJD, include a copy of this letter and the depictions as part of the application. Not submitting the letter and depiction will cause a delay while we confirm a PJD was performed for the proposed permit project area. Note that some or all of these areas may be regulated by other state or local government entities, and you should contact the South Carolina Department of Health and Environmental Control, Bureau of Water, or Department of Ocean and Coastal Resource Management, to determine the limits of their jurisdiction.

This PJD was conducted to identify approximate location(s) of aquatic resources presumed to be subject to regulatory jurisdiction of the Corps of Engineers on the particular site identified in this request. This PJD may not be valid for the wetland conservation provisions of the Food Security Act of 1985. If you or your tenant are USDA program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resources Conservation Service, prior to starting work.

Attached is a copy of the Preliminary Jurisdictional Determination Form signed by our office. Please sign, retain a copy for your records, and return a signed copy to this office within 30 days of receipt of this letter.

In all future correspondence, please refer to file number SAC-2018-00748. A copy of this letter is being forwarded to State and/or Federal agencies for their information. If you

have any questions, please contact Stephen A. Brumagin, Project Manager, at (803) 253-3445, or by email at Stephen.A.Brumagin@usace.army.mil.

Sincerely,

Amanda L. Heath Chief, Special Projects

Attachments:
Preliminary Jurisdictional Determination Form
Notification of Appeal Options
Figures 5.1 to 5.53 entitled "Aquatic Features I-26 Widening MM85-101 Newberry, Lexington,

Copies Furnished:

Mr. William McGoldrick SCDOT P O BOX 191 Columbia, South Carolina 29202 McGoldriWR@scdot.org

Mr. Cody Conner
Infrastructure, Consulting & Engineering
1021 Briargate Circle
Columbia, South Carolina 29210
cody.conner@ice-eng.com

and Richland Counties, SC" dated 9/20/2019

SCDHEC - Bureau of Water 2600 Bull Street Columbia, South Carolina 29201 WQCWetlands@dhec.sc.gov

Appendix 2 - PRELIMINARY JURISDICTIONAL DETERMINATION (PJD) FORM

BACKGROUND INFORMATION

- A. REPORT COMPLETION DATE FOR PJD: January 31, 2020
- B. NAME AND ADDRESS OF PERSON REQUESTING PJD:

Applicant: Mr. William McGoldrick

SCDOT P O BOX 191 Columbia, South Carolina 29202

McGoldriWR@scdot.org

Consultant:

Mr. Cody Conner Infrastructure Consulting & Engineering 1021 Briargate Circle

Columbia. South Carolina 29210 cody.conner@ice-eng.com

- C. DISTRICT OFFICE, FILE NAME, AND NUMBER: Charleston District, SAC-2018-00748 SCDOT Interstate 26 (I-26) roadway widening from MM 85-101, Newberry, Lexington, Richland Counties, South Carolina
- D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION: The project is located on and along an approximately 16-mile long segment of Interstate 26 (I-26) from Mile Marker 85 to Mile Marker 101 (SCDOT ID# P029208) in Newberry, Lexington and Richland Counties, South Carolina

(USE THE TABLE BELOW TO DOCUMENT MULTIPLE AQUATIC RESOURCES AND/OR **AQUATIC RESOURCES AT DIFFERENT SITES)**

State: South Carolina Counties: Newberry, Lexington & Richland Counties City: Chapin

Center coordinates of site (lat/long in degree decimal format):

Long.: -81.323797° Lat.: 34.181373°

Universal Transverse Mercator: NAD 83

Name of nearest waterbody: Wateree Creek & Hollingshead Creek

E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

☐ Office (Desk) Determination. Date: January 31, 2020

Field Determination. Date(s): September 17, 2019

TABLE OF AQUATIC RESOURCES IN REVIEW AREA WHICH "MAY BE" SUBJECT TO REGULATORY JURISDICTION.

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject
Non- wetland Water CA, 2019	34.18211	-81.32	114.68 feet	Non-wetland water	Section 404
Non- wetland Water CB, 2019	34.10626	-81.18159	86.06 feet	Non-wetland water	Section 404
Non- wetland Water CC, 2019	34.17534	-81.31685	278.87 feet	Non-wetland water	Section 404
Non- wetland Water CD, 2019	34.11141	-81.1869	41.82 feet	Non-wetland water	Section 404
Non- wetland Water Pond A, 2019	34.10465	-81.18133	0.11 acre	Non-wetland water	Section 404
Non- wetland Water Pond B, 2019	34.17001	-81.29019	0.12 acre	Non-wetland water	Section 404
Non- wetland Water Pond C, 2019	34.15804	-81.27073	0.23 acre	Non-wetland water	Section 404
Non- wetland Water Pond CA, 2019	34.18033	-81.32427	0.78 acre	Non-wetland water	Section 404
Non- wetland waters 103, 2019	34.12616	-81.20347	182.07 feet	Non-wetland water	Section 404

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject
Non- wetland waters 107, 2019	34.17489	-81.31814	401.61 feet	Non-wetland water	Section 404
Non- wetland waters 108, 2019	34.10308	-81.17829	117.03 feet	Non-wetland water	Section 404
Non- wetland waters 109, 2019	34.22459	-81.42494	70.01 feet	Non-wetland water	Section 404
Non- wetland waters 110, 2019	34.16816	-81.291	170.97 feet	Non-wetland water	Section 404
Non- wetland waters 12, 2019	34.14189	-81.22819	379.09 feet	Non-wetland water	Section 404
Non- wetland waters 13, 2019	34.14271	-81.23002	248.17 feet	Non-wetland water	Section 404
Non- wetland waters 15, 2019	34.15271	-81.25549	188.03 feet	Non-wetland water	Section 404
Non- wetland waters 17/NWW H, 2019	34.1577	-81.26864	452.21 feet	Non-wetland water	Section 404
Non- wetland waters 18, 2019	34.16224	-81.29646	168.61 feet	Non-wetland water	Section 404

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject
Non- wetland waters 19A, 2019	34.16868	-81.29646	983.65 feet	Non-wetland water	Section 404
Non- wetland waters 19B, 2019	34.16887	-81.2965	42.65 feet	Non-wetland water	Section 404
Non- wetland waters 1A 2019	34.11083	-81.18633	222.3 feet	Non-wetland water	Section 404
Non- wetland waters 1B 2019	34.1122	-81.1891	36.47 feet	Non-wetland water	Section 404
Non- wetland waters 1C 2019	34.11228	-81.18925	46.24 feet	Non-wetland water	Section 404
Non- wetland waters 1D, 2019	34.10637	-81.18308	35.5 feet	Non-wetland water	Section 404
Non- wetland waters 2, 2019	34.11714	-81.19291	47.46 feet	Non-wetland water	Section 404
Non- wetland waters 20, 2019	34.16981	-81.29927	362.64 feet	Non-wetland water	Section 404
Non- wetland waters 24, 2019	34.17042	-81.30088	628.7 feet	Non-wetland water	Section 404
Non- wetland waters 25B, 2019	34.17195	-81.30832	74.19 feet	Non-wetland water	Section 404

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject
Non- wetland waters 26, 2019	34.17319	-81.30991	564.92 feet	Non-wetland water	Section 404
Non- wetland waters 27, 2019	34.17432	-81.31354	1019.07 feet	Non-wetland water	Section 404
Non- wetland waters 28, 2019	34.18638	-81.33754	229.96 feet	Non-wetland water	Section 404
Non- wetland waters 29, 2019	34.1873	-81.33919	819.77 feet	Non-wetland water	Section 404
Non- wetland waters 30A, 2019	34.18982	-81.34375	326.39 feet	Non-wetland water	Section 404
Non- wetland waters 30B, 2019	34.18905	-81.34376	175 feet	Non-wetland water	Section 404
Non- wetland waters 31, 2019	34.19523	-81.35355	405.43 feet	Non-wetland water	Section 404
Non- wetland waters 33B, 2019	34.19906	-81.36059	763.43 feet	Non-wetland water	Section 404
Non- wetland waters 33C, 2019	34.19829	-81.36052	62.58 feet	Non-wetland water	Section 404

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject
Non- wetland waters 33D, 2019	34.19818	-81.3605	50.11 feet	Non-wetland water	Section 404
Non- wetland waters 35, 2019	34.20645	-81.37471	225.86 feet	Non-wetland water	Section 404
Non- wetland waters 36A, 2019	34.20771	-81.37771	414.01 feet	Non-wetland water	Section 404
Non- wetland waters 36B, 2019	34.20753	-81.37727	143.06 feet	Non-wetland water	Section 404
Non- wetland waters 36D, 2019	34.20788	-81.37983	162.52 feet	Non-wetland water	Section 404
Non- wetland waters 37, 2019	34.20998	-81.383	72.94 feet	Non-wetland water	Section 404
Non- wetland waters 38A, 2019	34.21224	-81.38869	139.22 feet	Non-wetland water	Section 404
Non- wetland waters 38B, 2019	34.21184	-81.38961	392.92 feet	Non-wetland water	Section 404
Non- wetland waters 38C, 2019	34.21151	-81.38907	12.79 feet	Non-wetland water	Section 404

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject
Non- wetland waters				Non-wetland water	Section 404
Non- wetland waters 4,	34.21154	-81.38893	115.97 feet	Non-wetland water	Section 404
Non- wetland waters 40A, 2019	34.1495	-81.23989 -81.40954	524.91 feet 2613.58 feet	Non-wetland water	Section 404
Non- wetland waters 40B, 2019	34.22117	-81.40893	135.66 feet	Non-wetland water	Section 404
Non- wetland waters 40C, 2019	34.22061	-81.40854	244.94 feet	Non-wetland water	Section 404
Non- wetland waters 43, 2019	34.2225	-81.41487	290.97 feet	Non-wetland water	Section 404
Non- wetland waters 44,	34.22303	04 44274	259 02 foot	Non-wetland water	Section 404
Non- wetland waters 45A, 2019	34.22348	-81.41371 -81.41412	258.03 feet 2848.86 feet	Non-wetland water	Section 404
Non- wetland waters 45B, 2019	34.22419	-81.41334	252.76 feet	Non-wetland water	Section 404

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject
Non- wetland waters 46, 2019	34.2232	-81.41808	103.58 feet	Non-wetland water	Section 404
Non- wetland waters 47, 2019	34.22373	-81.42027	554.52 feet	Non-wetland water	Section 404
Non- wetland waters 48, 2019	34.23125	-81.43861	93.02 feet	Non-wetland water	Section 404
Non- wetland waters 49, 2019	34.23121	-81.44053	133.65 feet	Non-wetland water	Section 404
Non- wetland waters 4T, 2019	34.17381	-81.32425	274.14 feet	Non-wetland water	Section 404
Non- wetland waters 51A, 2019	34.23067	-81.43923	842.73 feet	Non-wetland water	Section 404
Non- wetland waters 54A, 2019	34.22309	-81.42027	1931.66 feet	Non-wetland water	Section 404
Non- wetland waters 54B, 2019	34.22247	-81.4182	73 feet	Non-wetland water	Section 404
Non- wetland waters 59, 2019	34.22149	-81.41513	69.89 feet	Non-wetland water	Section 404

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject
Non- wetland waters 6,	04.4440	04 00050	00.751	Non-wetland water	Section 404
Non- wetland waters 60, 2019	34.1419 34.21858	-81.23856 -81.41132	39.75 feet 232.34 feet	Non-wetland water	Section 404
Non- wetland waters 6T, 2019	34.17917	-81.32468	536.42 feet	Non-wetland water	Section 404
Non- wetland waters 7A, 2019	34.12592	-81.2021	161.93 feet	Non-wetland water	Section 404
Non- wetland waters 7B, 2019	34.12515	-81.20245	24.81 feet	Non-wetland water	Section 404
Non- wetland waters 8A, 2019	34.13108	-81.20743	135.04 feet	Non-wetland water	Section 404
Non- wetland waters 8B, 2019	34.13098	-81.20727	67.69 feet	Non-wetland water	Section 404
Non- wetland waters 8C,	34.13048	-81.20791	72.93 feet	Non-wetland water	Section 404
Non- wetland waters 9, 2019	34.13432	-81.21149	225.11 feet	Non-wetland water	Section 404

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject
Non- wetland waters HA/NWW IA, 2019	34.14828	-81.24384	191.97 feet	Non-wetland water	Section 404
Non- wetland waters HB/NWW IB, 2019	34.14885	-81.24356	84.8 feet	Non-wetland water	Section 404
Non- wetland waters J, 2019	34.18025	-81.32825	313.27 feet	Non-wetland water	Section 404
Wetland 1, 2019	34.17346	-81.32427	0.16 acre	Wetland	Section 404
Wetland CA, 2019	34.219	-81.4102	0.39 acre	Wetland	Section 404
Wetland CB, 2019	34.2239	-81.4146	0.99 acre	Wetland	Section 404
Wetland CC, 2019	34.2068	-81.3771	0.16 acre	Wetland	Section 404
Wetland CD, 2019	34.3201	-81.1822	0.04 acre	Wetland	Section 404
Wetland CE, 2019	34.2239	-81.4146	0.02 acre	Wetland	Section 404
Wetland CF, 2019	34.1794	-81.3242	0.02 acre	Wetland	Section 404
Wetland CG, 2019	34.173	-81.3084	0.02 acre	Wetland	Section 404
Wetland E, 2019	34.14022	-81.2538	0.03 acre	Wetland	Section 404
Wetland F, 2019	34.1528	-81.2538	0.01 acre	Wetland	Section 404

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject
Wetland				Wetland	Section 404
G, 2019	34.20788	-81.37793	0.02 acre		
Wetland				Wetland	Section 404
H, 2019	34.15798	-81.26768	0.11 acre		
Wetland J,	24 19060	04 22775	0.1.000	Wetland	Section 404
2019	34.18069	-81.32775	0.1 acre	\\/atland	Coation 404
Wetland K,				Wetland	Section 404
2019	34.22437	-81.42435	0.06 acre		
Wetland				Wetland	Section 404
M, 2019	34.16775	-81.29117	0.32 acre		

- 1) The Corps of Engineers believes that there may be jurisdictional aquatic resources in the review area, and the requestor of this PJD is hereby advised of his or her option to request and obtain an approved JD (AJD) for that review area based on an informed decision after having discussed the various types of JDs and their characteristics and circumstances when they may be appropriate.
- 2) In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "pre-construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an AJD for the activity, the permit applicant is hereby made aware that: (1) the permit applicant has elected to seek a permit authorization based on a PJD, which does not make an official determination of jurisdictional aquatic resources; (2) the applicant has the option to request an AJD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an AJD could possibly result in less compensatory mitigation being required or different special conditions; (3) the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) undertaking any activity in reliance upon the subject permit authorization without requesting an AJD constitutes the applicant's acceptance of the use of the PJD: (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a PJD constitutes agreement that all aquatic resources in the review area affected in any way by that activity will be treated as jurisdictional, and waives any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an AJD or a PJD, the JD will be processed as soon as practicable. Further, an AJD, a proffered individual permit

SAC-2018-00748 SCDOT Interstate 26 (I-26) roadway widening from MM 85-101, Newberry, Lexington, Richland

(and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331. If, during an administrative appeal, it becomes appropriate to make an official determination whether geographic jurisdiction exists over aquatic resources in the review area, or to provide an official delineation of jurisdictional aquatic resources in the review area, the Corps will provide an AJD to accomplish that result, as soon as is practicable. This PJD finds that there "may be" waters of the U.S. and/or that there "may be" navigable waters of the U.S. on the subject review area, and identifies all aquatic features in the review area that could be affected by the proposed activity, based on the following information:

SUPPORTING DATA. Data reviewed for PJD (check all that apply)

Checked items should be included in subject file. Appropriately reference sources below where indicated for all checked items:

SAC-2018-00748 SCDOT Interstate 26 (I-26) roadway widening from MM 85-101, Newberry, Lexington, Richland

IMPORTANT NOTE: The information recorded on this form has not necessarily been verified by the Corps and should not be relied upon for later jurisdictional determinations.

BRUMAGIN.STEPHEN.A.1 283520737 2020.01.31 13:58:22 -05'00'

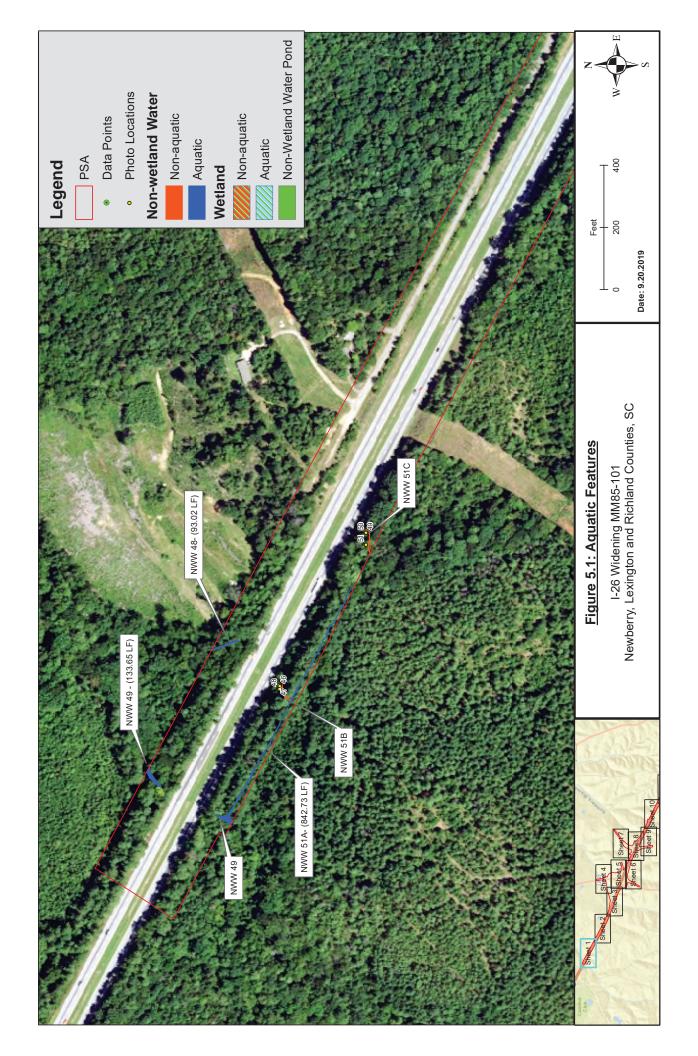
Signature and date of Regulatory staff member completing PJD

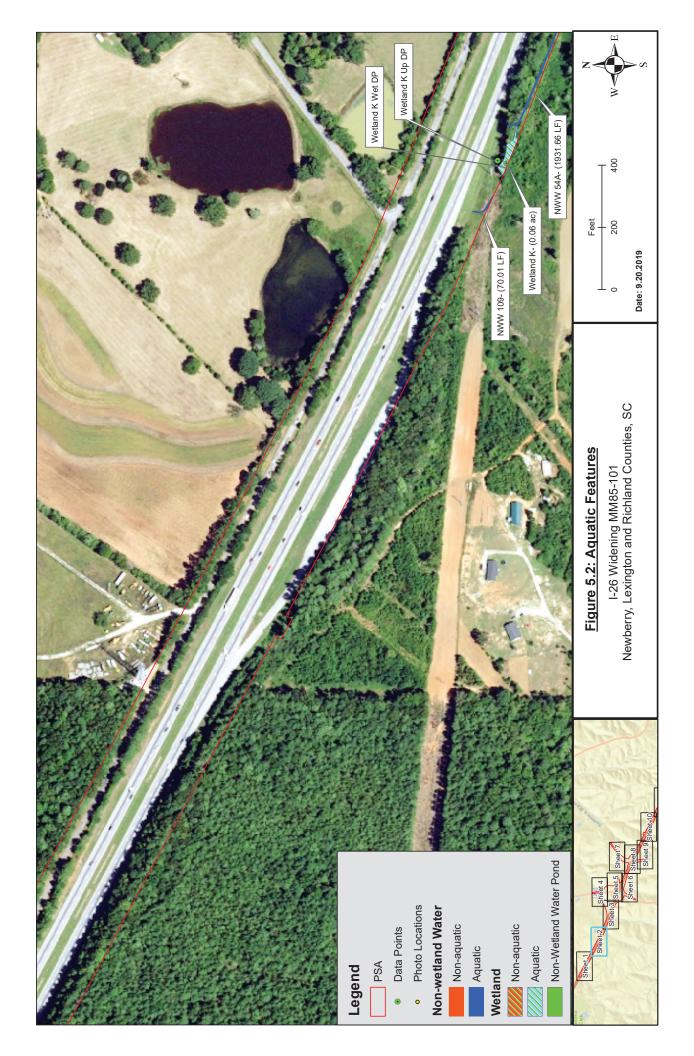
Signature and date of person requesting PJD

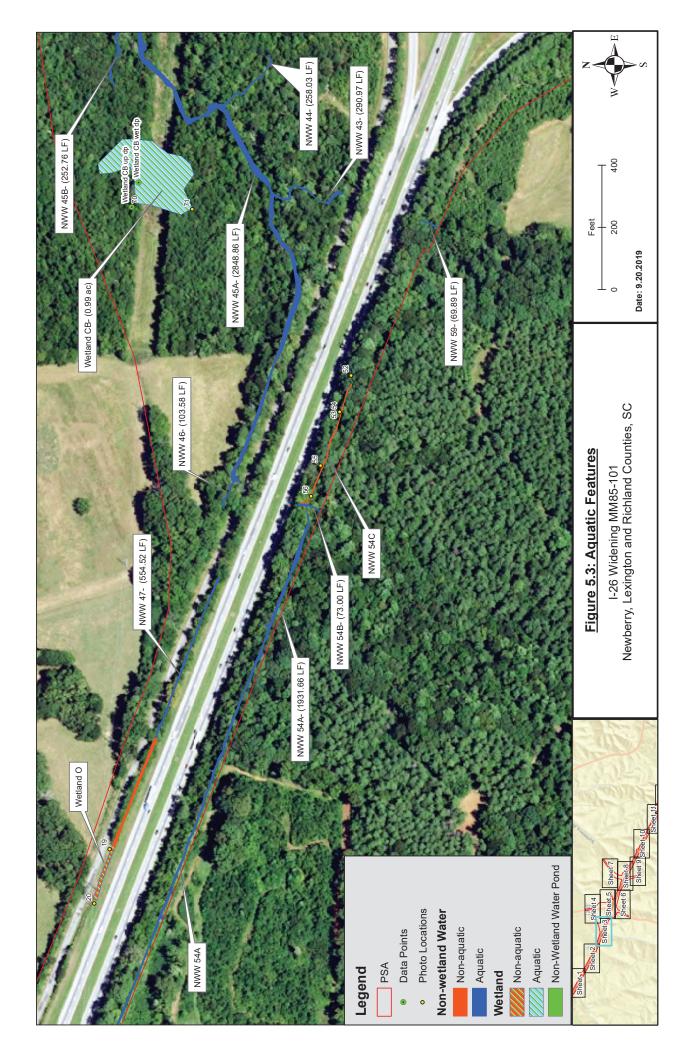
NOTIFICATION OF ADMINISTRATIVE APPEAL OPTIONS AND PROCESS AND REQUEST FOR APPEAL

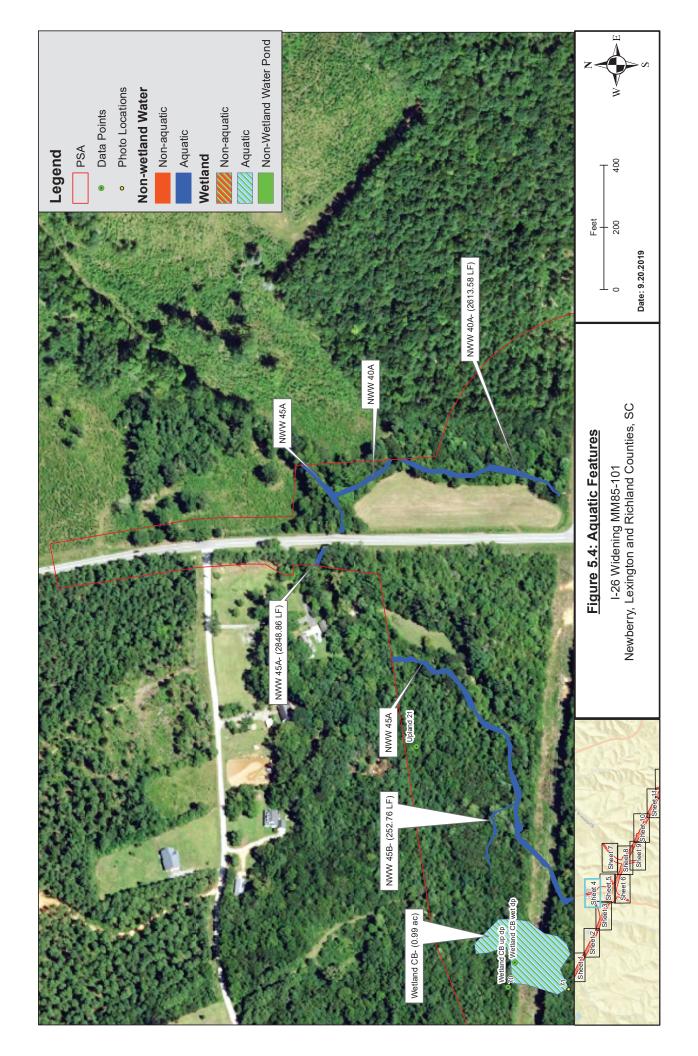
Applicant: SCDOT		File Number: SAC-2018-00748	Date: 18 Feb 2020
Attached is:			See Section below
	INITIAL PROFFERED PERMIT (Standard Permit or Letter of permission)		A
	PROFFERED PERMIT (Standard Permit or Letter of permission)		В
	PERMIT DENIAL		С
	APPROVED JURISDICTIONAL D	ETERMINATION	D
X	PRELIMINARY JURISDICTIONA	L DETERMINATION	Е

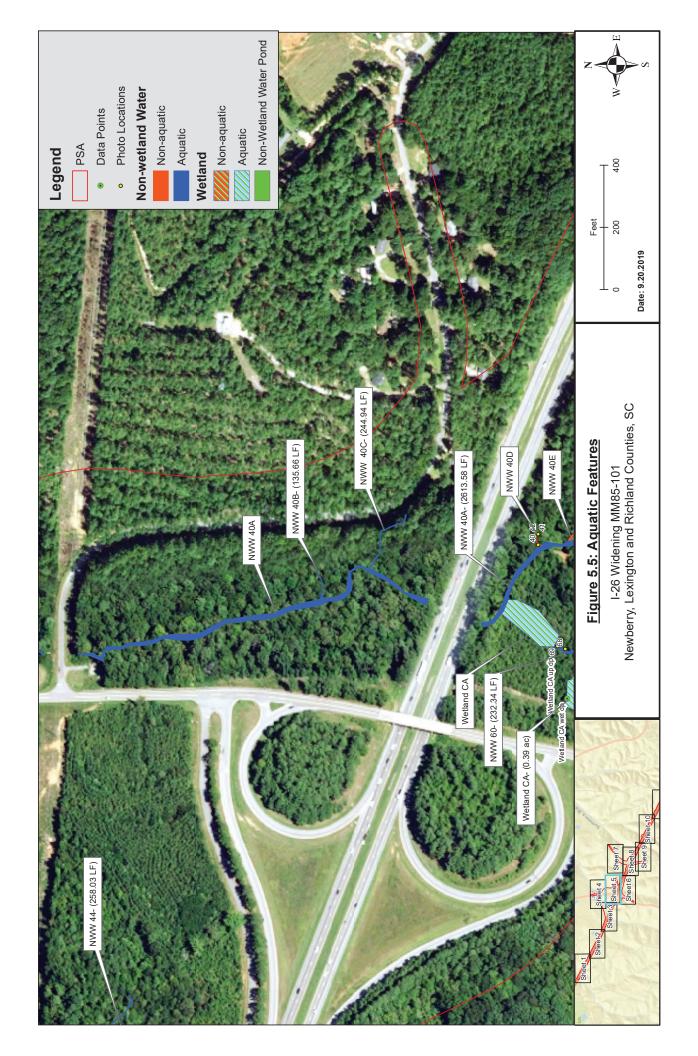
SECTION I - The following identifies your rights and options regarding an administrative appeal of the above decision. Additional information may be found at http://usace.army.mil/inet/functions/cw/cecwo/reg or Corps regulations at 33 CFR Part 331.

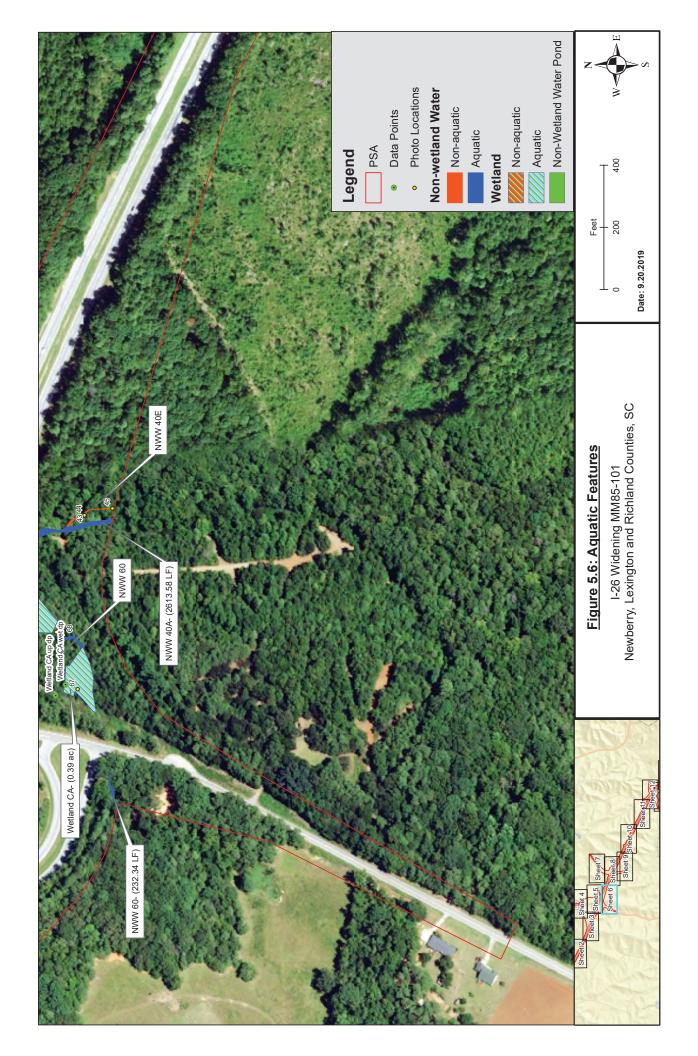

A: INITIAL PROFFERED PERMIT: You may accept or object to the permit.

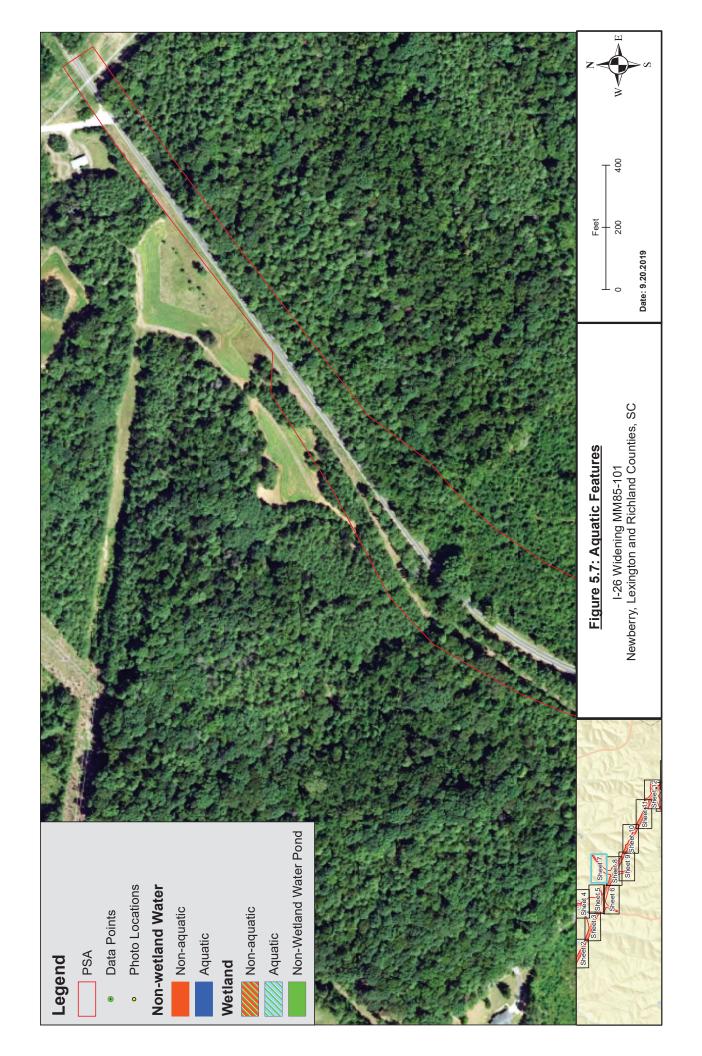

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- OBJECT: If you object to the permit (Standard or LOP) because of certain terms and conditions therein, you may request that the permit be modified accordingly. You must complete Section II of this form and return the form to the district engineer. Your objections must be received by the district engineer within 60 days of the date of this notice, or you will forfeit your right to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your objections and may: (a) modify the permit to address all of your concerns, (b) modify the permit to address some of your objections, or (c) not modify the permit having determined that the permit should be issued as previously written. After evaluating your objections, the district engineer will send you a proffered permit for your reconsideration, as indicated in Section B below.

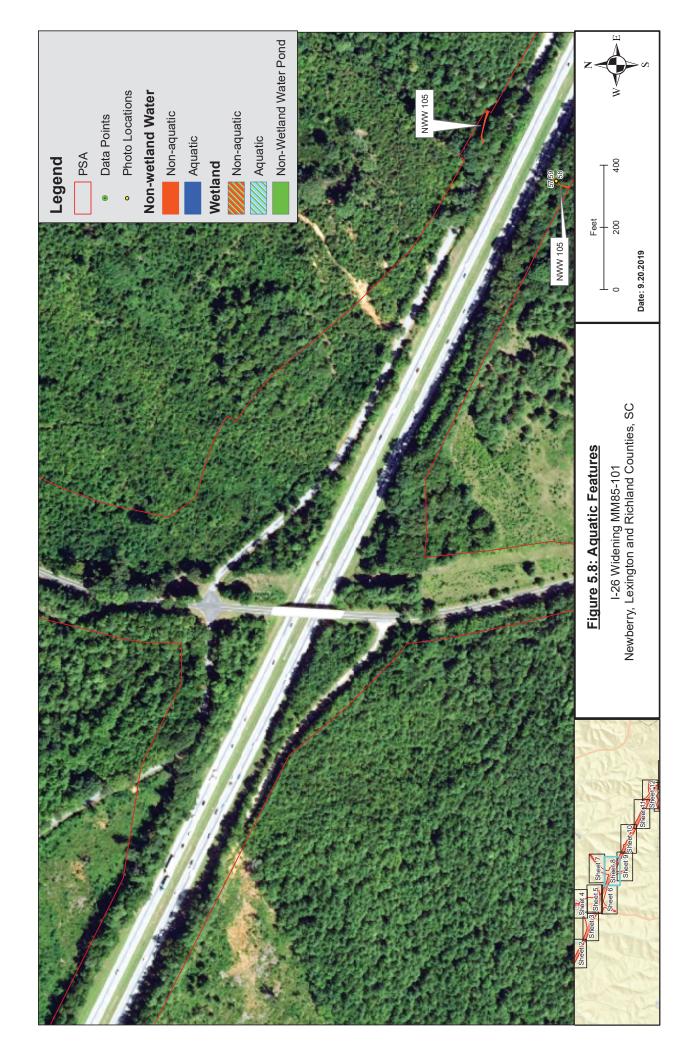

B: PROFFERED PERMIT: You may accept or appeal the permit

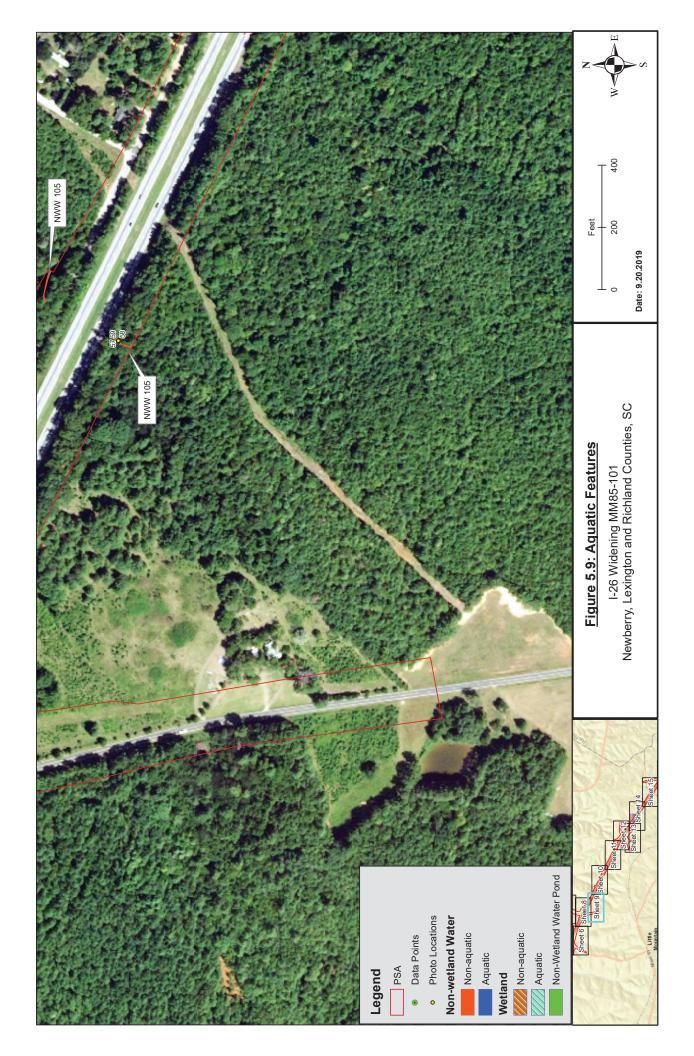

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- APPEAL: If you choose to decline the proffered permit (Standard or LOP) because of certain terms and conditions therein, you may appeal the declined permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.
- C: PERMIT DENIAL: You may appeal the denial of a permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.
- D: APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the approved JD or provide new information.
- ACCEPT: You do not need to notify the Corps to accept an approved JD. Failure to notify the Corps within 60 days of the date of this notice, means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD.
- APPEAL: If you disagree with the approved JD, you may appeal the approved JD under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the Division Engineer, South Atlantic Division, 60 Forsyth St, SW, Atlanta, GA 30308-8801. This form must be received by the Division Engineer within 60 days of the date of this notice.
- E: PRELIMINARY JURISDICTIONAL DETERMINATION: You do not need to respond to the Corps regarding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may request an approved JD (which may be appealed), by contacting the Corps district for further instruction. Also you may provide new information for further consideration by the Corps to reevaluate the JD.

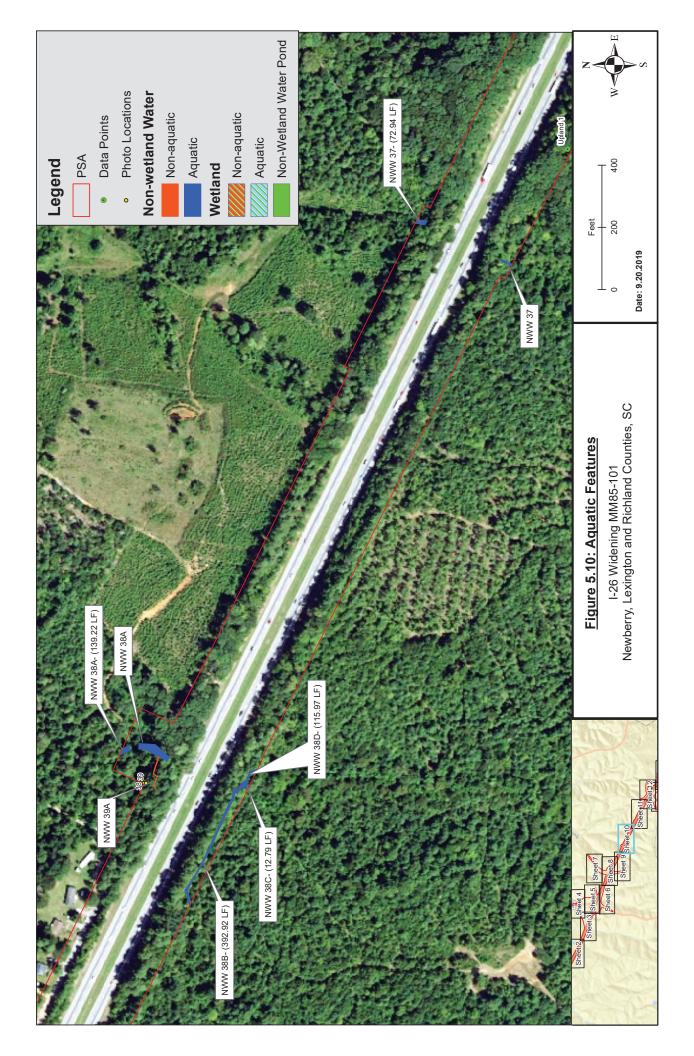

SECTION II - REQUEST FOR APPEAL or OBJECTION	SECTION II - REQUEST FOR APPEAL or OBJECTIONS TO AN INITIAL PROFFERED PERMIT							
REASONS FOR APPEAL OR OBJECTIONS: (Describ	e your reasons f	or appealing the de	ecision or your objections to an					
initial proffered permit in clear concise statements. You may attac	h additional info	ormation to this for	rm to clarify where your reasons					
or objections are addressed in the administrative record.)								
ADDITIONAL DIFFORMATION TO	0.1 1	1 . 1						
ADDITIONAL INFORMATION: The appeal is limited to a review record of the appeal conference or meeting, and any supplemental								
clarify the administrative record. Neither the appellant nor the Cor								
you may provide additional information to clarify the location of in								
POINT OF CONTACT FOR QUESTIONS OR INFOR	MATION:							
If you have questions regarding this decision and/or the appeal	If you only hav		ding the appeal process you may					
process you may contact the Corps biologist who signed the	also contact: .	Jason W. Steele	1 D ' 00"					
letter to which this notification is attached. The name and		Administrative Apus USACE South A	ppeals Review Officer					
telephone number of this person is given at the end of the letter.		60 Forsyth St, SW						
		Atlanta, GA 3030						
		(404) 562-5137						
RIGHT OF ENTRY: Your signature below grants the right of entry								
consultants, to conduct investigations of the project site during the notice of any site investigation, and will have the opportunity to pa			will be provided a 15 day					
nonce of any site investigation, and will have the opportunity to pa	Date:	iic mvestigations.	Talanhona numbar					
	Date.		Telephone number:					
Signature of appellant or agent.								
Signature of appendix of agent.								

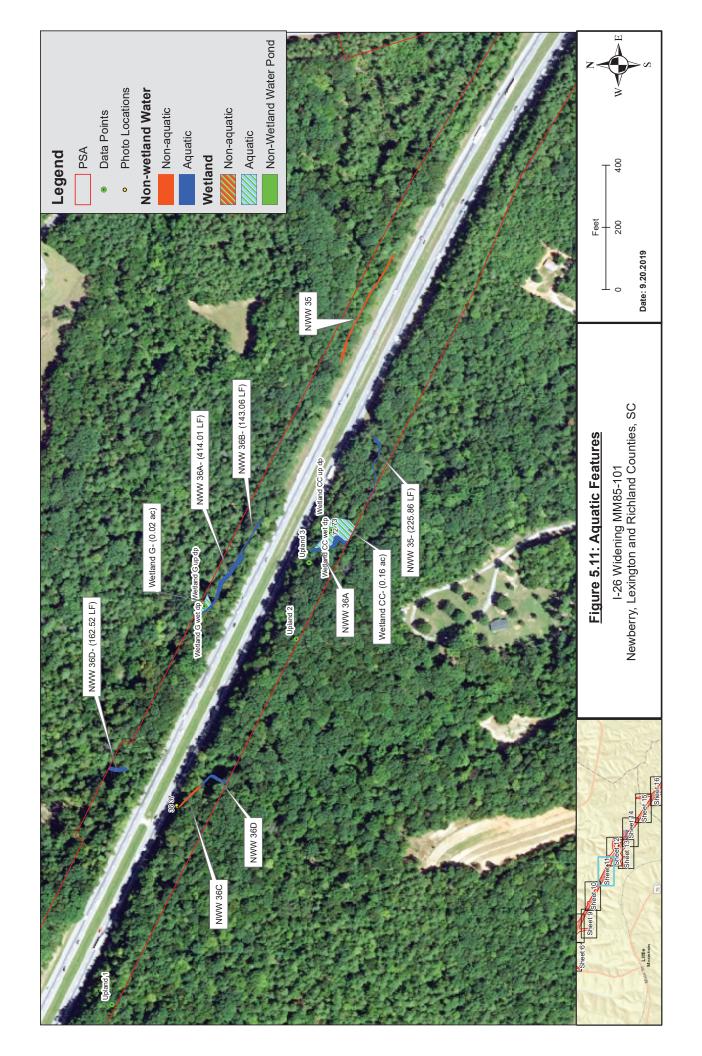


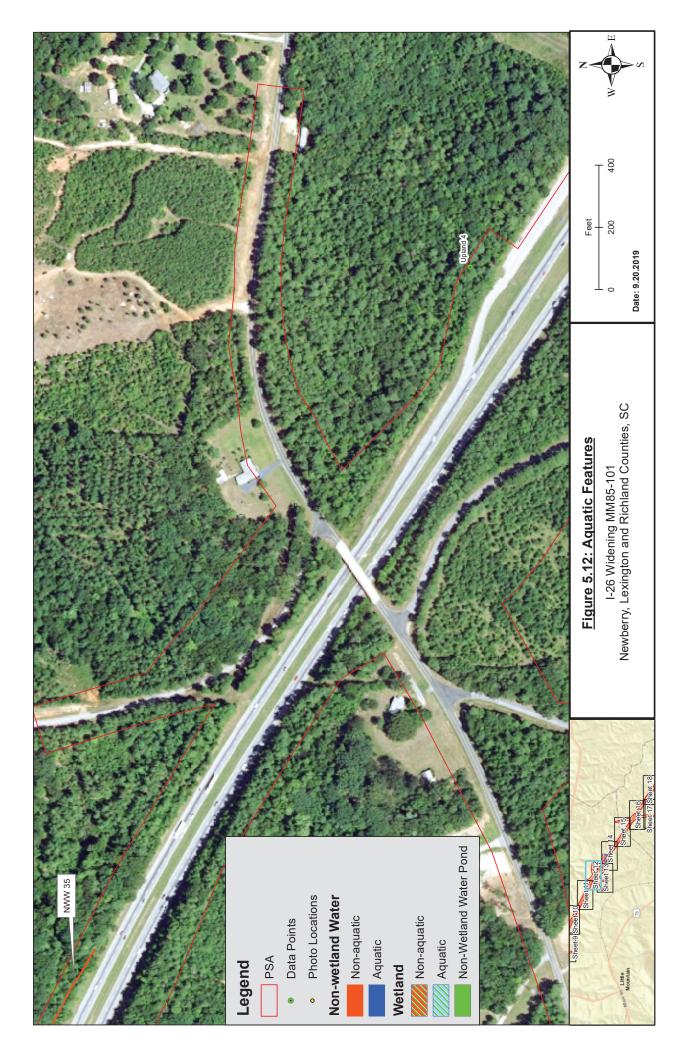


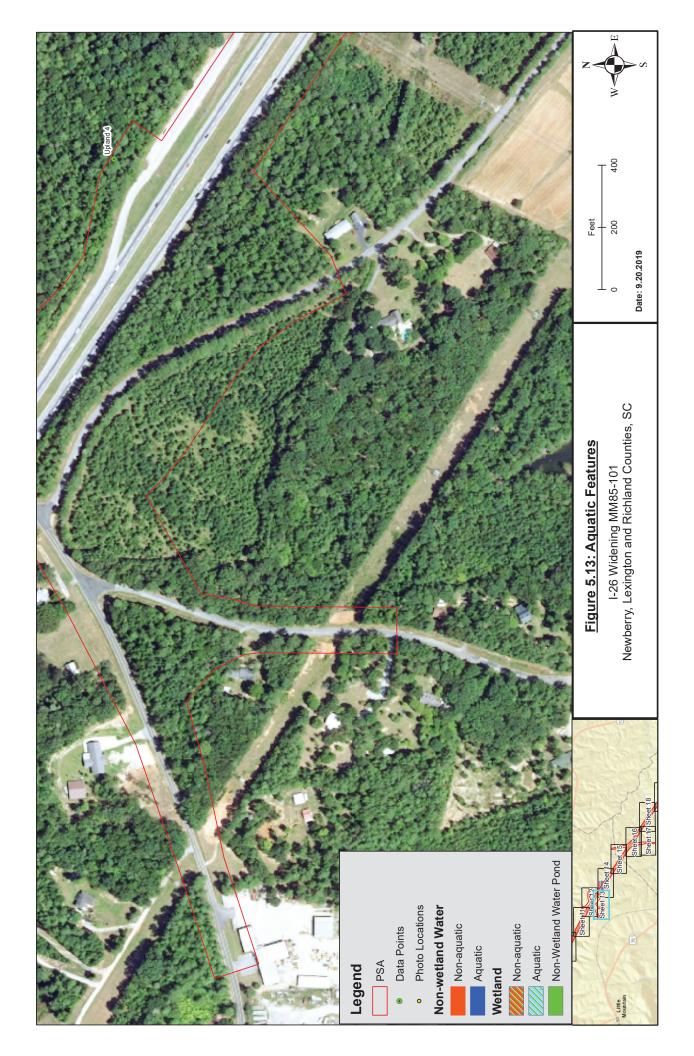


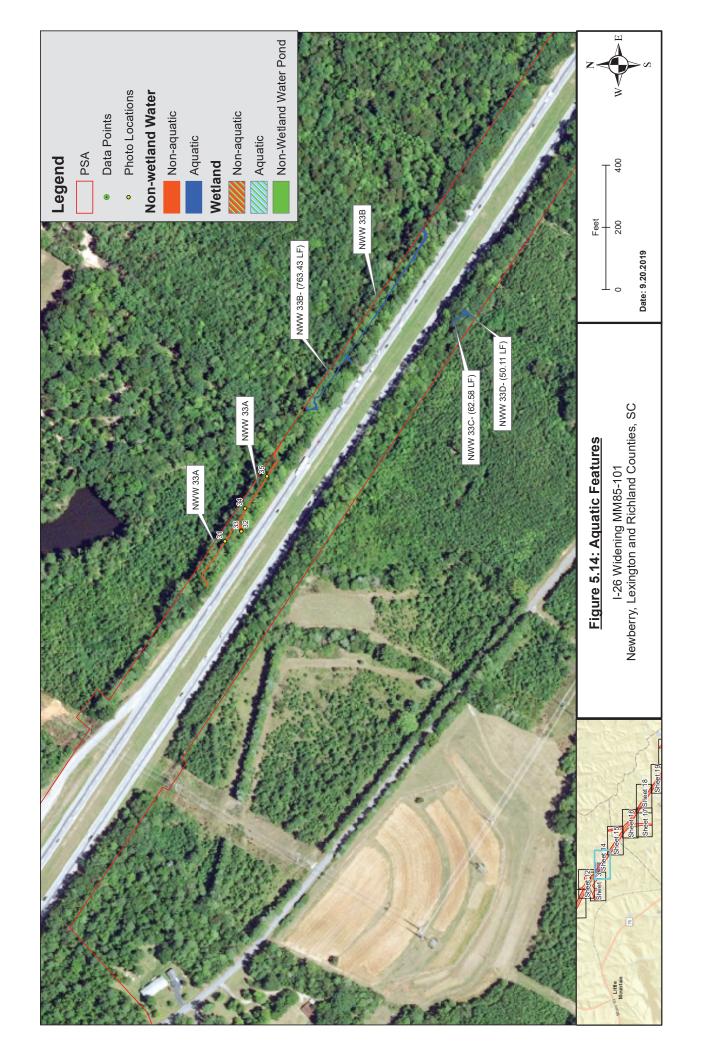


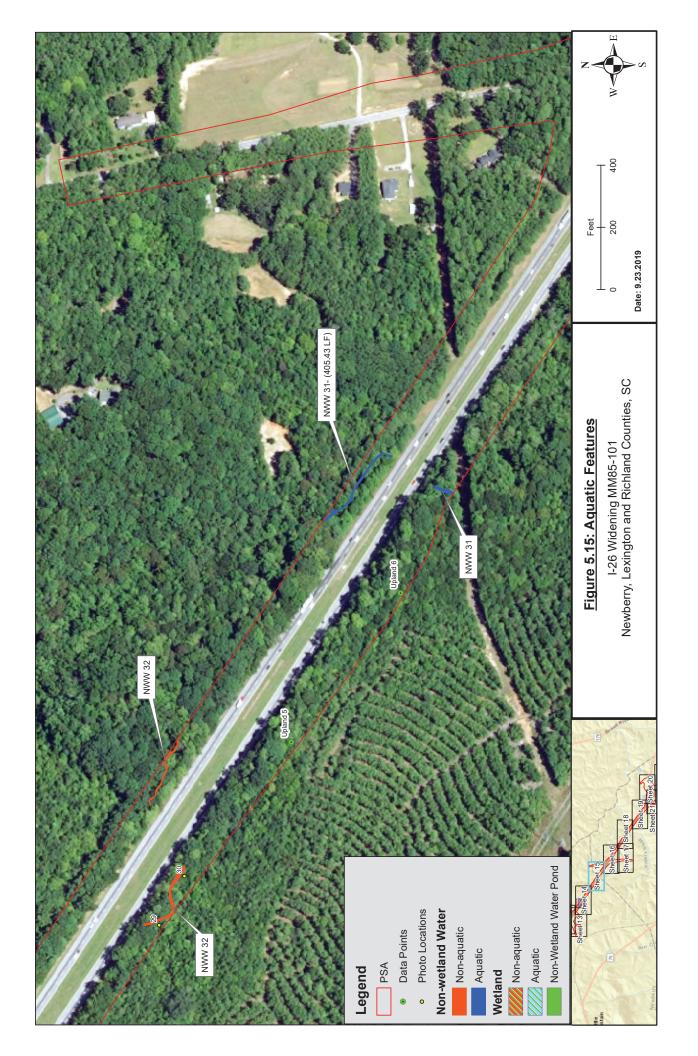


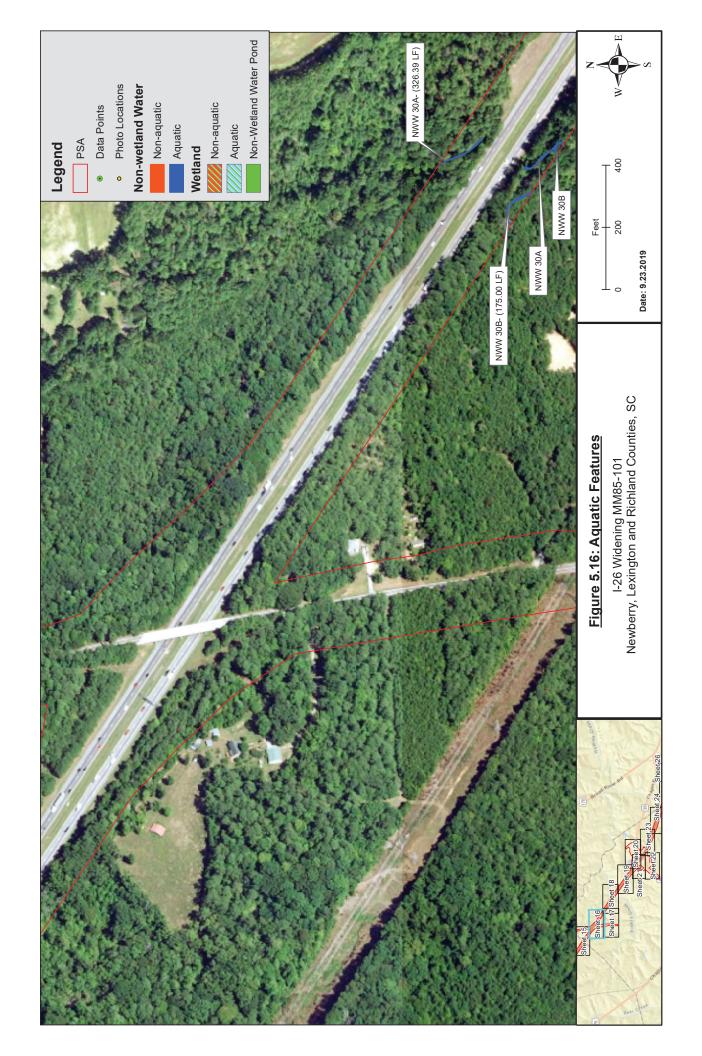


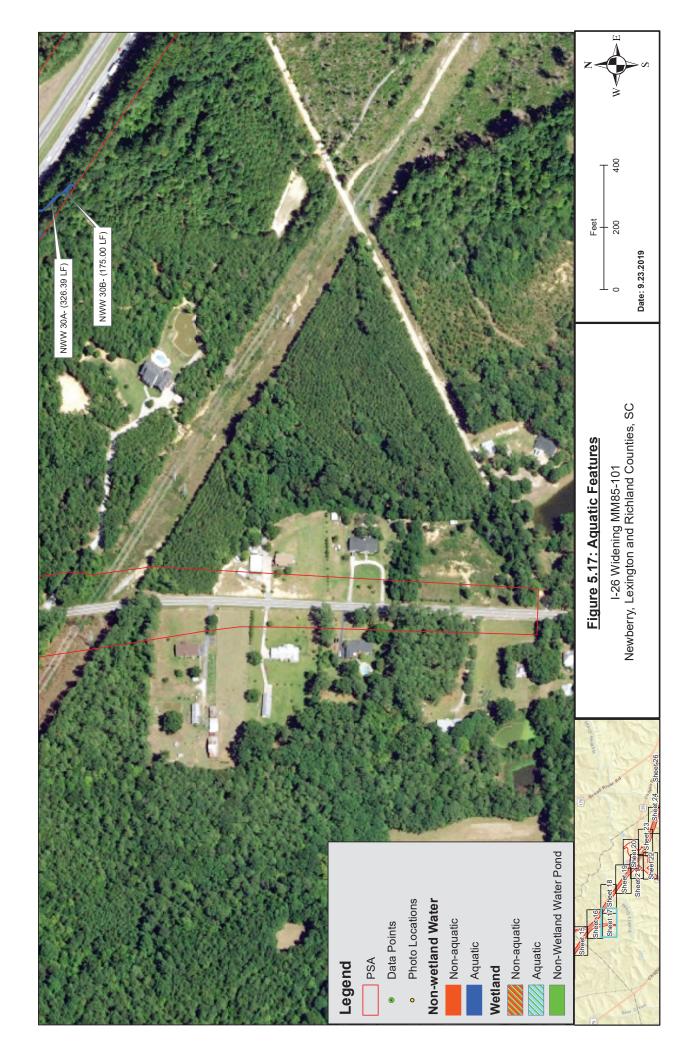


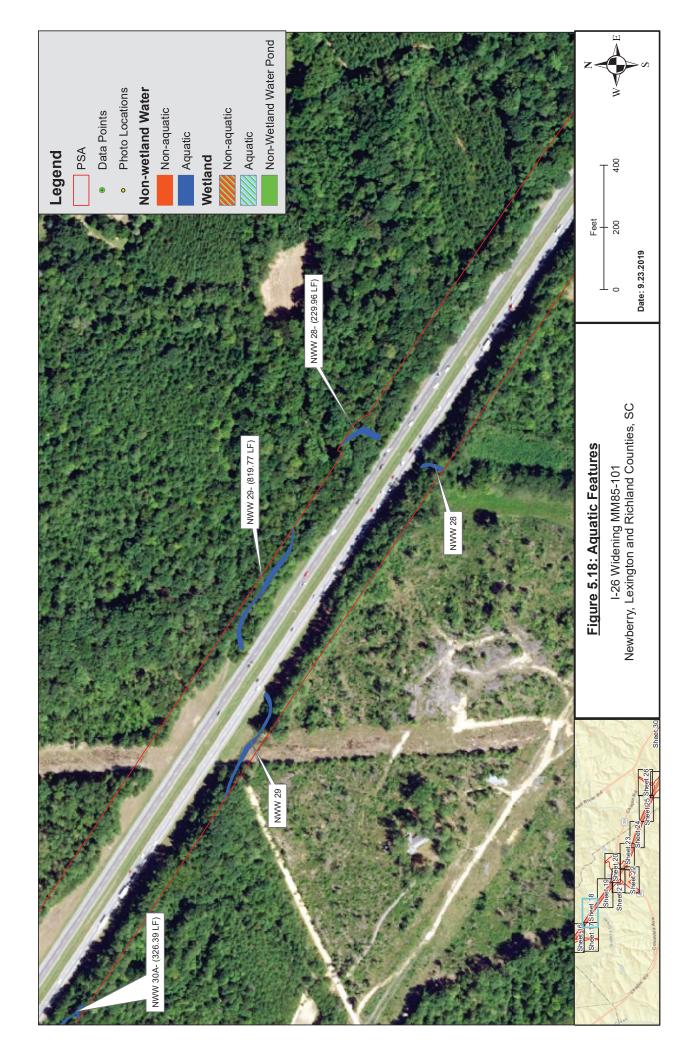


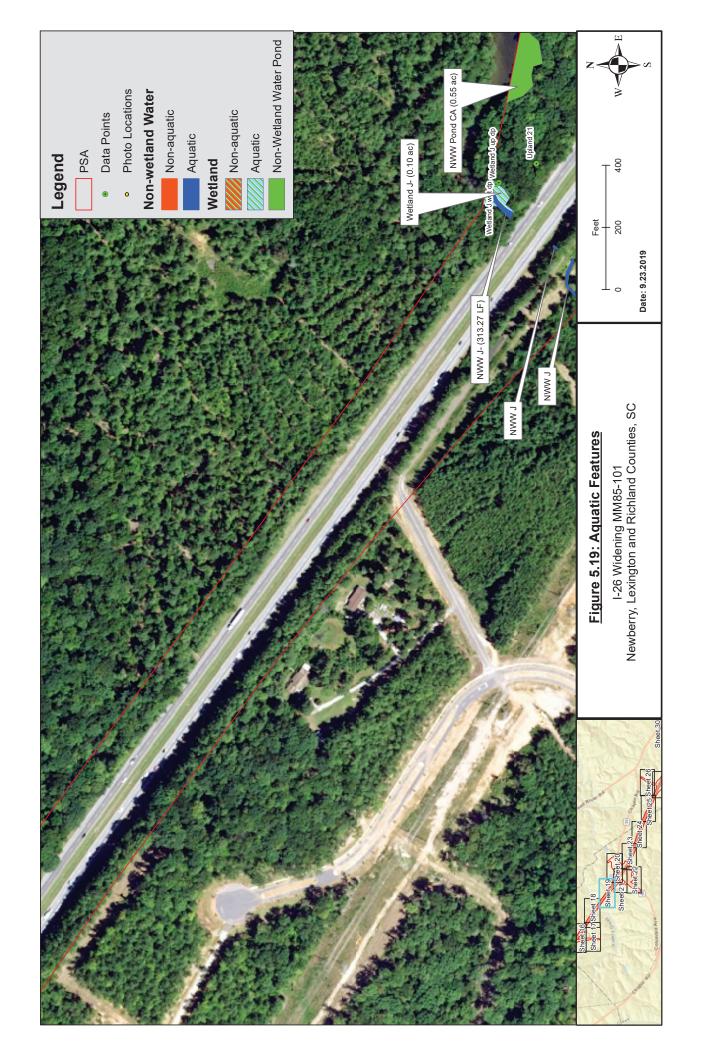


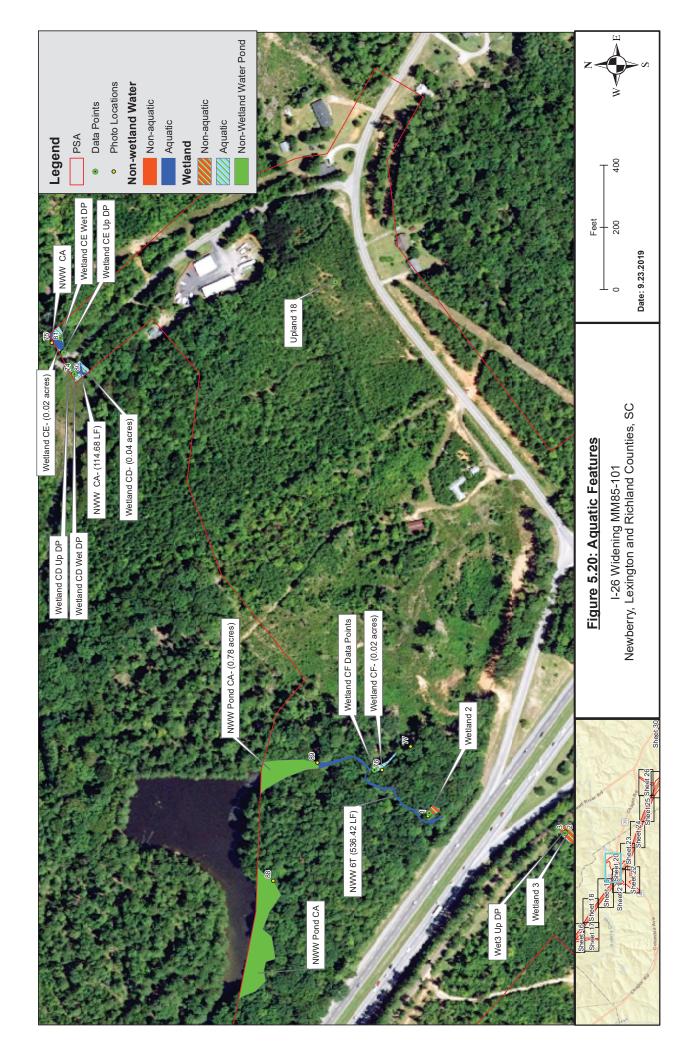


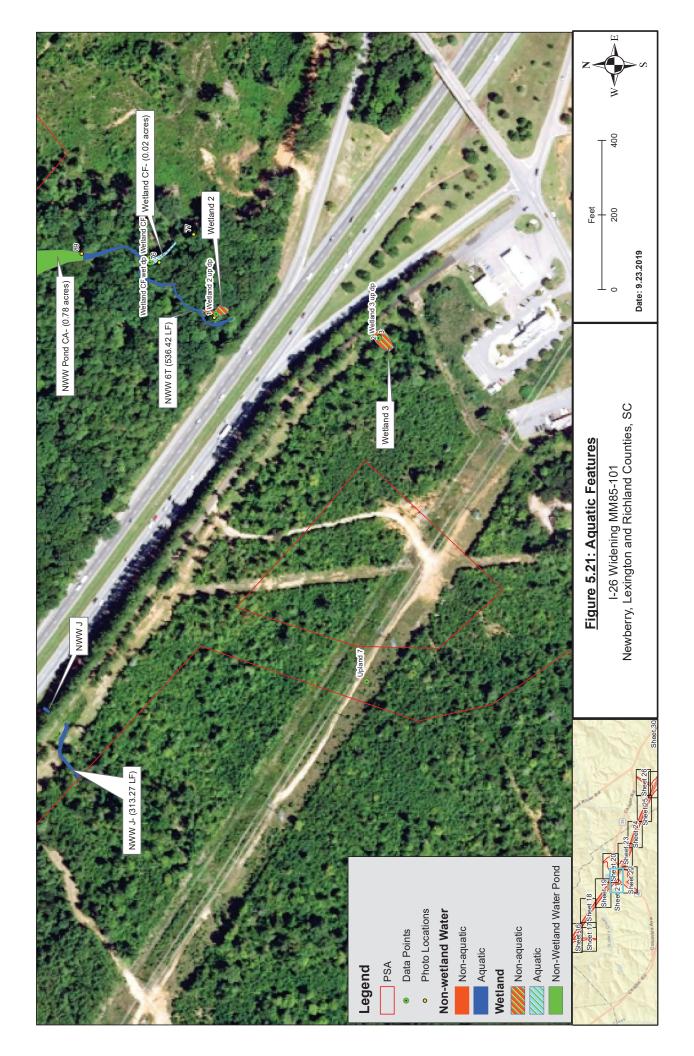


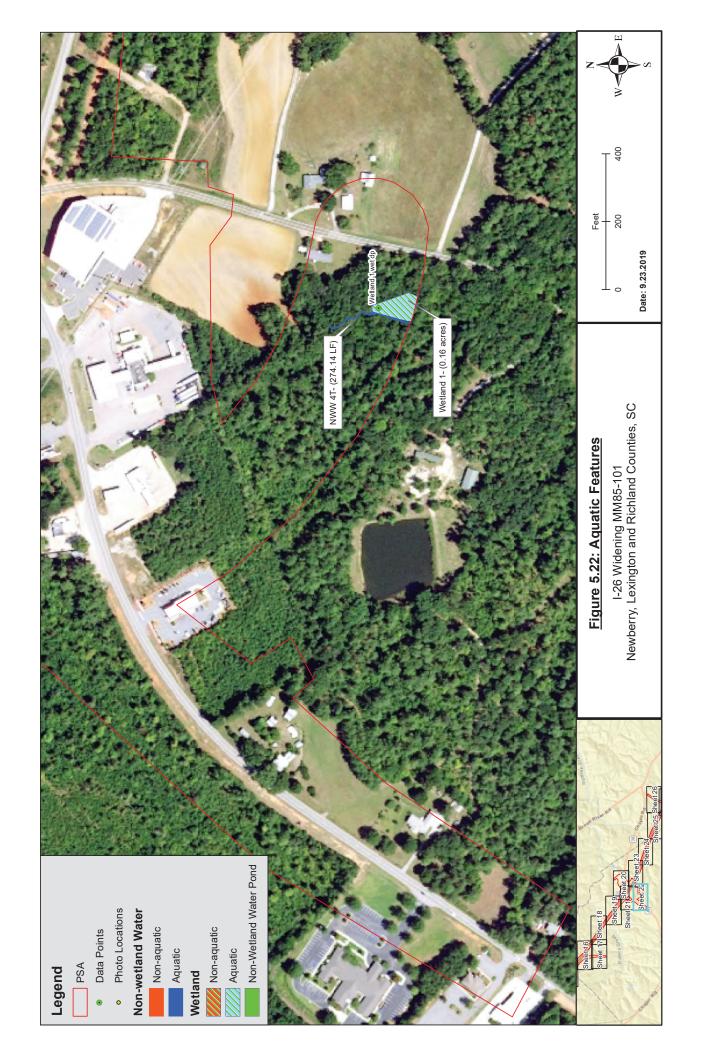


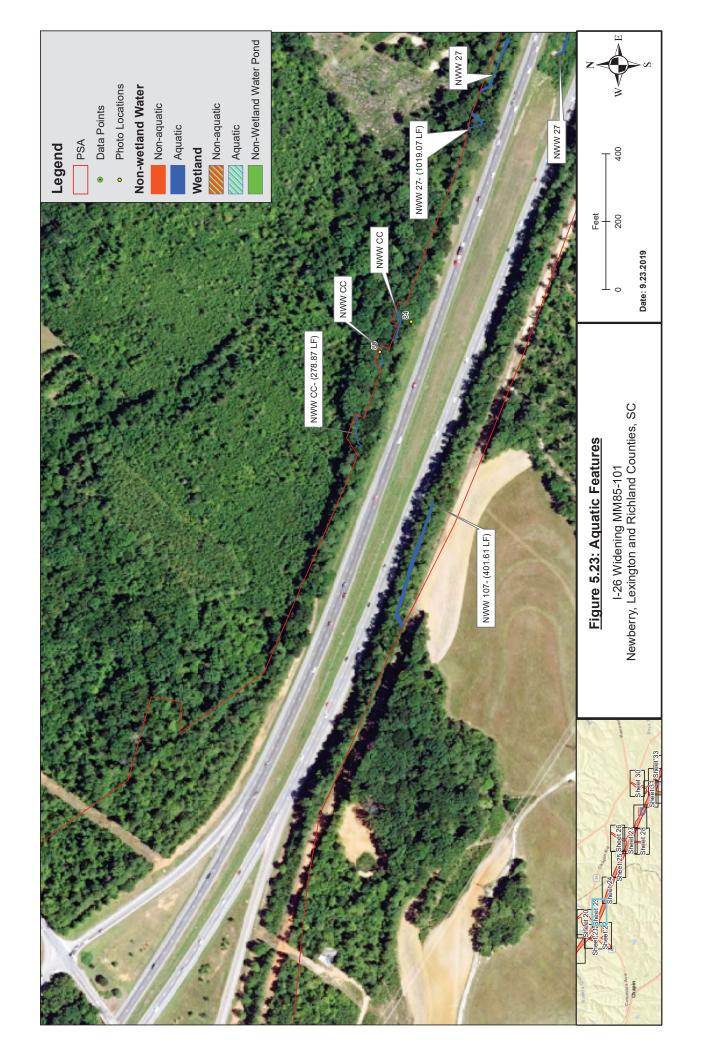


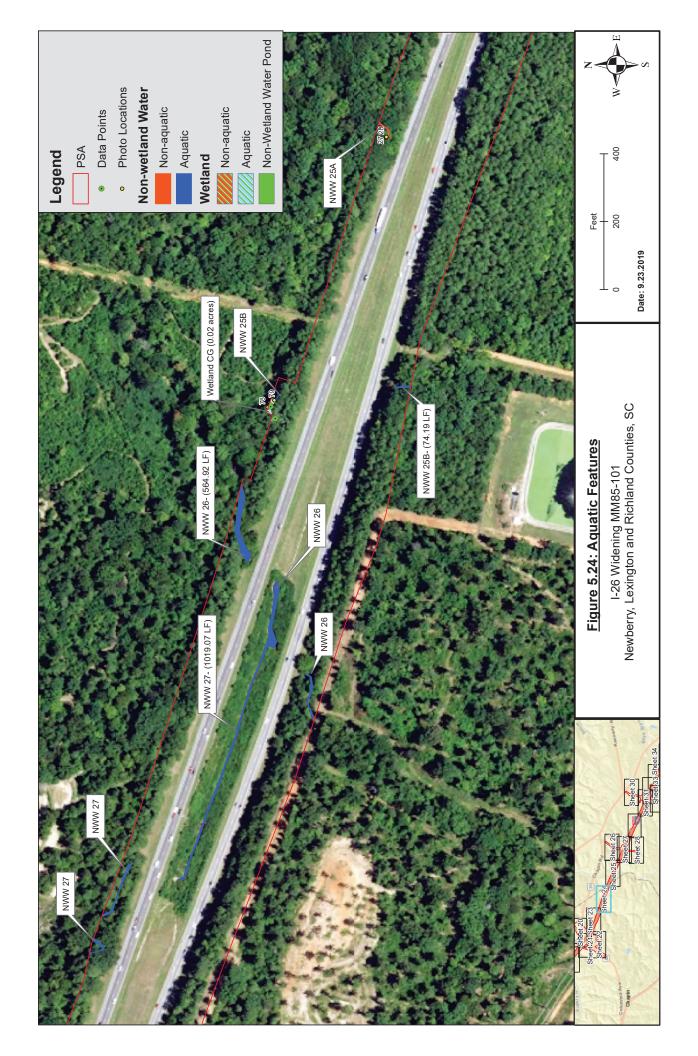


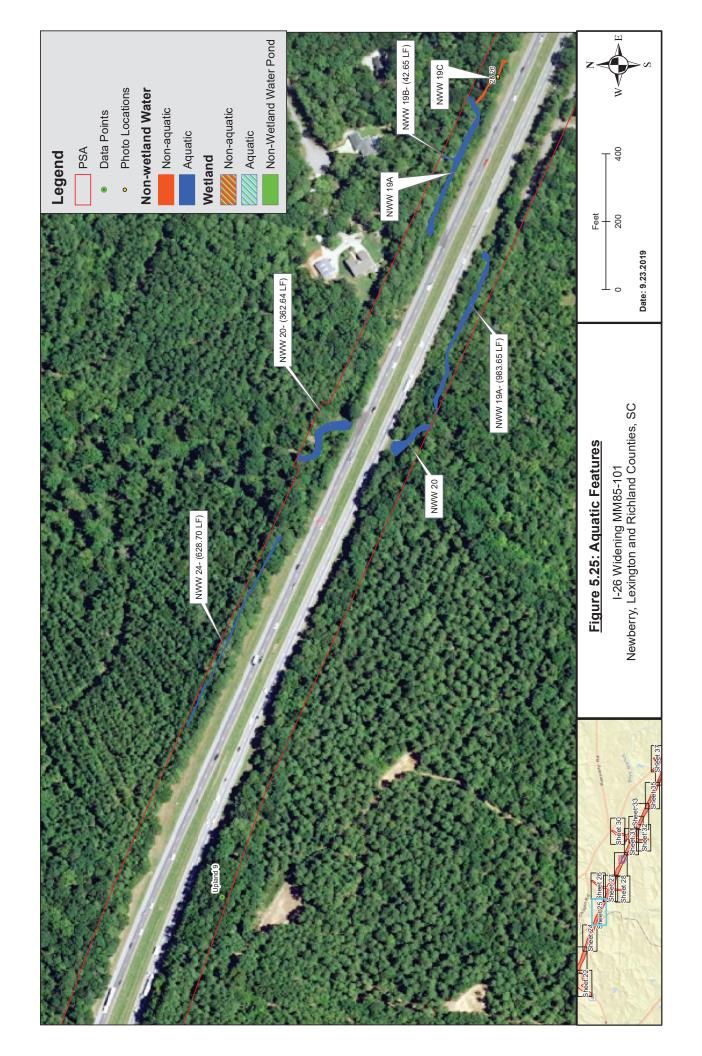


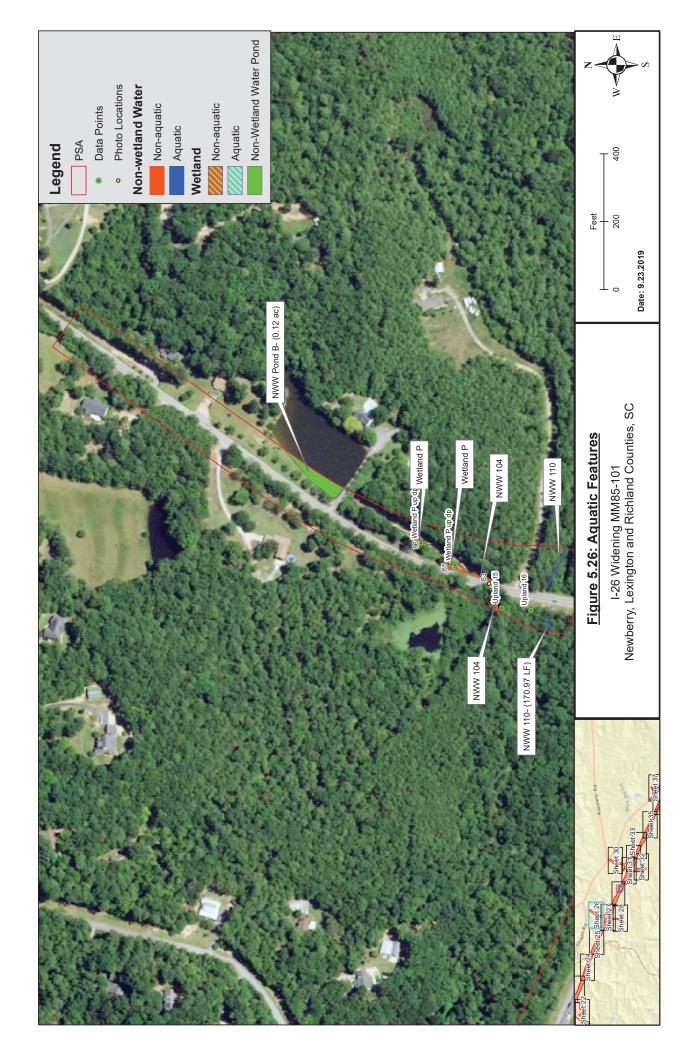


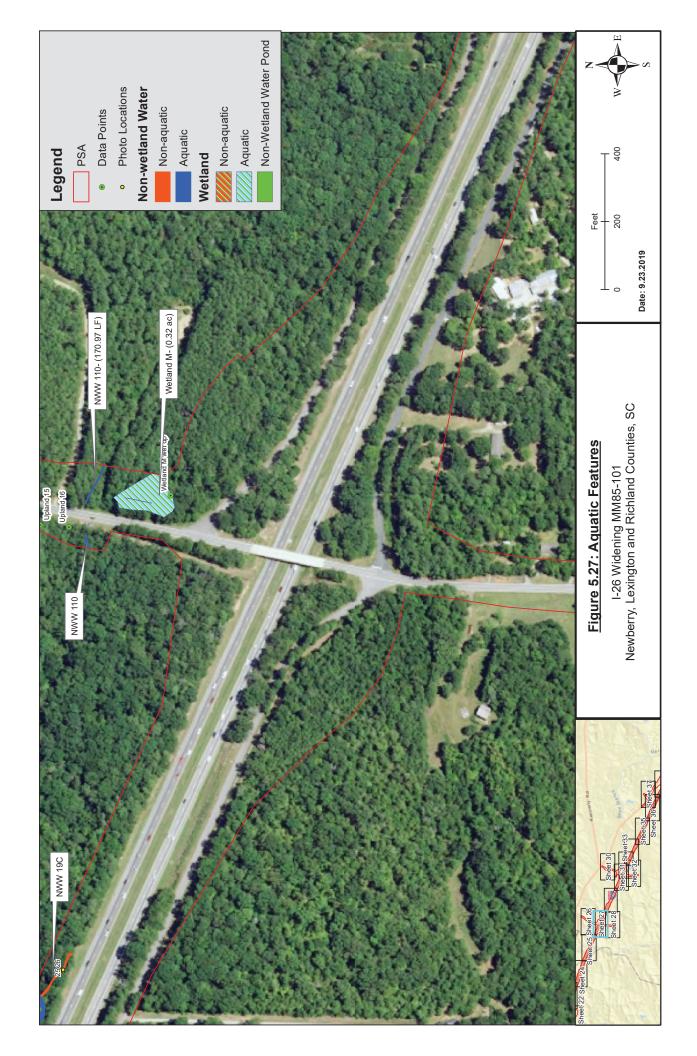


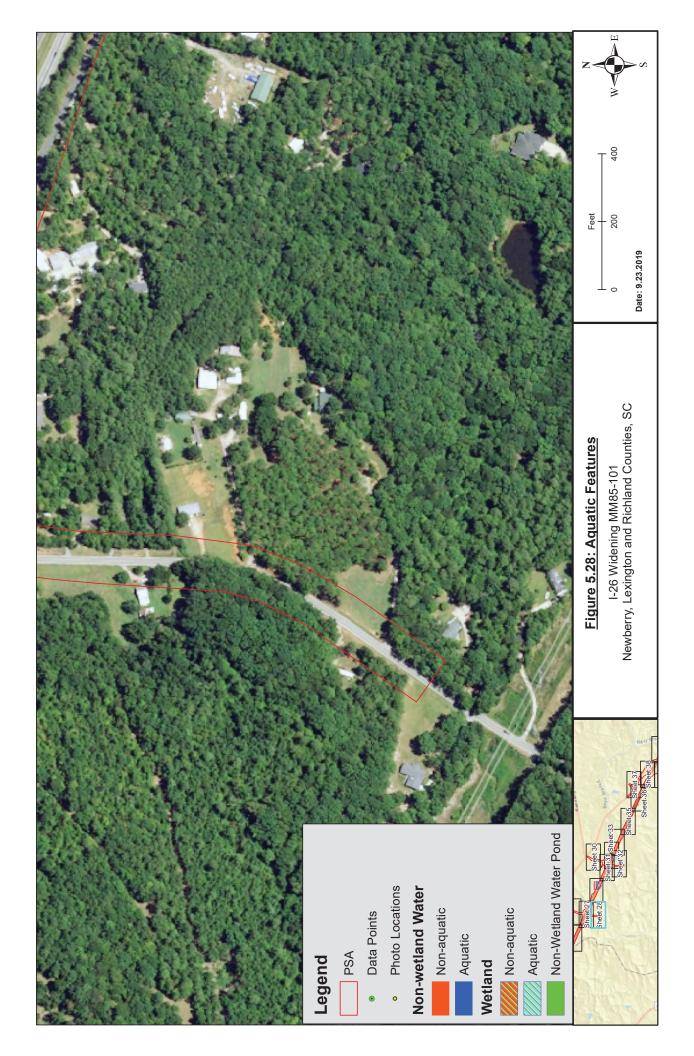


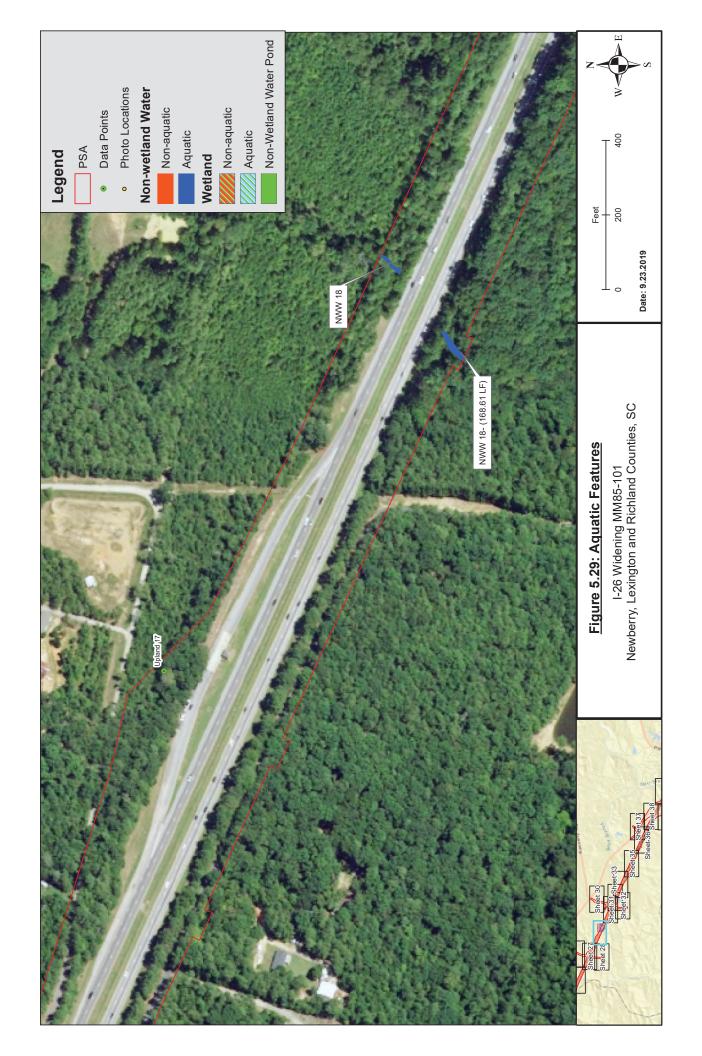


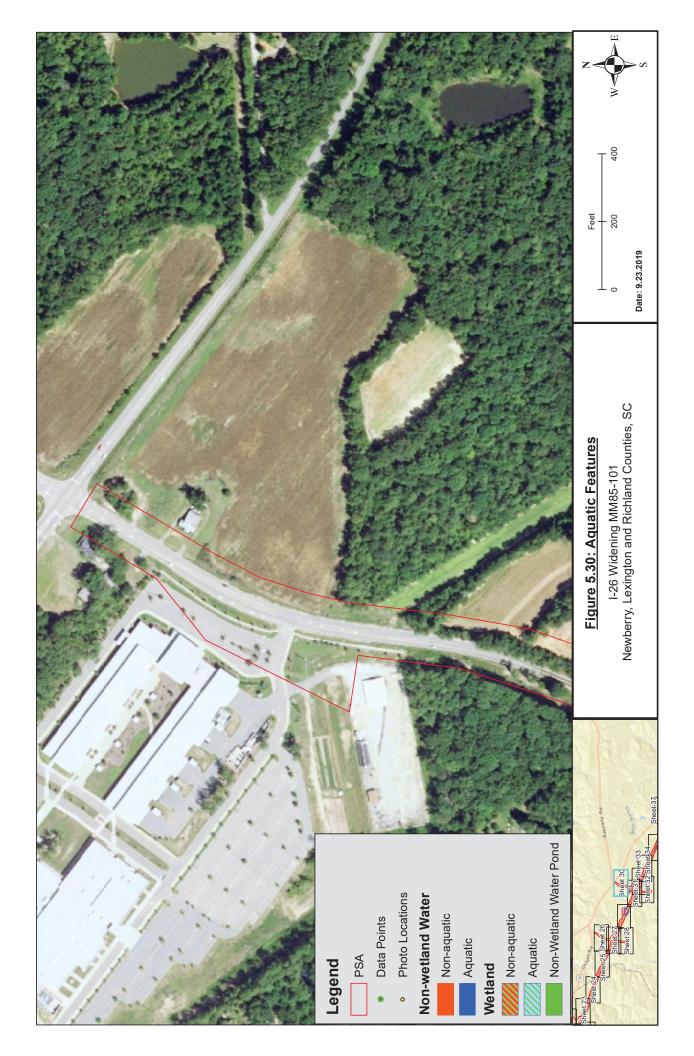


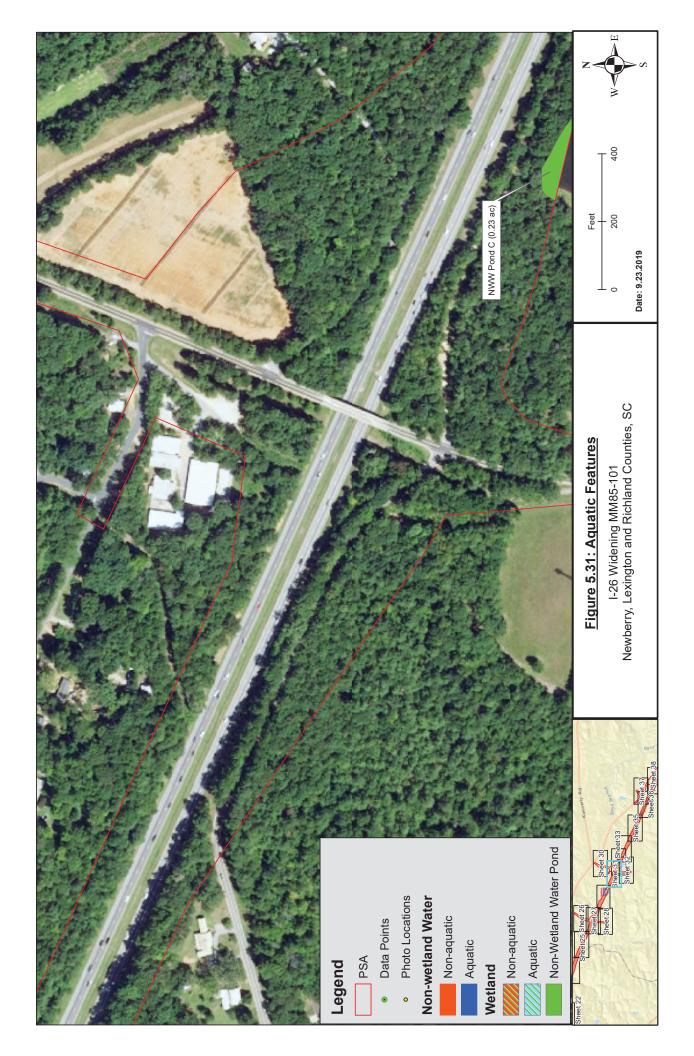


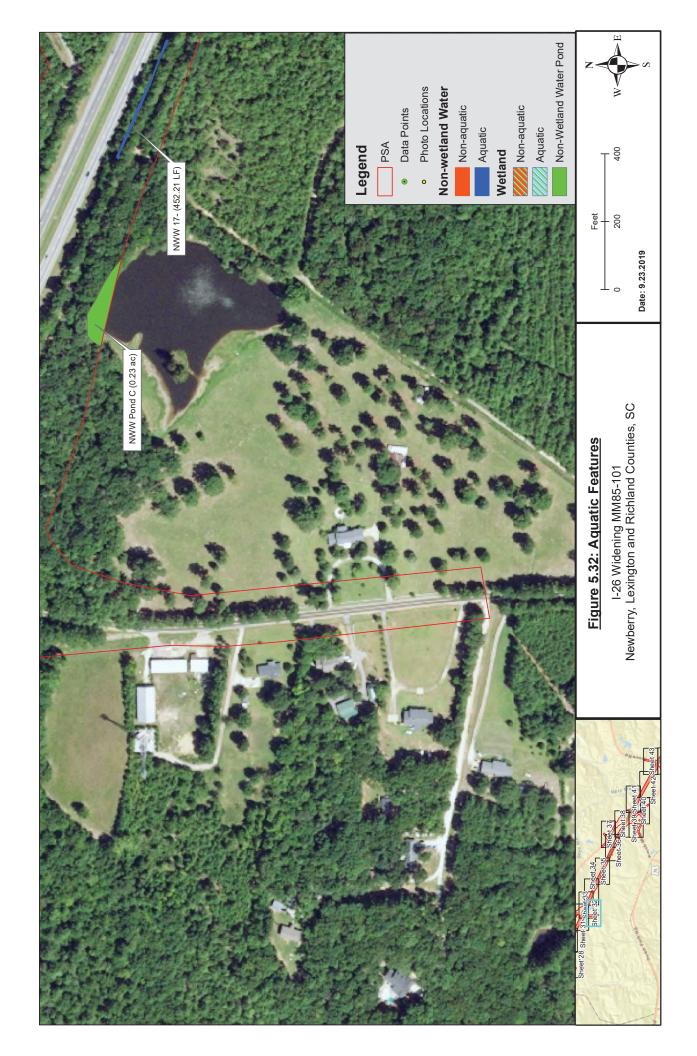


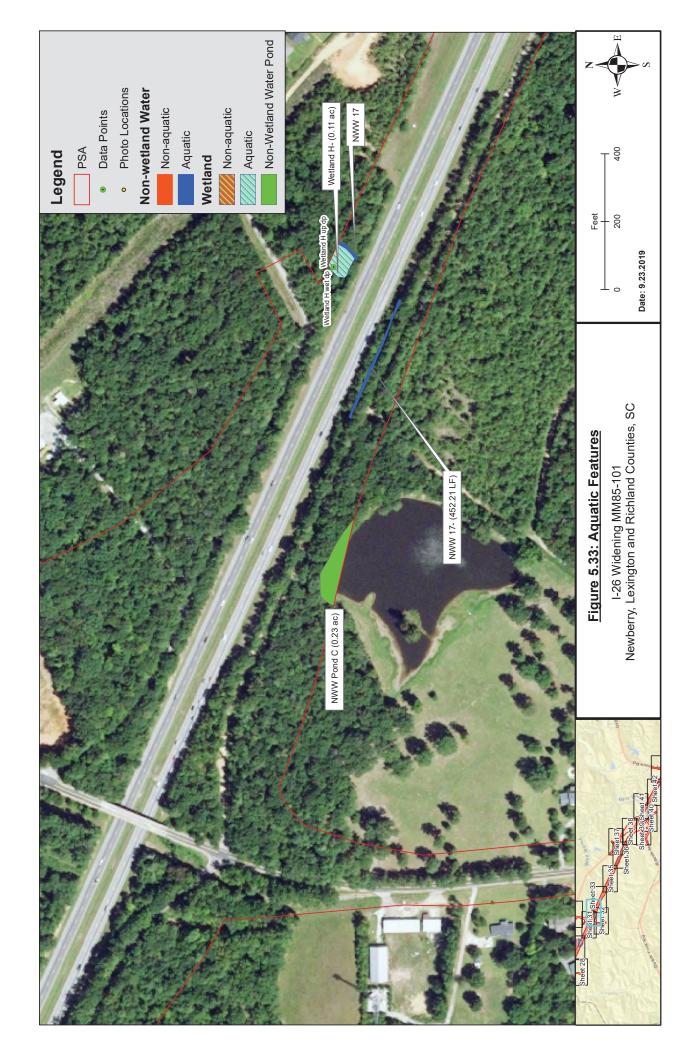


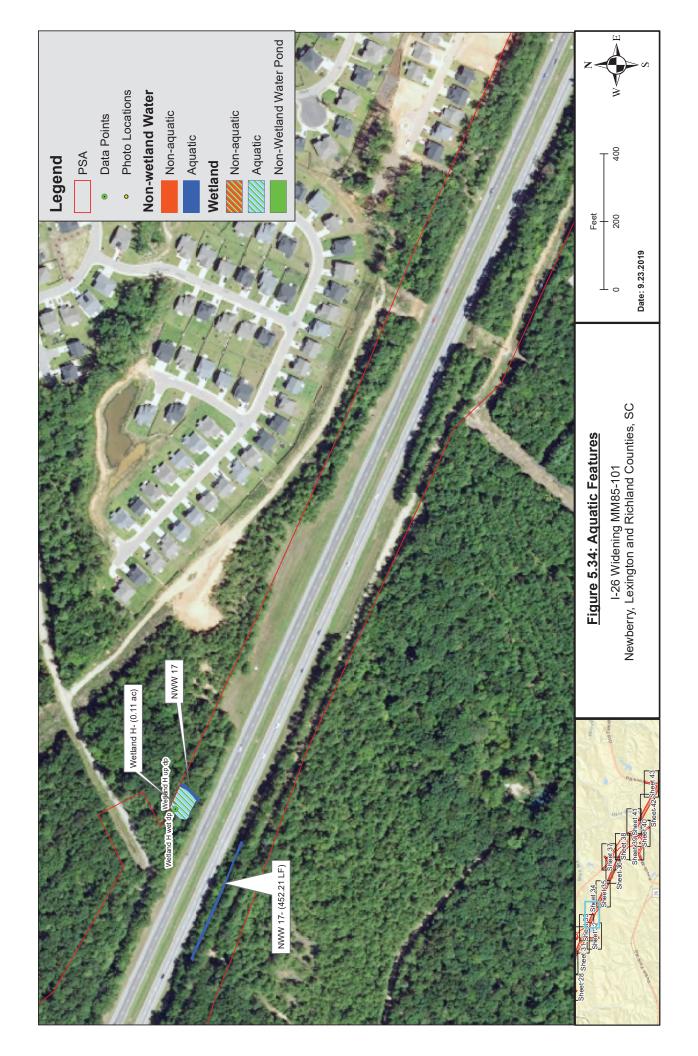


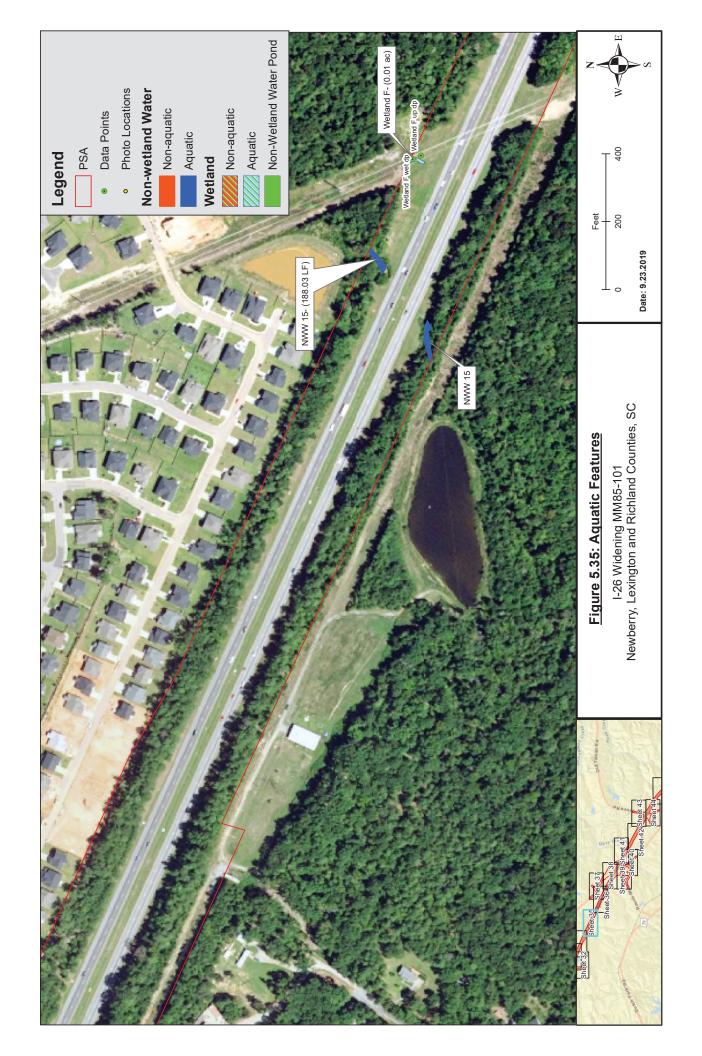


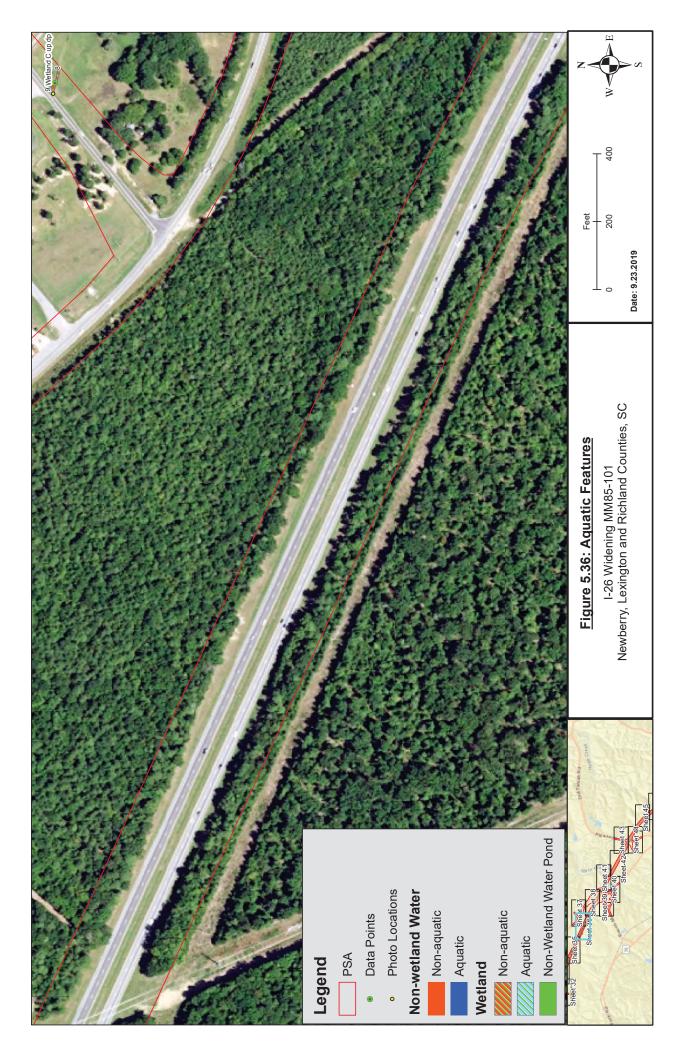


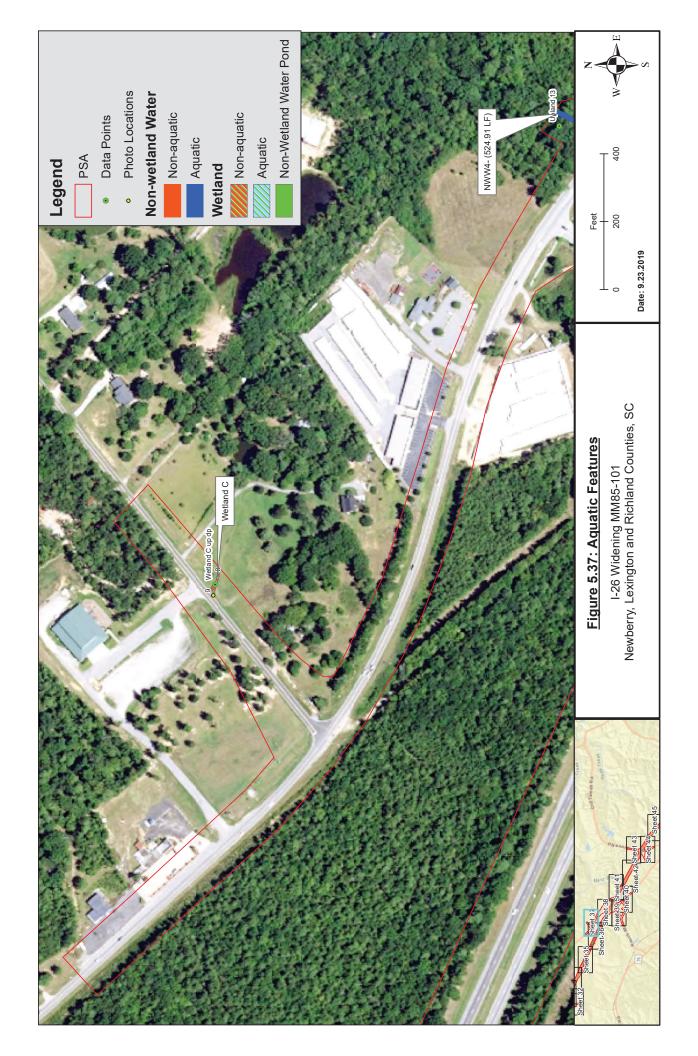


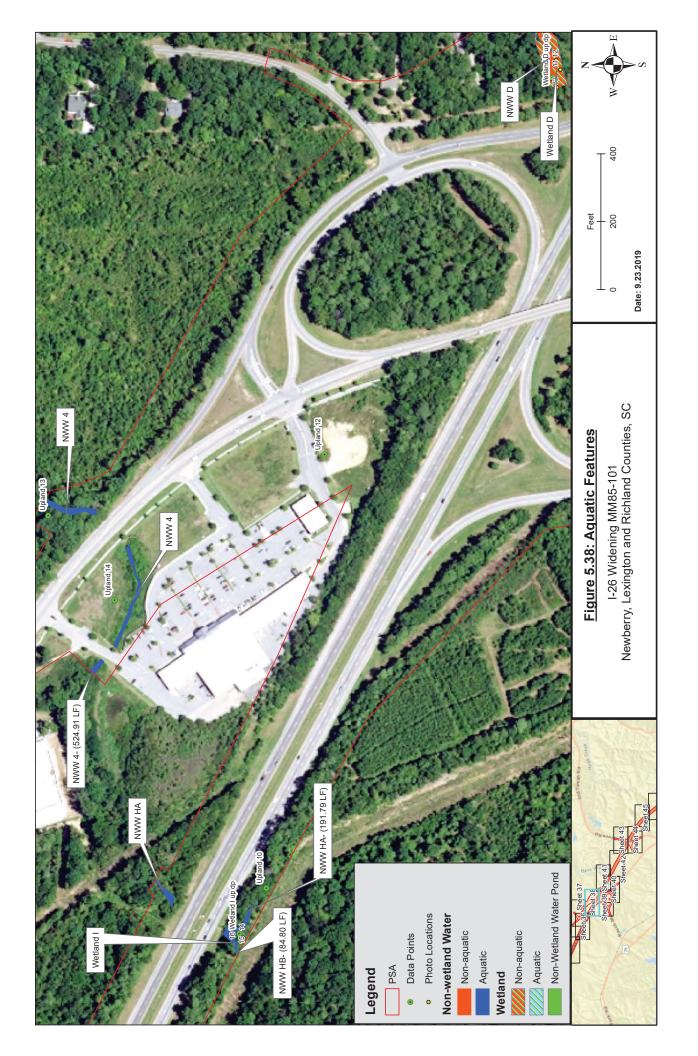


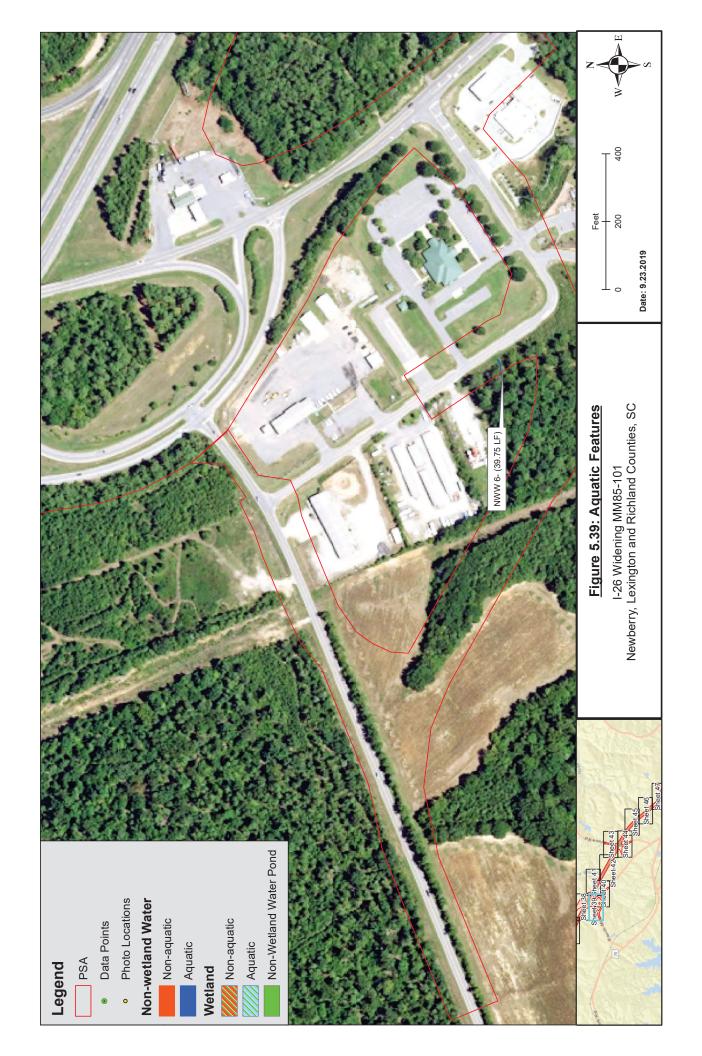


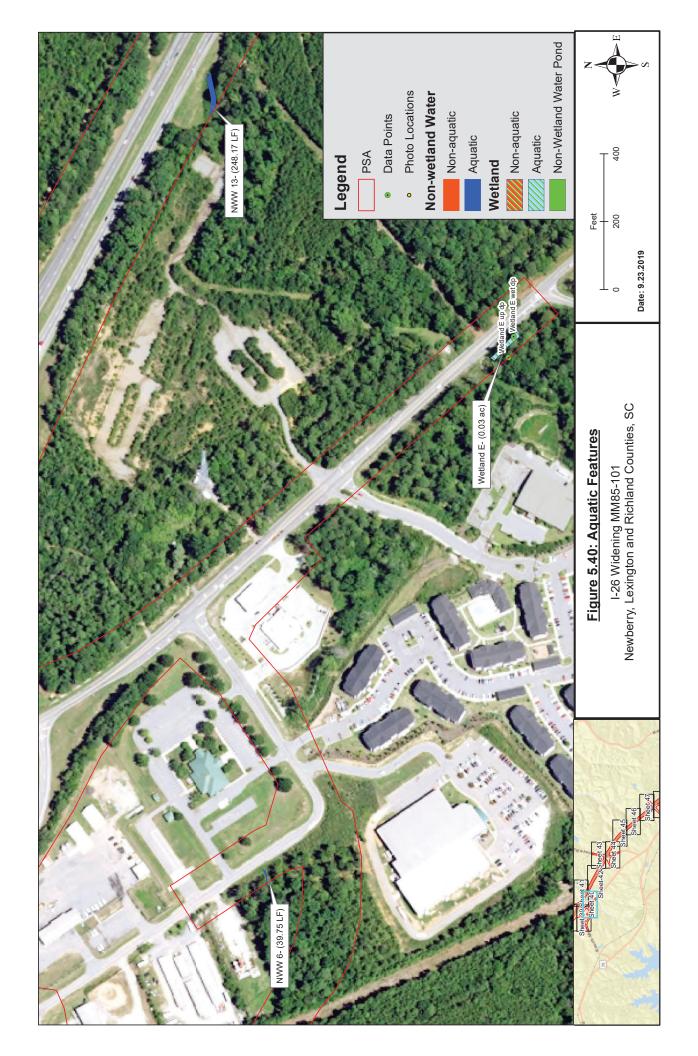


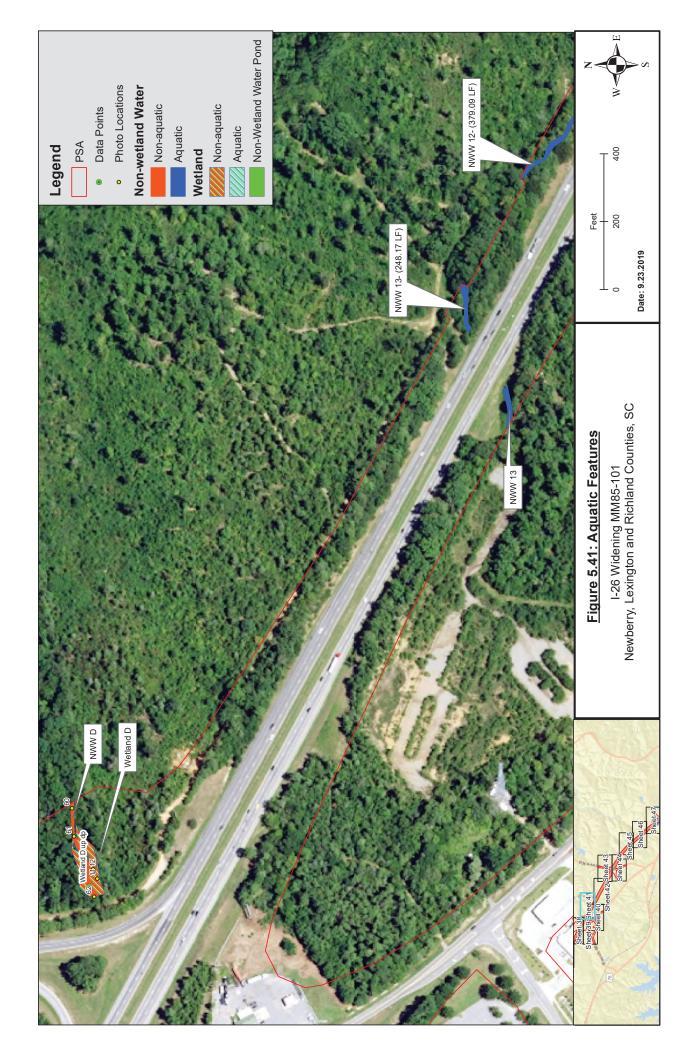


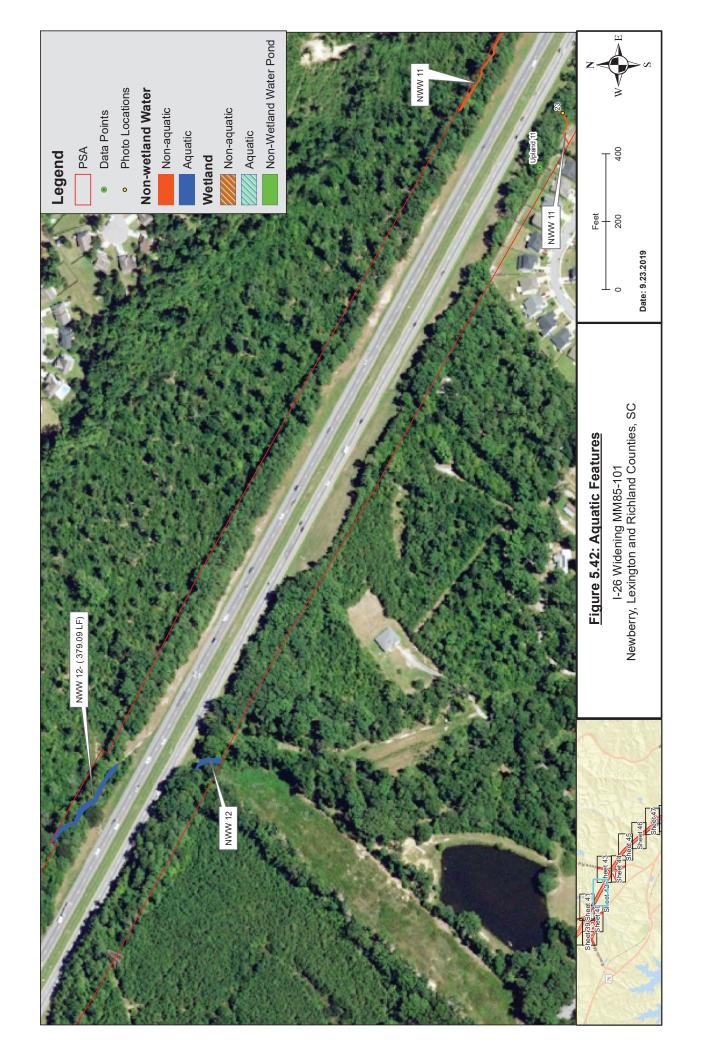


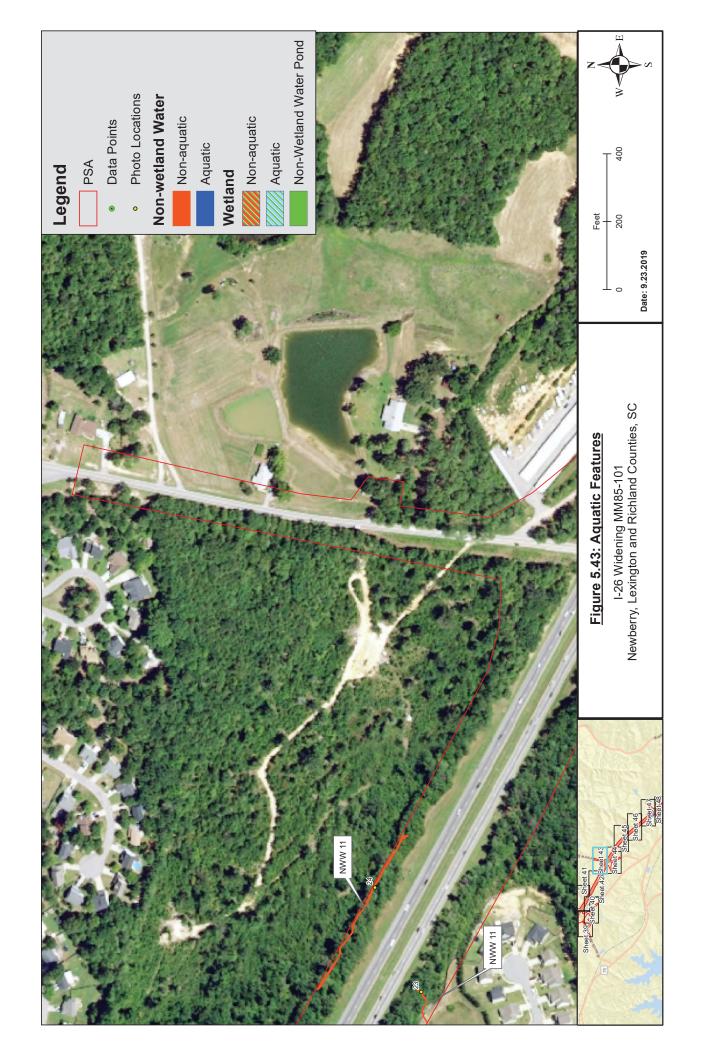


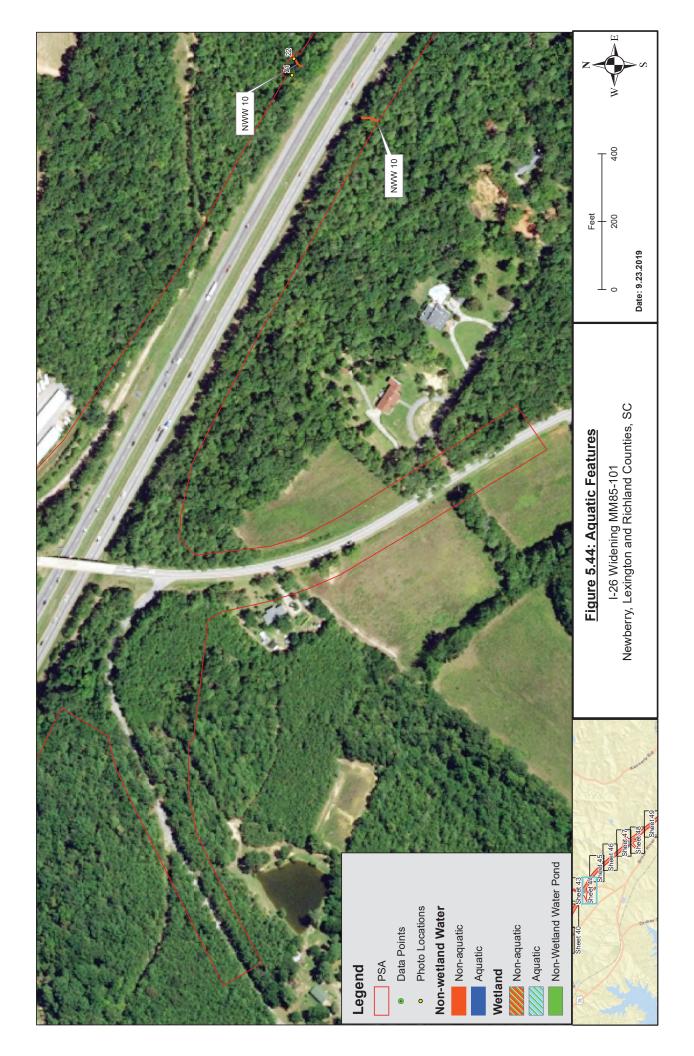


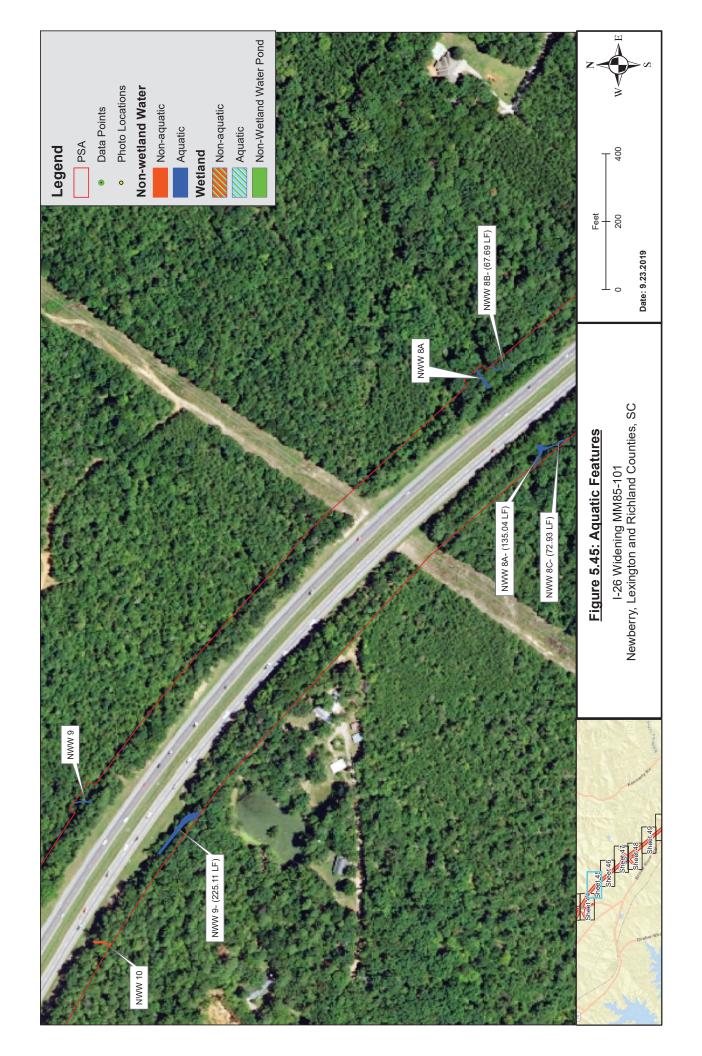


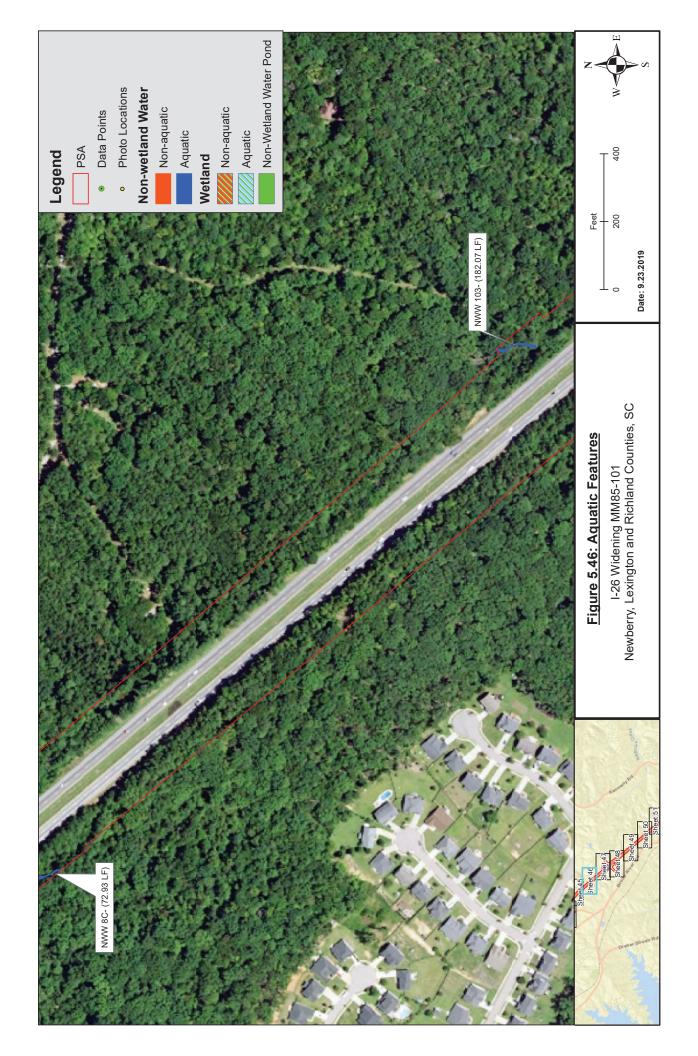


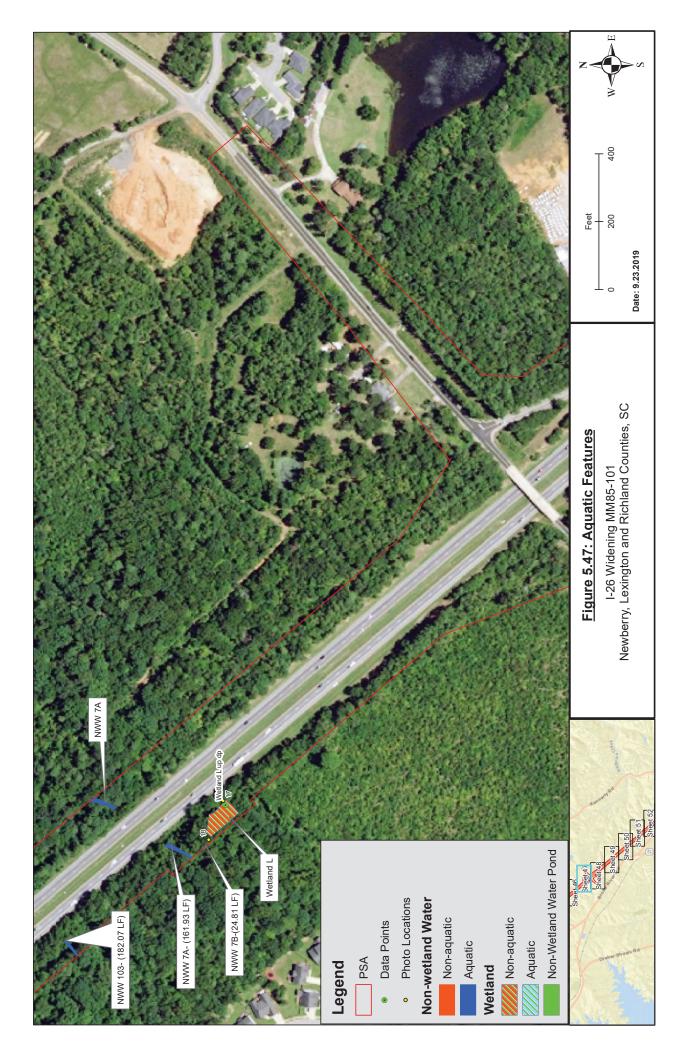


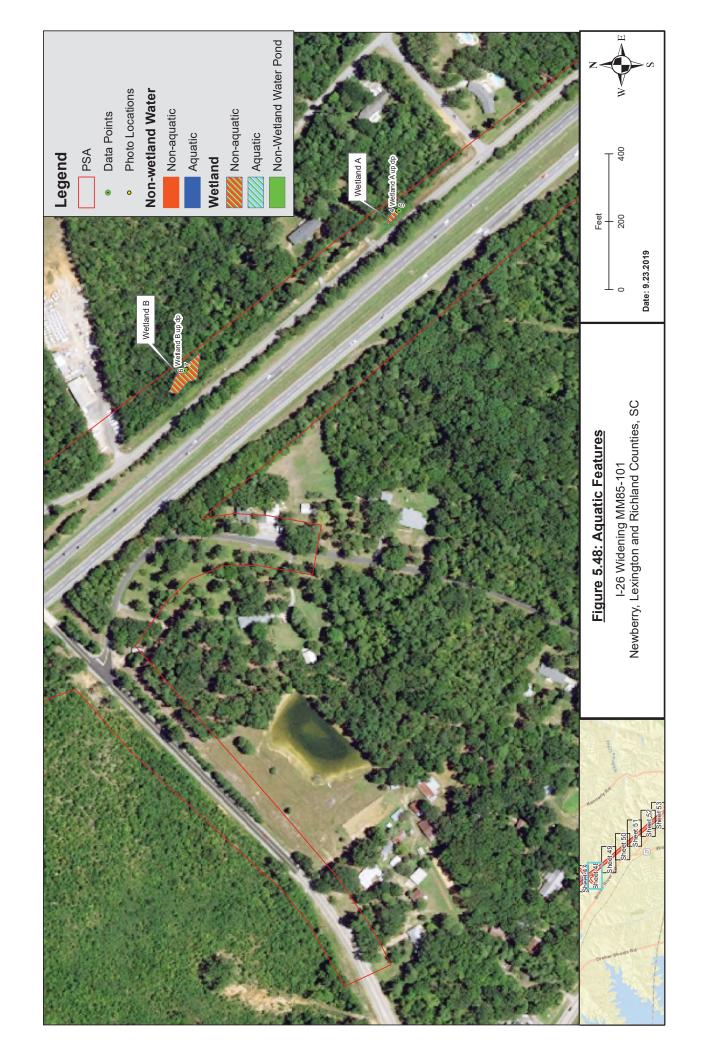


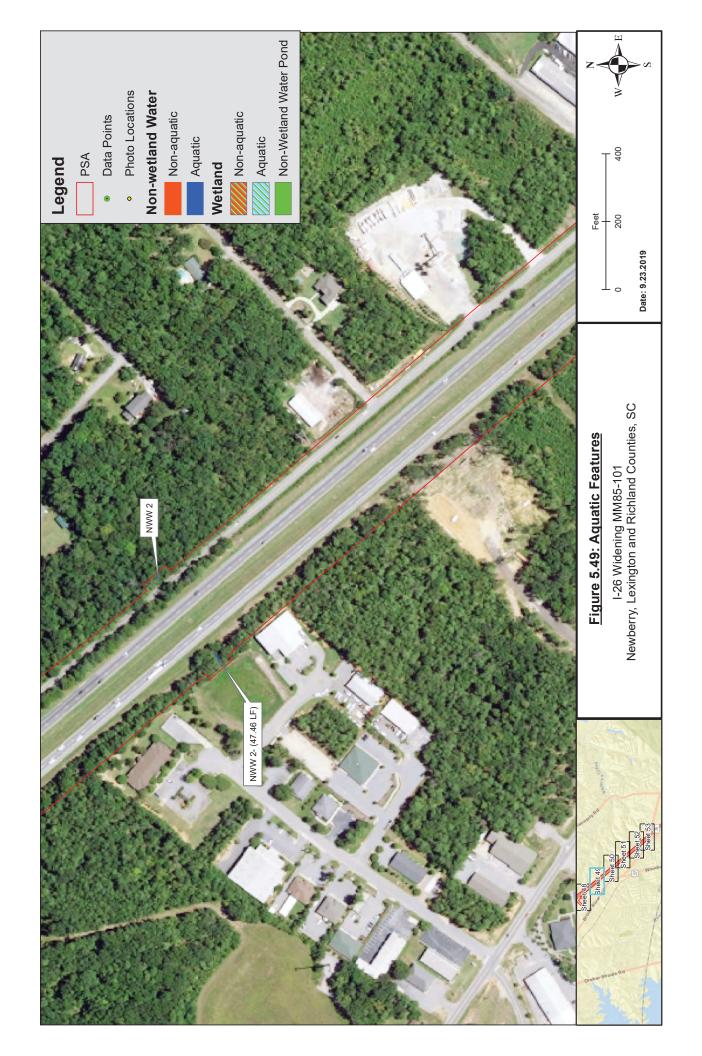


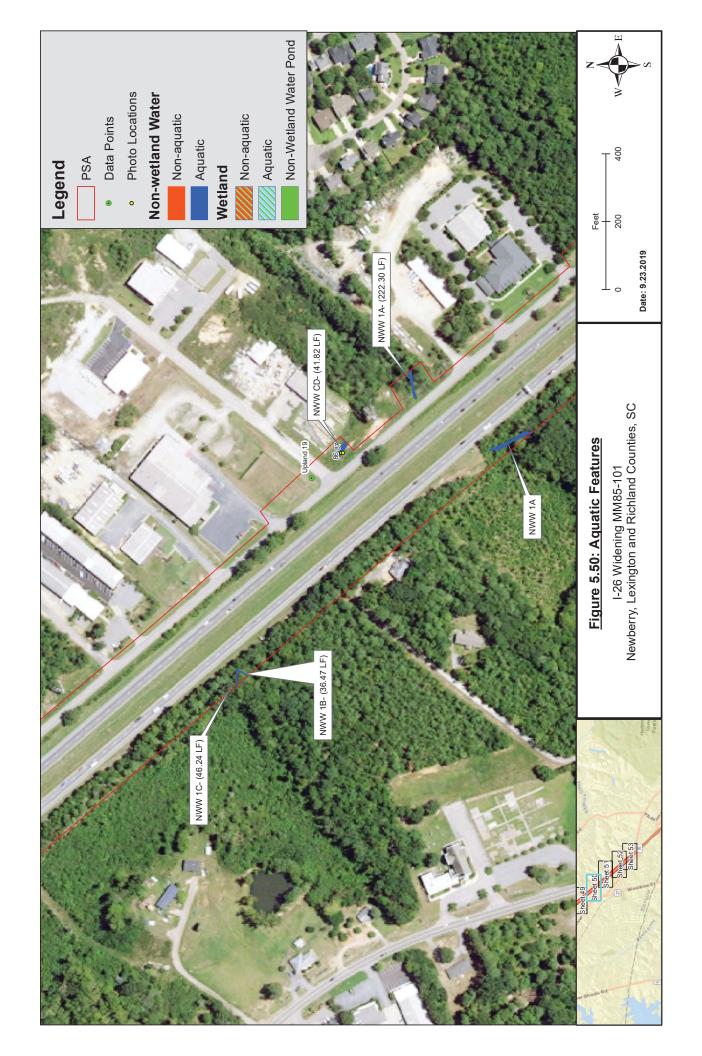


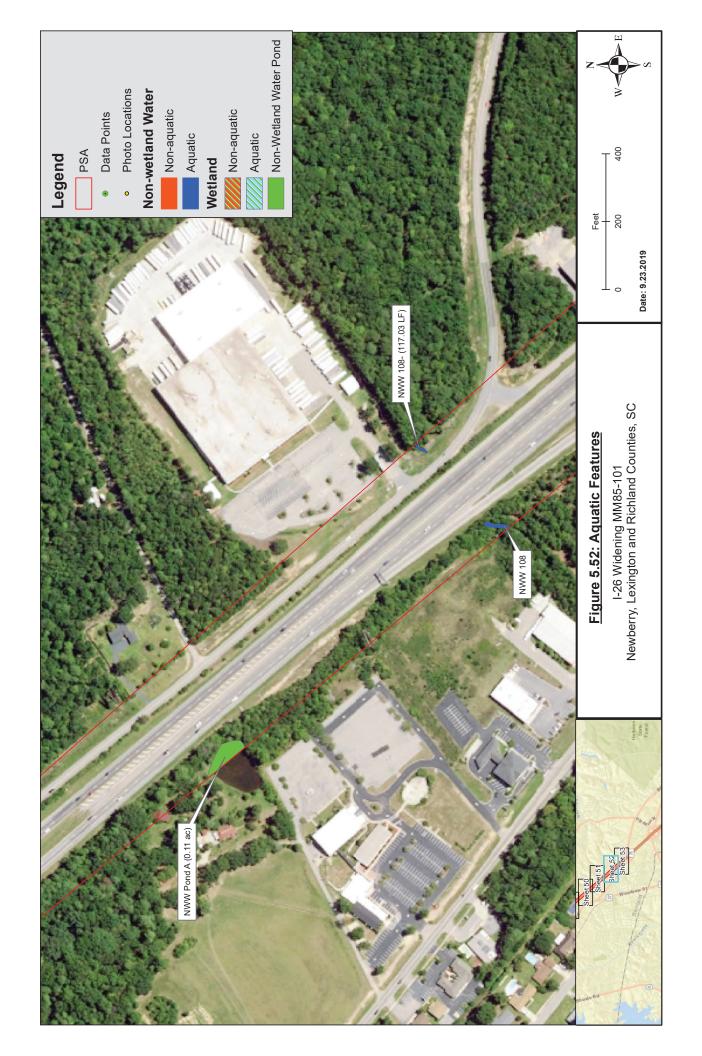


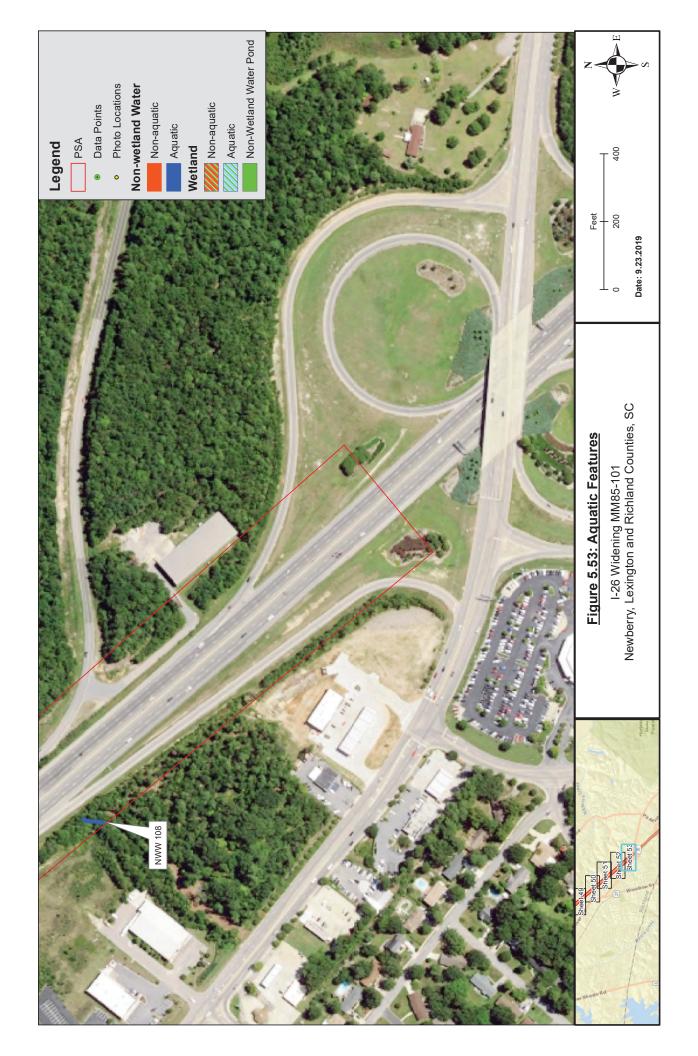












Attachment D: Species List

LEXINGTON COUNTY

CATEGODY	SLITATS/ SMAIN MOMMOS	SCIENTIELONAME	SURVEY WINDOW/	COMMENTS
CALEGONI	COMMINION NAMINE/STATOS	SCIENTIFIC INSINE	TIME PERIOD	COMMENTS
Amphibians		ON	None Found	
	American wood stork (T)	Mycteria americana	February 15-September 1	Nesting season
Riva	Bald eagle (BGEPA)	Haliaeetus leucocephalus	October 1-May 15	Nesting season
3	Red-cockaded woodpecker (E)	Picoides borealis	March 1-July 31	Nesting season
Crustaceans		ON	None Found	
Fishes	Robust redhorse (ARS)	Moxostoma robustum	Late April-early May	Temperature dependent: 16-24°C
Insects	Monarch butterfly (ARS)	Danaus plexippus	August-December	Overwinter population departs: March-April
Mammals	Tri-colored bat (ARS)	Perimyotis subflavus	Year round	Found in mines and caves in the winter
Mollusks		ON	None Found	
	Carolina-birds-in-a-nest (ARS)	Macbridea caroliniana	July-November	
Plants	Ciliate-leaf tickseed (ARS)	Coreopsis integrifolia	August-November	
	Wire-leaved dropseed (ARS)	Sporobolus teretifolius	August-September	Following fire
	Florida pine snake (ARS)	Pituophis melanoleucus mugitus	Most of year	
Reptiles	Southern hognose snake (ARS)	Heterodon simus	Most of the year	
	Spotted turtle (ARS)	Clemmys guttata	February-mid April	
*	Contact National Marine Fisherie	Contact National Marine Fisheries Service (NMFS) for more information on this species.	on on this species.	
* *	The U.S. Fish and Wildlife Service	The U.S. Fish and Wildlife Service (FWS) and NMFS share jurisdiction of this species.	of this species.	
ARS	Species that the FWS has been petitioned to		ive 90-day finding has been	ist and for which a positive 90-day finding has been issued (listing may be warranted); information

is provided only for conservation actions as no Federal protections currently exist.

Species that are either former Candidate Species or are emerging conservation priority species.

Federally protected under the Bald and Golden Eagle Protection Act

FWS or NMFS has on file sufficient information on biological vulnerability and threat(s) to support proposals to list these species.

Critical Habitat Н

BGEPA

Federally Endangered

Proposed for listing or critical habitat in the Federal Register P or P – CH

Federally protected due to similarity of appearance to a listed species

Federally Threatened

These lists should be used only as a guideline, not as the final authority. The lists include known occurrences and areas where the species has a high possibility of occurring. Records are updated as deemed necessary and may differ from earlier lists.

For a list of State endangered, threatened, and species of concern, please visit https://www.dnr.sc.gov/species/index.html.

NEWBERRY COUNTY

CATEGORY	COMMON NAME/STATUS	SCIENTIFIC NAME	SURVEY WINDOW/ TIME PERIOD	COMMENTS
Amphibians		None Found	pur	
Birds Bald	Bald eagle (BGEPA)	Haliaeetus leucocephalus	October 1-May 15	Nesting season
	Mimic crayfish (ARS)	Distocambarus carlsoni	November-April	
New	Newberry burrowing crayfish (Saluda) (ARS)	Distocambarus youngineri	January-April	
Fishes Robu	Robust redhorse (ARS)	Moxostoma robustum	Late April-early May	Late April-early May Temperature dependent: 16-24°C
Insects Mon	Monarch butterfly (ARS)	Danaus plexippus	August-December	Overwinter population departs: March-April
Mammals Tri-co	Tri-colored bat (ARS)	Perimyotis subflavus	Year round	Found in mines and caves in the winter
Mollusks		None Found	pur	
Plants		None Found	pur	
Reptiles		None Found	pui	

Contact National Marine Fisheries Service (NMFS) for more information on this species.

The U.S. Fish and Wildlife Service (FWS) and NMFS share jurisdiction of this species.

Species that the FWS has been petitioned to list and for which a positive 90-day finding has been issued (listing may be warranted); information

is provided only for conservation actions as no Federal protections currently exist.

Species that are either former Candidate Species or are emerging conservation priority species.

Federally protected under the Bald and Golden Eagle Protection Act

FWS or NMFS has on file sufficient information on biological vulnerability and threat(s) to support proposals to list these species.

CH Critical Habitat

ARS* BGEPA

ARS

Federally Endangered

P or P – CH Proposed for listing or critical habitat in the Federal Register

Federally protected due to similarity of appearance to a listed species

Federally Threatened

These lists should be used only as a guideline, not as the final authority. The lists include known occurrences and areas where the species has a high possibility of occurring. Records are updated as deemed necessary and may differ from earlier lists.

For a list of State endangered, threatened, and species of concern, please visit https://www.dnr.sc.gov/species/index.html

RICHLAND COUNTY

			/WOGINING WITH	
CATEGORY	COMMON NAME/STATUS	SCIENTIFIC NAME	TIME PERIOD	COMMENTS
Amphibians	Chamberlain's dwarf salamander (ARS)	Eurycea chamberlaini	Spring/Fall surveys	Breeding survey: November to February
	American wood stork (T)	Mycteria americana	February 15-September 1	Nesting season
Rivde	Bald eagle (BGEPA)	Haliaeetus leucocephalus	October 1-May 15	Nesting season
3	Red-cockaded woodpecker (E)	Picoides borealis	March 1-July 31	Nesting season
Crustaceans	Broad River spiny crayfish (ARS)	Cambarus spicatus	November-April	
	Robust redhorse (ARS)	Moxostoma robustum	Late April-early May	Temperature dependent: 16-24°C
Siles	Shortnose sturgeon* (E)	Acipenser brevirostrum*	February 1-April 30	Spawning migration
Insects	Monarch butterfly (ARS)	Danaus plexippus	August-December	Overwinter population departs: March-April
Mammals	Little brown bat (ARS)	Myotis lucifugus	Year round	Found in trees, rock crevices, and under bridges
	Tri-colored bat (ARS)	Perimyotis subflavus	Year round	Found in mines and caves in the winter
Mollusks		Non	None Found	
	Bog spicebush (ARS)	Lindera subcoriacea	March-August	
	Canby's dropwort (E)	Oxpolis canbyi	Mid-July-September	
	Carolina-birds-in-a-nest (ARS)	Macbridea caroliniana	July-November	
	Ciliate-leaf tickseed (ARS)	Coreopsis integrifolia	August-November	
Plants	Georgia aster (ARS*)	Symphyotrichum georgianum	Early October-mid November	
	Purple balduina (ARS)	Balduina atropurpurea	August-November	
	Rough-leaved loosestrife (E)	Lysimachia asperulaefolia	Mid May-September	
	Smooth coneflower (E)	Echinacea laevigata	Late May-October	
Reptiles	Southern hognose snake (ARS)	Heterodon simus	Most of the year	

RICHLAND COUNTY

Contact National Marine Fisheries Service (NMFS) for more information on this species.

The U.S. Fish and Wildlife Service (FWS) and NMFS share jurisdiction of this species.

Species that the FWS has been petitioned to list and for which a positive 90-day finding has been issued (listing may be warranted); information ARS

is provided only for conservation actions as no Federal protections currently exist.

Species that are either former Candidate Species or are emerging conservation priority species. Federally protected under the Bald and Golden Eagle Protection Act BGEPA **ARS***

FWS or NMFS has on file sufficient information on biological vulnerability and threat(s) to support proposals to list these species.

CH Critical Habitat

Federally Endangered

P or P – CH Proposed for listing or critical habitat in the Federal Register

Federally protected due to similarity of appearance to a listed species

Federally Threatened

These lists should be used only as a guideline, not as the final authority. The lists include known occurrences and areas where the species has a high possibility of occurring. Records are updated as deemed necessary and may differ from earlier lists.

For a list of State endangered, threatened, and species of concern, please visit https://www.dnr.sc.gov/species/index.html.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

South Carolina Ecological Services 176 Croghan Spur Road, Suite 200 Charleston, SC 29407-7558 Phone: (843) 727-4707 Fax: (843) 727-4218

http://www.fws.gov/charleston/

In Reply Refer To: March 10, 2020

Consultation Code: 04ES1000-2020-SLI-0597

Event Code: 04ES1000-2020-E-01223 Project Name: I-26 Widening MM 85-101

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List
- USFWS National Wildlife Refuges and Fish Hatcheries
- Migratory Birds

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

South Carolina Ecological Services 176 Croghan Spur Road, Suite 200 Charleston, SC 29407-7558 (843) 727-4707

Project Summary

Consultation Code: 04ES1000-2020-SLI-0597

Event Code: 04ES1000-2020-E-01223

Project Name: I-26 Widening MM 85-101

Project Type: TRANSPORTATION

Project Description: Interstate Widening

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/34.166030302546034N81.29087016534643W

Counties: Lexington, SC | Newberry, SC | Richland, SC

Endangered Species Act Species

There is a total of 5 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Birds

NAME STATUS

Red-cockaded Woodpecker Picoides borealis

Endangered

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/7614

Wood Stork Mycteria americana

Population: AL, FL, GA, MS, NC, SC

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/8477

Threatened

03/10/2020

Event Code: 04ES1000-2020-E-01223

Flowering Plants

NAME **STATUS**

Canby's Dropwort *Oxypolis canbyi*

Endangered No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/7738

Rough-leaved Loosestrife Lysimachia asperulaefolia Endangered

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/2747

Endangered Smooth Coneflower *Echinacea laevigata*

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/3473

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

USFWS National Wildlife Refuge Lands And Fish Hatcheries

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

REFUGE INFORMATION WAS NOT AVAILABLE WHEN THIS SPECIES LIST WAS GENERATED. PLEASE CONTACT THE FIELD OFFICE FOR FURTHER INFORMATION.

Migratory Birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.
- 3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

The birds listed below are birds of particular concern either because they occur on the <u>USFWS</u> <u>Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found below.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME	BREEDING SEASON
Bald Eagle <i>Haliaeetus leucocephalus</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/1626	Breeds Sep 1 to Jul 31
Kentucky Warbler <i>Oporornis formosus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Apr 20 to Aug 20

NAME	BREEDING SEASON
Prothonotary Warbler <i>Protonotaria citrea</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Apr 1 to Jul 31
Red-headed Woodpecker <i>Melanerpes erythrocephalus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 10 to Sep 10
Rusty Blackbird <i>Euphagus carolinus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds elsewhere
Wood Thrush <i>Hylocichla mustelina</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 10 to Aug 31

Probability Of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

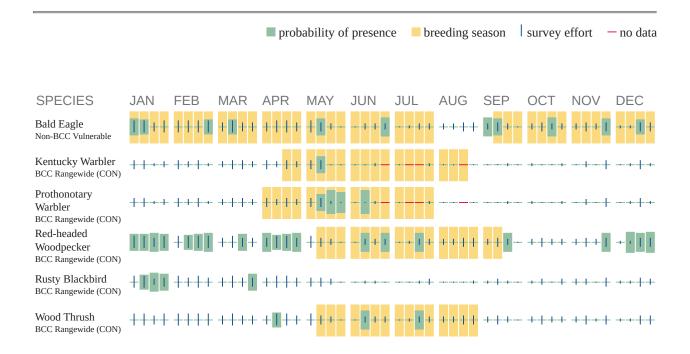
- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.

3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

Breeding Season (

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (|)


Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Additional information can be found using the following links:

Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php

- Measures for avoiding and minimizing impacts to birds http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

Migratory Birds FAQ

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern</u> (<u>BCC</u>) and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and

how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the Eagle Act requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

I-26 Widening and Interchange Improvements EA Re-evaluatio	n
Project ID P029208	

ATTACHMENT E:

Noise Addendum

Noise Addendum #1 Executive Summary

South Carolina – Newberry, Lexington, and Richland Counties Interstate 26 Widening and Interchange Improvements from Mile Marker 85 to Mile Marker 101 May 21, 2020

Project Description: The proposed project would include improvements and upgrades to I-26 to accommodate existing and projected future traffic volumes. The South Carolina Department of Transportation (SCDOT) proposes widening I-26 and reconstructing three interchanges from mile marker (MM) 85 near Little Mountain, South Carolina to MM 101 near Irmo, South Carolina in Newberry, Lexington, and Richland counties.

Project Changes: SCDOT and the Design-Build (DB) Team identified an alternate interchange configuration for Columbia Road (Exit 91). Specifically, the proposed project would construct a partial cloverleaf to the west of the existing interchange instead of the previously proposed diverging diamond interchange at this location. The proposed design was developed as a result of further analysis regarding constructability, maintenance of traffic, operational conditions, and impacts to local businesses.

This addendum documents the geometric alignment changes proposed by the DB Team as design has been finalized for the Exit 91 interchange. Additionally, this addendum documents the analysis and resulting changes to the design of Noise Barriers 5 and 6 as a result of the final roadway design information.

Prepared By: Luis Velasquez, PE

O5/21/2020
Signature

O5/21/2020

Date

O5/21/2020

Signature

Date

O5/21/2020

Approved By: SCDOT
Signature

Date

Project Name: Interstate 26 Widening and Interchange Improvements Counties: Newberry, Lexington and Richland Counties

Table of Contents

1. Introduction
1.1 What is The Proposed Project?
1.2 Project Changes
1.3 Exit 91 Interchange DB Team 2020 Final Design Modifications
2. Re-Evaluation of Noise Barriers
2.1 Noise Barrier 5 Re-Evaluation
2.2 Noise Barrier 6 Re-Evaluation
2.6 Project Updates: Impacts and Benefits
3. What are the Conclusions?
Tables
Table 1: Exit 91 Updated Sound Level Results Summary
Table 2: Noise Barrier 5 Design Changes
Table 3: Noise Barrier 6 Design Changes
Table 4: Noise Impacts and Benefited Receptors Comparison
Attachments
Attachment A – Sound Level Comparison
Attachment B – Noise Barrier Panel Heights
Attachment C – Build Noise Levels & Noise Barrier Graphics
Attachment D – TNM 2.5 Noise Barrier Design Outputs
Attachment E – TNM 2.5 Sound Level Outputs
Attachment F – TNM 2.5 Runs
Attachment G – Updated SCDOT Reasonable and Feasible Worksheets
Attachment H – Updated Roadway Design Exit 91
Attachment I – Volume Diagrams and Inputs

NOISE ADDENDUM #1 SOUTH CAROLINA - NEWBERRY, LEXINGTON, RICHLAND COUNTIES

INTERSTATE 26 WIDENING AND INTERCHANGE IMPROVEMENTS May 21, 2020

1. INTRODUCTION

In compliance with 23 USC Section 109(h) and (i), the Federal Highway Administration (FHWA) established a standard for the assessment of highway traffic-generated noise. The standard, published as Part 772 of Title 23 of the Code of Federal Regulations (23 C.F.R. § 772), provides procedures to be followed in conducting noise analyses that will protect the public health, welfare and livability. In accordance with the Noise Control Act of 1972, coordination of this regulation with the Environmental Protection Agency (EPA) has been completed. The following assessment has been prepared in accordance with 23 C.F.R. § 772 and SCDOT Traffic Noise Abatement Policy.

This noise addendum serves as an update to the Traffic Noise Analysis Report (NIA) that was completed January 2018 (hereafter referred to as the January 2018 NIA). This addendum documents the geometric alignment changes proposed by the Design-Build (DB) Contractor as design has been finalized for the Exit 91 (Columbia Road) interchange. Additionally, this addendum documents the analysis and resulting changes to the design of Noise Barriers 5 and 6 as a result of the final I-26 roadway design.

1.1 What is The Proposed Project?

The proposed project would include improvements and upgrades to I-26 to accommodate existing and projected future traffic volumes. The South Carolina Department of Transportation (SCDOT) proposes widening I-26 and reconstructing three interchanges from mile marker (MM) 85 near Little Mountain, South Carolina to MM 101 near Irmo, South Carolina in Newberry, Lexington, and Richland Counties. Improvements would take place from 1.6 miles west of the South Carolina (SC) 202 (Exit 85) interchange to the US 176 (Exit 101) interchange. The improvements would widen the mainline of I-26 from SC 202 (Exit 85/MM 85) to Broad River Road (Exit 101/MM 101). I-26 would be widened to a total of six lanes, three in each direction, from Exit 85 to (Broad River Road) Exit 97 and to eight lanes, four in each direction, from Exit 97 to Exit 101. The widening would be constructed towards the existing median, minimizing impacts and areas of new disturbance. Interchange improvements would be provided at Exits 85, 91, and 97. A total of seven overpasses that cross I-26 would be replaced including S-36-167 (Parr Road), S-36-39 (Holy Trinity Church Road), S-32-49 (Peak Street), S-40-58 (Old Hilton Road), S-40-234 (Mt. Vernon Church Road), S-40-80 (Shady Grove Road), and S-40-58 (Koon Road). The truck weigh station near MM 94 would be improved as a weigh-in-motion station.

1.2 Project Changes

SCDOT and the DB Team identified an alternate interchange configuration for Exit 91. Specifically, the DB Team's proposed interchange configuration would construct a partial cloverleaf to the west of the existing interchange instead of the previously proposed diverging diamond interchange (DDI) at the existing location. The DB Team's proposed design was developed as a result of further analysis regarding constructability, maintenance of traffic, operational conditions, and impacts to local businesses. The following provides additional details regarding the issues and impacts associated with the DDI.

<u>Constructability and Safety:</u> The constructability review associated with the DDI presented numerous challenges since this configuration would require the interchange to be constructed at the same location as

Project Name: Interstate 26 Widening and Interchange Improvements

the existing interchange. Constructing the DDI at the same location as the existing interchange would require complicated staging and undesirable traffic patterns that would compromise safety and extend construction time. Specifically, the DDI bridge would be constructed in two stages to maintain traffic and would have a 20-month construction duration. The new bridge would also be higher, thus requiring extensive sheeting resulting in additional obstructions and narrower lane widths. This results in new bridge construction activity taking place close to traffic, greatly increasing safety concerns. In addition, all four proposed DDI ramps would have major grade conflicts with existing ramps that would require multiple traffic shifts. These shifts would ultimately impact the operational efficiency and safety of the traveling public and construction team.

<u>Property Impacts:</u> Upon progressing the DDI design based on the Request for Proposals (RFP) requirements, it was determined that five commercial businesses along Columbia Avenue would be impacted and have to be relocated. These relocations were not initially identified in the environmental assessment (EA) but resulted from final design and RFP criteria for the DDI.

As a result of these challenges, the DB Team identified an alternative design that would allow the existing interchange to remain open throughout construction, avoiding the business relocations, reducing construction time, and improving operational function of the interchange.

The DB Team's design would construct a partial cloverleaf interchange approximately 1,000 feet west of the existing interchange and realign Columbia Avenue accordingly (see Attachment E). In addition, Ellett Road and Comalander Drive would be relocated. The existing interchange, including the overpass bridge, would be abandoned and demolished and a roundabout/cul-de-sac are proposed that would maintain access along existing Columbia Avenue. The proposed alternative would be constructed in one stage with traffic utilizing the existing interchange throughout construction. This would provide a more efficient construction schedule (i.e. 10 months) and provide a safer environment for both the traveling public and the construction team. In addition, the design provides a slight improvement in traffic operation over the DDI. The proposed design also avoids any relocations since the existing roadway and access will be maintained. While this alterative avoids numerous businesses, it will result in an increase of approximately 117 linear feet of stream impacts, 0.306 acre of open water impacts, and 0.014 acre of wetland impacts due the construction of the loop ramp along the westbound off-ramp. A meeting was conducted on October 29, 2019 at the Chapin Town Hall to present and discuss this proposal with the business stakeholders located in the immediate vicinity of Exit 91. The Town of Chapin and stakeholders were supportive of this design, with minor concerns regarding access and traffic flow. Therefore, based on the overall benefits to the public and local businesses, this proposed design was determined to be the preferred alternative.

1.3 Exit 91 Interchange DB Team 2020 Final Design Modifications

As a result of the DB Team's preferred alternative at Exit 91, the sound level results for the noise receivers within the interchange area were updated based on the new geometry as discussed in the previous section. Additionally, the traffic volumes associated with the updated geometry were input to the revised noise models. It should be noted that the mainline (I-26) volumes were not changed from the January 2018 NIA. The only change in volumes coded into the updated noise models was for the arterial roadways along Exit 91. Table 1 below, provides a summary of the receiver results from the January 2018 NIA and the results from the March 2020 Exit 91 results. These results are shown graphically in Attachment C. A summary of the sound levels for the receivers listed in table 1 is in Attachment E.

Project Name: Interstate 26 Widening and Interchange Improvements

Table 1: Exit 91 Updated Sound Level Results Summary

Receiver	January 2018 NIA Sound Level Results (dBA)	2018 Impacts?	DB Team March 2020 Sound Level Results (dBA)	2020 Impacts?
E2	69.8	No	68.8	No
E3	71.6	No	67.0	No
E263	73.7	Yes	66.4	No
E264	76.2	Yes	67.1	No
E265	77.3	Yes	69.9	No
E266	68.9	No	62.4	No
E267	72.6	Yes	64.5	No
E268	73.7	Yes	67.9	No
B269	57.7	No	57.1	No
B270	58.1	No	58.3	No
B271	66.5	Yes	62.5	No
B272	66.5	Yes	62.3	No
B273	66.7	Yes	61.8	No
B274	70.3	Yes	65.6	No
B275	66.8	Yes	60.7	No
B276	66.9	Yes	59.3	No
E277	60.6	No	55.7	No
B309	77.7	Yes	75.3	Yes
E310	57.2	No	67.3	Yes
B311	67.8	Yes	64.4	No

As a result of the design change for Exit 91, 12 receivers (E263, E264, E265, E267, E268, B271, B272, B273, B274, B275, B276, B311) that were impacted under the January 2018 NIA were found to not be impacted under the DB Team (2020) final design. One receiver (E310) that was not impacted under the January 2018 NIA was found to be impacted under the DB Team (2020) final design.

One receiver (B309) that was considered impacted under the January 2018 NIA was found to still be impacted under the DB Team (2020) final design. Additionally, 6 receivers (E2, E3, E266, B269, B270, E277) that were considered not impacted under the January 2018 NIA were found to remain not impacted under the DB Team (2020) final design.

2. RE-EVALUATION OF NOISE BARRIERS

The final location of the noise barriers was determined based on noise impacts provided in the January 2018 NIA and as a result of DB Team (2020) final roadway design. The feasibleness, reasonableness, and design of Noise Barriers 5 and 6 were re-evaluated as part of this addendum. This re-evaluation determined whether Noise Barriers 5 and 6 would pass the feasible and reasonable criteria to construct each noise barrier. Additionally, the heights of the noise barrier panels were reviewed to determine if the same number of benefited receptors reported in the previously approved January 2018 NIA could be achieved with the DB Team's final noise barrier locations. Details regarding the feasible and reasonableness criteria are listed below.

Project Name: Interstate 26 Widening and Interchange Improvements

According to the SCDOT Noise Policy, a 5dB(A) reduction must be achieved for 75 percent of the impacted receivers for the noise barrier to be acoustically feasible to construct. Additionally, the barrier shall pass the engineering feasibility criteria which includes a review of the following:

- 1. Topography Determine if the abatement measure could be constructed given the topography of the location.
- 2. Safety Maintaining a clear recovery zone, sight distance and accommodation of disabled vehicles.
- 3. Drainage Issues created by directing water along, under, or away from an abatement measures.
- 4. Utilities Large overhead power lines, underground water, sewer, gas, oil, etc., can have a significant impact on costs and design options.
- 5. Maintenance Potential issues from location of abatement measure and construction materials.
- 6. Access Refers to the ingress and egress to properties that would be affected by the noise abatement measure.
- 7. The exposed height of the noise abatement measure cannot exceed 25 feet based on constructability constraints.

According to the SCDOT Noise Policy, there are three mandatory reasonable factors that must be met for a noise barrier to be considered reasonable: Viewpoint of the property owners and residents of benefited receptors, cost effectiveness, and noise reduction design goal.

This addendum discusses the results of the re-evaluation for Noise Barriers 5, and 6 based on the revised DB Team (2020) final design. Overall, the roadway design and subsequent noise barrier design has been finalized using more refined and defined design elements. The noise barrier locations in general were found to be the same, however there were slight changes in the sound levels for the receivers that were located behind both Noise Barrier 5 and Noise Barrier 6.

2.1 Noise Barrier 5 Re-Evaluation

The location of Noise Barrier 5 was determined based on noise impacts provided in the January 2018 NIA and as a result of the DB Team (2020) final roadway design. Noise Barrier 5 was analyzed to begin at station 890+08 and end at station 932+36. It would be located approximately 85 feet to 140 feet from the centerline of I-26 and would be approximately 4,228 feet in length. The feasibleness and reasonableness of constructing Noise Barrier 5 was re-evaluated as part of this Noise Addendum.

Noise Barrier 5 was analyzed for feasibleness which resulted in 85 of the 87 (97 percent) impacted receivers behind the barrier experiencing a reduction in sound levels of 5 dB(A) or greater. Therefore, per the SCDOT policy, Noise Barrier 5 is feasible to construct.

The reasonable analysis for Noise Barrier 5 included noise barrier panels between 15 feet and 25 feet tall. This design achieves the largest number of benefited receptors while balancing the construction cost. The estimated construction cost for Noise Barrier 5 is \$3,513,020. The benefit achieved by constructing Noise Barrier 5 is \$18,686 per benefitted receiver which is below SCDOT policy of \$30,000 per benefited receiver. Therefore, per SCDOT's policy, Noise Barrier 5 is reasonable to construct.

Noise Barrier 5 would see a small decrease in square footage and length in comparison to the barrier design completed for the January 2018 NIA. The associated design changes for Noise Barrier 5 are listed in Table 2. There was a decrease in the total number of impacts from 90 receivers to 87 receivers. There was an increase in the number of benefited receivers from 138 receivers to 188 receivers.

Project Name: Interstate 26 Widening and Interchange Improvements

Table 2: Noise Barrier 5 Design Changes

Report	Area (S.F.)	Length (Ft.)	Wall Height Range (Min Ft Max Ft.)	No. of Impacted Receptors	No. of Benefited Receptors	Estimated Construction Cost (\$)
January 2018 NIA	106,824	4,444	22	90	138	\$3,738,480
DB Team (2020) Final Design	100,372	4,228	15-25	87	188	\$3,513,020

The final noise barrier location and subsequent ground elevations have changed the relationship between the roadway and receivers specifically for receivers B73, B403, B456 as these receivers were considered impacted under the January 2018 NIA and are not impacted under the DB Team (2020) final design. The ground elevation for the bottom of the noise barrier has reduced the noise levels for the receivers under the build, no-barrier scenario. Therefore, the sound levels are lower for the receivers based on the location of the noise barrier.

The results of the revised Noise Barrier 5 evaluation are shown in Attachment A. The barrier height data is summarized in Attachment B. Noise barrier graphics are in Attachment C. The TNM 2.5 barrier design outputs are in Attachment D. The TNM 2.5 sound level outputs are in Attachment E. The TNM 2.5 runs for each noise barrier are in Attachment F. An updated SCDOT Feasibility and Reasonableness worksheet for Noise Barrier 5 is in Attachment G.

2.2 Noise Barrier 6 Re-Evaluation

The location of Noise Barrier 6 was determined based on noise impacts provided in the January 2018 NIA and as a result of DB Team (2020) final roadway design. Noise Barrier 6 was analyzed to begin at station 768+03 and end at station 789+00. It would be located approximately 80 feet to 140 feet from the centerline of I-26 and would be approximately 2,119 feet in length including the jogs and bends in the final Noise Barrier location. The feasibleness and reasonableness of constructing Noise Barrier 6 was re-evaluated as part of this Noise Addendum.

Noise Barrier 6 was analyzed for feasibleness which resulted in 36 of the 37 (97 percent) impacted receivers behind the barrier experiencing a reduction in sound levels of 5 dB(A) or greater. Therefore, per the SCDOT policy, Noise Barrier 6 is feasible to construct.

The reasonable analysis for Noise Barrier 6 included noise barrier panels between 17 feet and 25 feet tall. This design achieves the largest number of benefited receptors while balancing the construction cost. The estimated construction cost for Noise Barrier 6 is \$1,712,480. The benefit achieved by constructing Noise Barrier 6 is \$26,757 per benefitted receivers which is below SCDOT policy of \$30,000 per benefited receiver. Therefore, per SCDOT's policy, Noise Barrier 6 is reasonable to construct.

Noise Barrier 6 would see a minor decrease in square footage and length in comparison to the barrier design completed for the January 2018 NIA. The associated design changes for Noise Barrier 6 are listed in Table 3. There was a decrease in the total number of impacts from 41 receivers to 37 receivers. There was a reduction in the number of benefits from 68 receivers to 64 receivers.

Project Name: Interstate 26 Widening and Interchange Improvements

Table 3: Noise Barrier 6 Design Changes

Report	Area (S.F.)	Length (Ft.)	Wall Height Range (Min Ft Max Ft.)	No. of Impacted Receptors	No. of Benefited Receptors	Estimated Construction Cost (\$)
January 2018 NIA	51,048	2,104	25	41	68*	\$1,786,696
DB Team (2020) Final Design	48,928	2,119	17-25	37	64	\$1,712,480

^{*}January 2018 NIA documents 70 benefits, however, TNM exported provided as Reference Information Document (RID) only produces 68 benefits.

The final noise barrier location and subsequent ground elevations have changed the relationship between the roadway and receivers specifically for receivers B129, B130, B140, B214 as these receivers were considered impacted under the January 2018 NIA and are not impacted under the DB Team (2020) final design. The ground elevation for the bottom of the noise barrier has reduced the noise levels for the receivers under the build, no-barrier scenario. Therefore, the sound levels are lower for the receivers based on the location of the noise barrier.

The results of the revised Noise Barrier 6 evaluation are shown in Attachment A. The barrier height data is summarized in Attachment B. Noise barrier graphics are in Attachment C. The TNM 2.5 barrier design outputs are in Attachment D. The TNM 2.5 sound level outputs are in Attachment E. The TNM 2.5 runs for each noise barrier are in Attachment F. An updated SCDOT Feasibility and Reasonableness worksheet for Noise Barrier 6 is in Attachment G.

2.6 Project Updates: Impacts and Benefits

The DB Team (2020) final design updates, as discussed in Section 1, resulted in a change in the total number of noise impacts in the study area. A comparison of noise impacts and benefited receptors from the January 2018 NIA to this current DB Team (2020) final design Noise Addendum is summarized below in Table 4.

Table 4: Noise Impacts and Benefited Receptors Comparison

Report	January 2018 NIA	The DB Team (2020) Final Design
2040 Build Total Receivers that Approach or Exceed NAC (Mainline I-26)	244*	244
Exit 85 Alternative 1A Total Receivers that Approach or Exceed NAC	5*	5*
Exit 91 Alternative 3 Total Receivers that Approach or Exceed NAC	13*	2
Exit 97 Alternative 1 Total Receivers that Approach or Exceed NAC	9*	9*
Build Total Impacts	271	260
Total Number of Benefitted Receivers	206**	252

^{*}Values collected from Exhibit B: Summary of Receivers Approaching or Exceed NAC, January 2018 NIA

Project Name: Interstate 26 Widening and Interchange Improvements

^{**}Calculated based on the values derived from the raw TNM exports provided by the SCDOT

Build Conditions

As a result of the DB Team (2020) final design for Exit 91, 12 receivers (E263, E264, E265, E267, E268, B271, B272, B273, B274, B275, B276, B311) that were impacted under the January 2018 NIA were found to not be impacted under the DB Team (2020) final design. One receiver (E310) that was not impacted under the January 2018 NIA was found to be impacted under the DB Team (2020) final design. Therefore, there is an overall reduction in project level impacts from 271 to 260 as a result of the DB Team's preferred alternative to Exit 91.

Build with Noise Barrier Conditions

The final design of Noise Barrier 5 and 6 would achieve an increase in 46 benefitted receivers (increase of 50 benefitted receivers for Noise Barrier 5 and net decrease of 4 benefitted receivers for Noise Barrier 6). The Build Condition sound level at these four receivers behind Noise Barrier 6 decreased as a result of the final noise barrier alignment when compared to the January 2018 NIA. These four receivers are not able to achieve a 5.0 dBA reduction even with a 25-foot noise barrier. Thus, the net sound level reduction is not as significant (less than 5.0 dBA) as the previous January 2018 NIA.

3. WHAT ARE THE CONCLUSIONS?

This addendum documents the geometric alignment changes proposed by the DB Team as design has been finalized for the Exit 91 interchange. Additionally, this addendum documents the analysis and resulting changes to the design of Noise Barriers 5 and 6 as a result of the final roadway design information.

SCDOT and the DB Team identified an alternate interchange configuration for Exit 91. Specifically, the proposed project would construct a partial cloverleaf to the west of the existing interchange instead of the previously proposed DDI at the existing location. The proposed design was developed as a result of further analysis regarding constructability, maintenance of traffic, operational conditions, and impacts to local businesses. The following provides additional details regarding the issues and impacts associated with the DDI.

Noise Barrier 5 and Noise Barrier 6 have been re-evaluated based on the final roadway design information provided by the DB Team's (2020) final design. The feasibleness and reasonableness of constructing each noise barrier was evaluated in this Noise Addendum.

Noise Barrier 5 – Recommended for Construction

The cost per benefitted receiver to construct Noise Barrier 5 is \$18,686, below SCDOT policy of \$30,000 per benefitted receiver. Therefore, it is reasonable to construct. The viewpoints for these property owners/residents was completed during the NEPA process and concluded that noise barriers would be constructed per the environmental commitments documented in the FONSI. 97% of the benefited receivers who returned surveys responded that they are in support of a noise barrier at this location, fulfilling the reasonableness criterion for this noise barrier location. An updated SCDOT Feasibility and Reasonableness worksheet for Noise Barrier 5 is in Attachment G. This noise addendum does not affect the outcome of the viewpoint summary that was completed in the FONSI.

Project Name: Interstate 26 Widening and Interchange Improvements

Noise Barrier 6 - Recommended for Construction

The cost per benefitted receiver to construct Noise Barrier 6 is \$26,757, below SCDOT policy of \$30,000 per benefitted receiver. Therefore, it is reasonable to construct. The viewpoints from property owners/residents was completed during the NEPA process and concluded that noise barriers would be constructed per the environmental commitments documented in the FONSI. 100% of the benefited receivers who returned surveys responded that they are in support of a noise barrier at this location, fulfilling the reasonableness criterion for this noise barrier location. An updated SCDOT Feasibility and Reasonableness worksheet for Noise Barrier 6 is in Attachment G. This noise addendum does not affect the outcome of the viewpoint summary that was completed in the FONSI.

Project Name: Interstate 26 Widening and Interchange Improvements

Attachment A – Noise Barrier Sound Level Comparison

Barrier 5 Sound Level Comparison

		Draft	: Noise Impa	ct Assessme	nt Barrier 5	Design		
Height Range	Wall Length	Barrier Cost	Cost Per Benefited Receiver	Total of Number of Benefitted Dwelling Units	Total Number of Impacted Receivers		Percentage of First Row 8 dBA reduction	
22	4444	\$ 3,738,840.00	\$ 27,093.04	138	90		80.00%	
Wall	# of Dwelling Units Represented	Barrier Area (sq foot)	Does Wall Achieve a 5 dBA Reduction	Benefitted Dwelling Units	Sound Level Without Wall	Sound Level With Wall		Decibel Reduction
B68	1	106,824	No	0	64.7	59.9	0	4.8
B69	1	106,824	Yes	1	65.3	60	0	5.3
B70	1	106,824	Yes	1	65.9	60.2	0	5.7
B71	1	106,824	Yes	1	65.8	60.1	0	5.7
B72	1	106,824	Yes	1	66.2	60.1	0	6.1
B73	1	106,824	Yes	1	66.4	60	0	6.4
B74	1	106,824	Yes	1	66.7	59.9	0	6.8
B75	1	106,824	Yes	1	67.3	60.1	0	7.2
B76	1	106,824	Yes	1	67.8	60.3	0	7.5
B77	1	106,824	Yes	1	68.4	60.5	0	7.9
B78	1	106,824	Yes	1	68.6	60.3	1	8.3
B79	1	106,824	Yes	1	68.3	60	1	8.3
B80	1	106,824	Yes	1	68	59.8	1	8.2
B81	1	106,824	Yes	1	67.9	59.7	1	8.2
B82	1	106,824	Yes	1	67.8	59.5	1	8.3
B83	1	106,824	Yes	1	67.5	59.3	1	8.2
B84	1	106,824	Yes	1	67.3	59.2	1	8.1
B85	1	106,824	Yes	1	66.2	58.8	0	7.4
B86	1	106,824	Yes	1	64.9	58.3	0	6.6
B87	1	106,824	Yes	1	62.8	57.5	0	5.3
B88	1	106,824	No	0	61.6	56.8	0	4.8
B89	1	106,824	No	0	61.2	56.4	0	4.8
B93	1	106,824	Yes	1	75.9	62.8	1	13.1
B94	1	106,824	Yes	1	71.3	61.7	1	9.6
B95	1	106,824	Yes	1	75.5	62.6	1	12.9
B96	1	106,824	Yes	1	71.2	61.5	1	9.7
B97	1	106,824	Yes	1	69.2	60.5	0	8.7
B98	1	106,824	Yes	1	76.1	62.8	1	13.3
B99	1	106,824		1	75.1	62.4	1	12.7
	1	· · · · · · · · · · · · · · · · · · ·	Yes				1	
B100		106,824	Yes	1 1	69.9	61		8.9
B101	1	106,824	Yes		74.8	62.3	1	12.5
B102	1	106,824	Yes	1	71.1	61.7	1	9.4
B103	1	106,824	Yes	1	75.8	62.3	1	13.5
B104	1	106,824	Yes	1	69.3	61.2	0	8.1
B105	1	106,824	Yes	1	75.2	62.3	1	12.9
B106	1	106,824	Yes	1	75.1	62.5	1	12.6
B107	1	106,824	Yes	1	71.3	62.2	1	9.1
B108	1	106,824	Yes	1	75.1	62.4	1	12.7
B109	1	106,824	Yes	1	73.9	62.8	1	11.1
B110	1	106,824	Yes	1	71.1	63	1	8.1
B111	1	106,824	Yes	1	69.6	61.8	0	7.8
B112	1	106,824	Yes	1	69.1	62.4	0	6.7
B113	1	106,824	Yes	1	74	62.6	1	11.4
B114	1	106,824	Yes	1	73.1	63.1	1	10
B115	1	106,824	Yes	1	69.5	63.9	0	5.6
B116	1	106,824	No	0	67.9	63.4	0	4.5
B179	1	106,824	No	0	64.5	59.8	0	4.7
B180	1	106,824	Yes	1	65	58.6	0	6.4
B181	1	106,824	Yes	1	64	57.9	0	6.1

		DB Tear	m Noise Imp	act Assessm	ent Barrier !	5 Design		
Height Range	Wall Length	Barrier Cost	Cost Per Benefited Receiver	Total of Number of Benefitted Dwelling Units	Total Number of Impacted Receivers		Percentage of First Row 8 dBA reduction	
15-25	4228	\$ 3,513,020.00	\$ 18,686.28	188	87		80.00%	
Wall	# of Dwelling Units Represented	Barrier Area (sq foot)	Does Wall Achieve a 5 dBA Reduction	Benefitted Dwelling Units	Sound Level Without Wall	Sound Level With Wall		Decibel Reduction
B68	1	100,372	Yes	1	64.6	57.4	0	7.2
B69	1	100,372	Yes	1	65.1	57.5	0	7.6
B70	1	100,372	Yes	1	65.7	57.6	1	8.1
B71	1	100,372	Yes	1	65.8	57.5	1	8.3
B72	1	100,372	Yes	1	66.1	57.9	1	8.2
B73	1	100,372	Yes	1	65.9	57.8	1	8.1
B74	1	100,372	Yes	1	66	57.8	1	8.2
B75	1	100,372	Yes	1	66.4	57.9	1	8.5
B76	1	100,372	Yes	1	66.8	58.2	1	8.6
B77	1	100,372	Yes	1	67.4	58.5	1	8.9
B78	1	100,372	Yes	1	67.8	58.6	1	9.2
B79	1	100,372	Yes	1	67.6	58.4	1	9.2
B80	1	100,372	Yes	1	67.6	58.4	1	9.2
B81	1	100,372	Yes	1	67.7	58.4	1	9.3
B82	1	100,372	Yes	1	68	58.5	1	9.5
B83	1	100,372	Yes	1	68.1	58.6	1	9.5
B84	1	100,372	Yes	1	68	58.6	1	9.4
B85	1	100,372	Yes	1	67	58.6	1	8.4
B86	1	100,372	Yes	1	65.6	58.1	0	7.5
B87	1	100,372	Yes	1	63.3	57.2	0	6.1
B88	1	100,372	Yes	1	61.8	56.4	0	5.4
B89	1	100,372	Yes	1	61.4	55.9	0	5.5
B93	1	100,372	Yes	1	75.3	61.2	1	14.1
B94	1	100,372	Yes	1	70.5	59.4	1	11.1
B95	1	100,372	Yes	1	74.9	61	1	13.9
B96	1	100,372	Yes	1	70.5	59.6	1	10.9
B97	1	100,372	Yes	1	68.6	58.6	0	10
B98	1	100,372	Yes	1	75.3	61.7	1	13.6
B99	1	100,372	Yes	1	74	61.2	1	12.8
B100	1	100,372	Yes	1	69.4	59.5	1	9.9
B101	1	100,372	Yes	1	73.9	61.3	1	12.6
B102	1	100,372	Yes	1	70.3	60.2	1	10.1
B103	1	100,372	Yes	1	75.3	61.6	1	13.7
B104	1	100,372	Yes	1	68.6	59.5	0	9.1
B105	1	100,372	Yes	1	74.9	61.8	1	13.1
B106	1	100,372	Yes	1	74.4	62.1	1	12.3
B107	1	100,372	Yes	1	70.3	61 62.5	1	9.3
B108	1	100,372	Yes	1	73.6 71.5	62.5	1	11.1 8.6
B109 B110	1	100,372 100,372	Yes Yes	1	71.5	62.9	1	8.6
B110 B111	1	100,372	Yes	1	68.8	60.4	0	8.4
B111 B112	1	100,372	Yes	1	68.3	61.4	0	6.9
B112	1	100,372	Yes	1	71.4	63.7	0	7.7
B113 B114	1	100,372	Yes	1	71.4	64.4	0	6.6
B114 B115	1	100,372	Yes	1	68.6	63.5	0	5.1
B115	1	100,372	No	0	67.6	62.8	0	4.8
B110 B179	1	100,372	Yes	1	64.4	57.5	0	6.9
B179 B180	1	100,372	Yes	1	64.4	56.6	1	8.3
B181	1	100,372	Yes	1	64.2	56.5	0	7.7

Barrier 5 Sound Level Comparison

		Draft	Noise Impa	ct Assessme	nt Barrier 5	Design		
Height Range	Wall Length	Barrier Cost	Cost Per Benefited Receiver	Total of Number of Benefitted Dwelling Units	Total Number of Impacted Receivers		Percentage of First Row 8 dBA reduction	
22	4444	\$ 3,738,840.00	\$ 27,093.04	138	90		80.00%	
Wall	# of Dwelling Units Represented	Barrier Area	Does Wall Achieve a 5 dBA Reduction	Benefitted Dwelling Units	Sound Level Without Wall	Sound Level With Wall		Decibel Reduction
B182	1	106,824	Yes	1	63.5	57.3	0	6.2
B183	1	106,824	Yes	1	73.2	61.8	1	11.4
B184	1	106,824	Yes	1	72.8	61.7	1	11.1
B185	1	106,824	Yes	1	73.6	62	1	11.6
B186	1	106,824	Yes	1	74.2	62.2	1	12
B187	1	106,824	Yes	1	74	62.1	1	11.9
B188	1	106,824	Yes	1	74.7	62.2	1	12.5
B189	1	106,824	Yes	1	74.3	61.4	1	12.9
B190	1	106,824	Yes	1	74.4	61.5	1	12.9
B191	1	106,824	Yes	1	75	62	1	13
B192	1	106,824	Yes	1	75.3	62.1	1	13.2
B193	1	106,824	Yes	1	75.4	62	1	13.4
B194	1	106,824	Yes	1	75.3	62.3	1	13
B195	1	106,824	Yes	1	75.3	62.5	1	12.8
B196	1	106,824	Yes	1	75	62.5	1	12.5
B197	1	106,824	Yes	1	75.1	62.3	1	12.8
B198	1	106,824	Yes	1	75	62.3	1	12.7
B199	1	106,824	Yes	1	75.1	62.2	1	12.9
B200	1	106,824	Yes	1	67.2	59.7	0	7.5
B201	1	106,824	Yes	1	68.7	60.6	1	8.1
B202	1	106,824	Yes	1	68.8	60.7	1	8.1
B203	1	106,824	Yes	1	69.2	60.6	1	8.6
B204	1	106,824	Yes	1	69.3	60.3	1	9
B205	1	106,824	Yes	1	69.7	60.4	1	9.3
B206	1	106,824	Yes	1	69.9	60.5	1	9.4
B207	1	106,824	Yes	1	70	60.6	1	9.4
B208	1	106,824	Yes	1	70.6	60.9	1	9.7
B209	1	106,824	Yes	1	70.4	60.8	1	9.6
B210	1	106,824	Yes	1	70.6	60.9	1	9.7
B210	1	106,824	Yes	1	70.7	61.1	1	9.6
B212	1	106,824	Yes	1	70.7	60.8	1	9.4
B213	1	106,824	Yes	1	70.2	61	1	9.6
B343	1	106,824	Yes	1	63.7	58.5	0	5.2
B344	1	106,824	Yes	1	63.6	58.6	0	5.2
B344 B345	1	106,824	No Yes	0	63.2	58.5	0	4.7
B345 B346	1	106,824	No	0	63.2	58.5	0	4.7
B346 B347	1	106,824	No	0	62.9	58.5	0	4.4
B348	1	106,824	Yes	1	68.7	60.6	1	8.1
B348 B349	1	106,824	Yes	1	65.8	59	0	6.8
B350	1	106,824	Yes	1	64.8	58.7	0	6.1
B351	1	106,824	Yes	1	64.5	58.7	0	5.8
B352	1	106,824	Yes	1	64.2	58.6 57	0	5.6
B367	1	106,824	Yes	1	62.7		0	5.7
B368	1	106,824	Yes	1	61.9	56.7	0	5.2
B369	1	106,824	Yes	1	61.4	56.2	0	5.2
B370	1	106,824	No	0	60.9	56.1	0	4.8
B371	1	106,824	No	0	60	55.5	0	4.5
B372	1	106,824	No	0	60.3	55.5	0	4.8
B373	1	106,824	No	0	59.4	54.9	0	4.5

		DB Tea	m Noise Imp	act Assessm	ent Barrier !	5 Design		
Height Range	Wall Length	Barrier Cost	Cost Per Benefited Receiver	Total of Number of Benefitted Dwelling Units	Total Number of Impacted Receivers		Percentage of First Row 8 dBA reduction	
15-25	4228	\$ 3,513,020.00	\$ 18,686.28	188	87		80.00%	
Wall	# of Dwelling Units Represented	Barrier Area (sq foot)	Does Wall Achieve a 5 dBA Reduction	Benefitted Dwelling Units	Sound Level Without Wall	Sound Level With Wall		Decibel Reduction
B182	1	100,372	Yes	1	63.7	56.4	0	7.3
B183	1	100,372	Yes	1	73.7	61.4	1	12.3
B184	1	100,372	Yes	1	73.2	61.2	1	12
B185	1	100,372	Yes	1	73.9	61.6	1	12.3
B186	1	100,372	Yes	1	74.3	61.8	1	12.5
B187	1	100,372	Yes	1	74.1	61.6	1	12.5
B188	1	100,372	Yes	1	74.6	61.7	1	12.9
B189	1	100,372	Yes	1	74	60.9	1	13.1
B190	1	100,372	Yes	1	74.1	61.1	1	13
B191	1	100,372	Yes	1	74.8	61.5	1	13.3
B192	1	100,372	Yes	1	75.1	61.6	1	13.5
B193	1	100,372	Yes	1	75.1	61.3	1	13.8
B194	1	100,372	Yes	1	74.9	61.3	1	13.6
B195	1	100,372	Yes	1	74.8	61.7	1	13.1
B196	1	100,372	Yes	1	74.5	61.1	1	13.4
B197	1	100,372	Yes	1	74.6	61	1	13.6
B198	1	100,372	Yes	1	74.4	60.8	1	13.6
B199	1	100,372	Yes	1	74.6	60.7	1	13.9
B200	1	100,372	Yes	1	67.2	58.7	1	8.5
B201	1	100,372	Yes	1	68.5	59.3	1	9.2
B202	1	100,372	Yes	1	68.6	59.4	1	9.2
B203	1	100,372	Yes	1	68.9	59.3	1	9.6
B204	1	100,372	Yes	1	69.1	59.1	1	10
B205	1	100,372	Yes	1	69.4	59.2	1	10.2
B206	1	100,372	Yes	1	69.5	59.2	1	10.3
B207	1	100,372	Yes	1	69.6	59.1	1	10.5
B208	1	100,372	Yes	1	70.2	59.3	1	10.9
B209	1	100,372	Yes	1	69.9	59.2	1	10.7
B210	1	100,372	Yes	1	69.9	59.3	1	10.6
B211	1	100,372	Yes	1	70	59.2	1	10.8
B212	1	100,372	Yes	1	69.4	58.8	1	10.6
B213	1	100,372	Yes	1	69.9	59	1	10.9
B343	1	100,372	Yes	1	63.9	55.9	1	8
B344	1	100,372	Yes	1	63.8	55.9	0	7.9
B345	1	100,372	Yes	1	63.5	55.8	0	7.7
B346	1	100,372	Yes	1	63.2	55.9	0	7.3
B347	1	100,372	Yes	1	63	55.9	0	7.1
B348	1	100,372	Yes	1	67.8	58.7	1	9.1
B349	1	100,372	Yes	1	65.7	58.2	0	7.5
B350	1	100,372	Yes	1	64.5	57.8	0	6.7
B351	1	100,372	Yes	1	64.6	56.4	1	8.2
B352	1	100,372	Yes	1	64.3	56.2	1	8.1
B367	1	100,372	Yes	1	63	55.5	0	7.5
B368	1	100,372	Yes	1	62.2	54.8	0	7.4
B369	1	100,372	Yes	1	61.7	54.6	0	7.1
B370	1	100,372	Yes	1	61.3	54.1	0	7.2
B371	1	100,372	Yes	1	60.5	53.6	0	6.9
B372	1	100,372	Yes	1	60.7	53.9	0	6.8
B373	1	100,372	Yes	1	59.9	53.2	0	6.7

		Draft	Noise Impa	ct Assessme	nt Barrier 5	Design		
Height Range	Wall Length	Barrier Cost	Cost Per Benefited Receiver	Total of Number of Benefitted Dwelling Units	Total Number of Impacted Receivers		Percentage of First Row 8 dBA reduction	
22	4444	\$ 3,738,840.00	\$ 27,093.04	138	90		80.00%	
Wall	# of Dwelling Units Represented	Barrier Area	Does Wall Achieve a 5 dBA Reduction	Benefitted Dwelling Units	Sound Level Without Wall	Sound Level With Wall		Decibel Reduction
B374	1	106,824	Yes	1	61.9	56.4	0	5.5
B375	1	106,824	Yes	1	62.3	56.7	0	5.6
B376	1	106,824	Yes	1	60.9	55.9	0	5
B377	1	106,824	No	0	59.9	55.2	0	4.7
B378	1	106,824	No	0	58.9	54.5	0	4.4
B379	1	106,824	No	0	58.3	54.1	0	4.2
B380	1	106,824	Yes	1	60.7	55.6	0	5.1
B381	1	106,824	No	0	59.6	55	0	4.6
B382	1	106,824	No	0	58.8	54.4	0	4.4
B383	1	106,824	No	0	59.7	55.3	0	4.4
B384	1	106,824	No	0	60.8	56.4	0	4.4
B385	1	106,824	No	0	61	56.6	0	4.4
B386	1	106,824	No	0	61.7	56.8	0	4.9
B387	1	· ·		1			0	6.4
		106,824	Yes		63.8	57.4		
B388	1	106,824	Yes	1	65.5	58.4	0	7.1
B389	1	106,824	Yes	1	66.6	59	0	7.6
B390	1	106,824	Yes	1	67	59.2	0	7.8
B391	1	106,824	Yes	1	67.1	58.9	0	8.2
B392	1	106,824	Yes	1	67	58.6	0	8.4
B393	1	106,824	Yes	1	67.4	58.9	0	8.5
B394	1	106,824	Yes	1	67.5	59	0	8.5
B395	1	106,824	Yes	1	67.7	59.2	0	8.5
B396	1	106,824	Yes	1	68	59.6	0	8.4
B397	1	106,824	Yes	1	67.9	59.6	0	8.3
B398	1	106,824	Yes	1	67.8	59.5	0	8.3
B399	1	106,824	Yes	1	67.6	59.5	0	8.1
B400	1	106,824	Yes	1	67.2	59.3	0	7.9
B401	1	106,824	Yes	1	65.4	58.9	0	6.5
B402	1	106,824	Yes	1	67.9	60.2	0	7.7
B403	1	106,824	Yes	1	66.1	59.3	0	6.8
B404	1	106,824	Yes	1	67.6	60.4	0	7.2
B405	1	106,824	Yes	1	65.9	59.4	0	6.5
B406	1	106,824	No	0	63.1	58.2	0	4.9
B407	1	106,824	Yes	1	63.6	58.2	0	5.4
B408	1	106,824	No	0	62.2	57.3	0	4.9
B409	1	106,824	No	0	61.1	56.5	0	4.6
B410	1	106,824	No	0	60.3	55.9	0	4.4
B411	1	106,824	Yes	1	62.5	57	0	5.5
B411	1	106,824	Yes	1	63.4	57.3	0	6.1
B412	1	106,824	Yes	1	63.4	57.5	0	6.3
B413 B414		106,824	Yes	1	63.4	56.9	0	6.5
	1					56.9		
B415	1	106,824	Yes	1	63.6		0	6.9
B416	1	106,824	Yes	1	63.6	56.7	0	6.9
B417	1	106,824	Yes	1	63.3	56.5	0	6.8
B418	1	106,824	Yes	1	63.1	56.4	0	6.7
B419	1	106,824	Yes	1	62.9	56.3	0	6.6
B420	1	106,824	Yes	1	62.9	56.2	0	6.7
B421	1	106,824	Yes	1	61.8	55.8	0	6
B422	1	106,824	Yes	1	60.7	55.5	0	5.2
B423	1	106,824	No	0	59.6	55	0	4.6

		DB Tear	n Noise Imp	act Assessm	ent Barrier !	5 Design		
Height Range	Wall Length	Barrier Cost	Cost Per Benefited Receiver	Total of Number of Benefitted Dwelling Units	Total Number of Impacted Receivers		Percentage of First Row 8 dBA reduction	
15-25	4228	\$ 3,513,020.00	\$ 18,686.28	188	87		80.00%	
Wall	# of Dwelling Units Represented	Barrier Area (sq foot)	Does Wall Achieve a 5 dBA Reduction	Benefitted Dwelling Units	Sound Level Without Wall	Sound Level With Wall		Decibel Reduction
B374	1	100,372	Yes	1	62.2	55.4	0	6.8
B375	1	100,372	Yes	1	62.6	56	0	6.6
B376	1	100,372	Yes	1	61.2	55.2	0	6
B377	1	100,372	Yes	1	60.2	54.6	0	5.6
B378	1	100,372	Yes	1	59.3	53.7	0	5.6
B379	1	100,372	Yes	1	58.7	53.2	0	5.5
B380	1	100,372	Yes	1	61	54.6	0	6.4
B381	1	100,372	Yes	1	60	53.8	0	6.2
B382	1	100,372	Yes	1	59.2	53.2	0	6
B383	1	100,372	Yes	1	59.9	54.8	0	5.1
B384	1	100,372	Yes	1	61.3	55.8	0	5.5
B385	1	100,372	Yes	1	61.2	56	0	5.2
B386	1	100,372	Yes	1	61.8	56.2	0	5.6
B387	1	100,372	Yes	1	63.1	56.6	0	6.5
B388	1	100,372	Yes	1	65.3	57.3	0	8
B389	1	100,372	Yes	1	66.3	57.8	0	8.5
B390	1	100,372	Yes	1	66.7	57.8	0	8.9
B391	1	100,372	Yes	1	66.7	57.6	0	9.1
B392	1	100,372	Yes	1	66.2	57.4	0	8.8
B393	1	100,372	Yes	1	66.5	57.5	0	9
B394	1	100,372	Yes	1	66.7	57.5	0	9.2
B395	1	100,372	Yes	1	66.9	57.5	0	9.4
B396	1	100,372	Yes	1	67.3	57.7	0	9.6
B397	1	100,372	Yes	1	67.2	57.6	0	9.6
B398	1	100,372	Yes	1	67.2	57.6	0	9.6
B399	1	100,372	Yes	1	67.1	57.5	0	9.6
B400	1	100,372	Yes	1	66.7	57.4	0	9.3
B400	1	100,372	Yes	1	65.7	57.2	0	8.5
B401	1	100,372	Yes	1	67.6	58.5	0	9.1
B402	1	100,372	Yes	1	65.8	57.7	0	8.1
B404	1	100,372	Yes	1	66.9	58.8	0	8.1
B404 B405	1	100,372	Yes		65.2	58	0	7.2
B405 B406	1	100,372		1	63.2	56.8	0	6.4
B406 B407	1	100,372	Yes Yes	1	63.2	56.8	0	7.2
					62.7			
B408	1	100,372	Yes	1		56 55.2	0	6.7
B409	1	100,372	Yes	1	61.7	55.3	0	6.4
B410	1	100,372	Yes	1	60.8	54.6	0	6.2
B411	1	100,372	Yes	1	62.9	55.5	0	7.4
B412	1	100,372	Yes	1	63.6	55.7	0	7.9
B413	1	100,372	Yes	1	63.8	55.5	0	8.3
B414	1	100,372	Yes	1	63.4	55.4	0	8
B415	1	100,372	Yes	1	63.4	55.3	0	8.1
B416	1	100,372	Yes	1	63.4	55.4	0	8
B417	1	100,372	Yes	1	63.1	55.3	0	7.8
B418	1	100,372	Yes	1	62.7	55.2	0	7.5
B419	1	100,372	Yes	1	62.4	55.2	0	7.2
B420	1	100,372	Yes	1	62.2	55.2	0	7
B421	1	100,372	Yes	1	61.6	54.9	0	6.7
B422	1	100,372	Yes	1	60.8	54.8	0	6
B423	1	100,372	Yes	1	59.8	54.4	0	5.4

		Draft	Noise Impa	ct Assessme	nt Barrier 5	Design		
Height Range	Wall Length	Barrier Cost	Cost Per Benefited Receiver	Total of Number of Benefitted Dwelling Units	Total Number of Impacted Receivers		Percentage of First Row 8 dBA reduction	
22	4444	\$ 3,738,840.00	\$ 27,093.04	138	90		80.00%	
Wall	# of Dwelling Units Represented	Barrier Area (sq foot)	Does Wall Achieve a 5 dBA Reduction	Benefitted Dwelling Units	Sound Level Without Wall	Sound Level With Wall		Decibel Reduction
B424	1	106,824	Yes	1	61.1	55.7	0	5.4
B425	1	106,824	Yes	1	60.5	55.3	0	5.2
B426	1	106,824	Yes	1	60.6	55.4	0	5.2
B427	1	106,824	No	0	58.5	54	0	4.5
B428	1	106,824	No	0	59	54.1	0	4.9
B429	1	106,824	Yes	1	59.3	54.3	0	5
B430	1	106,824	Yes	1	60	54.7	0	5.3
B431	1	106,824	Yes	1	60.2	54.7	0	5.5
B432	1	106,824	Yes	1	60.2	54.7	0	5.5
B433	1	106,824	Yes	1	60.3	54.7	0	5.6
B434	1	106,824	Yes	1	59.8	54.5	0	5.3
B435	1	106,824	Yes	1	59.2	54.1	0	5.1
B436	1	106,824	No	0	58.7	53.9	0	4.8
B437	1	106,824	No	0	58.5	53.7	0	4.8
B438	1	106,824	No	0	58.4	53.8	0	4.6
B439	1	106,824	No	0	58.3	53.8	0	4.5
B440	1	106,824	No	0	56.7	52.7	0	4
B441	1	106,824	No	0	56.8	52.7	0	4.1
B442	1	106,824	No	0	56.6	52.6	0	4
B443	1	106,824	No	0	56.7	52.5	0	4.2
B444	1	106,824	No	0	56.7	52.5	0	4.2
B445	1	106,824	No	0	56.9	52.5	0	4.4
B446	1	106,824	No	0	57.4	52.8	0	4.6
B447	1	106,824	No	0	57.7	53	0	4.7
B448	1	106,824	No	0	57.8	53.1	0	4.7
B449	1	106,824	No	0	57.6	53.1	0	4.5
B450	1	106,824	No	0	57.3	52.9	0	4.4
B451	1	106,824	No	0	57.2	52.9	0	4.3
B452	1	106,824	No	0	57	52.8	0	4.2
B453	1	106,824	No	0	56.8	52.8	0	4
B454	1	106,824	Yes	1	68.5	61.3	0	7.2
B455	1	106,824	Yes	1	67.4	60.7	0	6.7
B456	1	106,824	Yes	1	66.3	60.1	0	6.2
B457	1	106,824	Yes	1	65.3	59.5	0	5.8
B458	1	106,824	No	0	63.5	58.7	0	4.8
B459	1	106,824	No	0	61.8	57.7	0	4.1
B460	1	106,824	No	0	61.1	57.1	0	4
B461	1	106,824	No	0	60.5	56.4	0	4.1
B462	1	106,824	No	0	59.4	55.6	0	3.8
B463	1	106,824	No	0	59	55.3	0	3.7
B464	1	106,824	No	0	60.5	56.2	0	4.3
B465	1	106,824	No	0	61.9	57.3	0	4.6
B466	1	106,824	Yes	1	66.9	61.3	0	5.6
B467	1	106,824	No	0	66.3	62.4	0	3.9
B468	1	106,824	No	0	65.2	60.4	0	4.8
B469	1	106,824	No	0	63.8	59.6	0	4.2
B517	1	106,824	No	0	61.5	56.8	0	4.7
B518	1	106,824	No	0	60.7	56.2	0	4.5
B519	1	106,824	Yes	1	63.1	57.4	0	5.7

Benefitted

Height Range	Wall Length	Barrier Cost	Cost Per Benefited Receiver	Total of Number of Benefitted Dwelling Units	Total Number of Impacted Receivers		Percentage of First Row 8 dBA reduction	
15-25	4228	\$ 3,513,020.00	\$ 18,686.28	188	87		80.00%	
	# of Dwelling	Barrier Area	Does Wall Achieve		Sound Level	Sound Level With		
Wall	Units Represented		a 5 dBA Reduction	Dwelling Units	Without Wall	Wall		Decibel Reduction
B424	1	100,372	Yes	1	61.4	54.4	0	7
B425	1	100,372	Yes	1	60.7	53.9	0	6.8
B425	1	100,372	Yes	1	60.8	54.1	0	6.7
B427	1	100,372	Yes	1	59.1	52.9	0	6.2
B428	1	100,372	Yes	1	59.3	52.9	0	6.4
B429	1	100,372	Yes	1	59.6	53.1	0	6.5
B430	1	100,372	Yes	1	60.4	53.5	0	6.9
B431	1	100,372	Yes	1	60.4	53.6	0	6.8
B432	1	100,372	Yes	1	60.4	53.7	0	6.7
B433	1	100,372	Yes	1	60.4	53.7	0	6.7
B434	1	100,372	Yes	1	60.1	53.7	0	6.6
B435	1	100,372	Yes	1	59.3	53.3	0	6
B436	1	100,372	Yes	1	58.7	53.1	0	5.6
B437	1	100,372	Yes	1	58.1	53	0	5.1
B438	1	100,372	No	0	58.1	53.2	0	4.9
B439	1	100,372	No	0	58	53.3	0	4.7
B440	1	100,372	No	0	56.6	52	0	4.6
B441	1	100,372	No	0	56.6	52	0	4.6
B442	1	100,372	No	0	56.6	51.9	0	4.7
B443	1	100,372	No	0	56.5	51.8	0	4.7
B444	1	100,372	No	0	56.6	51.7	0	4.9
B445	1	100,372	Yes	1	56.7	51.7	0	5
B446	1	100,372	Yes	1	57	51.7	0	5.1
B447	1	100,372	Yes	1	57.4	52.1	0	5.3
B448	1	100,372	Yes	1	57.6	52.1	0	5.5
B449	1	100,372	Yes	1	57.7	52.1	0	5.6
B450	1	100,372	Yes	1	57.5	51.9	0	5.6
B451	1	100,372	Yes	1	57.5	51.9	0	5.6
B452	1	100,372	Yes	1	57.4	51.9	0	5.5
B453	1	100,372	Yes	1	57.2	51.8	0	5.4
B454	1	100,372	Yes	1	67.7	59.9	0	7.8
B455	1	100,372	Yes	1	66.6	59.4	0	7.2
B456	1	100,372	Yes	1	65.6	58.8	0	6.8
B457	1	100,372	Yes	1	64.7	58.3	0	6.4
B458	1	100,372	Yes	1	63.4	57.5	0	5.9
B459	1	100,372	Yes	1	61.9	56.6	0	5.3
B460	1	100,372	Yes	1	61.3	55.9	0	5.4
B461	1	100,372	Yes	1	60.6	55.1	0	5.5
B462	1	100,372	Yes	1	59.8	54.4	0	5.4
B463	1	100,372	Yes	1	59.7	54.2	0	5.5
B464	1	100,372	Yes	1	61.1	55.1	0	6
B465	1	100,372	Yes	1	62.3	56	0	6.3
B466	1	100,372	Yes	1	66.4	60.2	0	6.2
В467	1	100,372	No	0	66.3	61.7	0	4.6
B468	1	100,372	Yes	1	64.9	59.4	0	5.5
B469	1	100,372	Yes	1	63.8	59.4	0	5.5
B517	1	100,372	Yes	1	62	54.5	0	7.5
B517 B518			Yes			54.5		7.5
B518 B519	1 1	100,372 100,372		1	61.1 63.3		0	7.1
0213	I +	100,572	Yes	1	lmpacted	55.6	l 0	Renefitted

Height Range	Wall Length	Barrier Cost \$ 1,786,696.00	Cost Per Benefited Receiver \$ 26,274.94	pact Assessment Total of Number of Benefitted Dwelling Units 68	Barrier 6 Desig	n	Percentage of First Row 8 dBA reduction 80.00%	
Wall	# of Dwelling Units Represented	Barrier Area (sq foot)	Does Wall Achieve a 5 dBA Reduction	Benefitted Dwelling Units	Sound Level Without Wall	Sound Level With Wall		Decibel Reduction
B118	1	51,048	No	0	70.6	69.6	0	1
B119	1	51,048	Yes	1	77.9	65	1	12.9
B120 B121	1	51,048 51.048	Yes Yes	1	74.1 68.9	63.7 60.8	1	10.4 8.1
B121	1	51,048	Yes	1	71.1	62.2	1	8.9
B123	1	51,048	Yes	1	72.8	63.1	1	9.7
B124	1	51,048	Yes	1	74.6	64	1	10.6
B125	1	51,048	Yes	1	76.5	64.6	1	11.9
B126	1	51,048	Yes	1	77.2 77.6	64.9	1	12.3
B127 B128	1	51,048 51,048	Yes Yes	1	77.5 77.5	65.5 65.4	1	12.1 12.1
B129	1	51,048	Yes	1	77.7	66.9	1	10.8
B130	1	51,048	Yes	1	77.9	68	1	9.9
B131	1	51,048	Yes	1	69.9	62	0	7.9
B132	1	51,048	Yes	1	71.2	63	1	8.2
B133 B134	1	51,048 51,048	Yes Yes	1	71.6 71.6	63.2 63.5	1	8.4 8.1
B134 B135	1	51,048	Yes	1	71.5	63.5	1	8.1
B136	1	51,048	Yes	1	72.5	63.5	1	9
B137	1	51,048	Yes	1	70.4	62.7	0	7.7
B138	1	51,048	Yes	1	74.1	64.3	1	9.8
B139	1	51,048	Yes	1	76.5	65.8	1	10.7 11
B140 B141	1	51,048 51,048	Yes Yes	1	77.1 76.7	66.1 65.7	1	11
B141	1	51,048	Yes	1	73.5	64.5	1	9
B143	1	51,048	Yes	1	71.9	63.8	1	8.1
B144	1	51,048	Yes	1	71.1	63	1	8.1
B214	1	51,048	No	0	79.1	79	0	0.1
B470 B471	1	51,048 51,048	Yes Yes	1	67.3 66	59.8 59	0	7.5 7
B471	1	51,048	Yes	1	64.8	58.2	0	6.6
B473	1	51,048	Yes	1	63.5	57.3	0	6.2
B474	1	51,048	Yes	1	62.3	56.6	0	5.7
B475	1	51,048	Yes	1	61	56	0	5
B476	1	51,048	No	0	59.9	55.3	0	4.6
B477 B478	1	51,048 51,048	Yes Yes	1	59.6 59.4	54.6 54.2	0	5 5.2
B479	1	51,048	Yes	1	60.1	55	0	5.1
B480	1	51,048	Yes	1	59.8	54.5	0	5.3
B481	1	51,048	Yes	1	60.6	55.2	0	5.4
B482	1	51,048	Yes	1	60.6	55.1	0	5.5
B483 B484	1	51,048 51,048	Yes Yes	1	61.4 61.2	55.9 55.5	0	5.5 5.7
B485	1	51,048	Yes	1	61.9	56.1	0	5.8
B486	1	51,048	Yes	1	62.8	56.8	0	6
B487	1	51,048	Yes	1	62.7	56.6	0	6.1
B488	1	51,048	Yes	1	64	57.6	0	6.4
B489	1	51,048	Yes	1	65.1	58.5	0	6.6
B490 B491	1	51,048 51,048	Yes Yes	1	66.1 67.4	59.3 60.2	0	6.8 7.2
B491 B492	1	51,048	Yes	1	64.4	58.3	0	6.1
B493	1	51,048	Yes	1	64.6	58.3	0	6.3
B494	1	51,048	Yes	1	65.2	58.6	0	6.6
B495	1	51,048	Yes	1	66.9	60.1	0	6.8
B496	1	51,048	Yes	1	67.8	60.9	0	6.9
B497 B498	1	51,048 51,048	Yes Yes	1 1	67.8 66.7	61.2 60.6	0	6.6 6.1
B499	1	51,048	Yes	1	69.7	62.3	0	7.4
B500	1	51,048	Yes	1	68.7	62.1	0	6.6
B501	1	51,048	Yes	1	67.9	61.7	0	6.2
B502	1	51,048	Yes	1	66.9	61	0	5.9
B503 B504	1	51,048 51,048	Yes Yes	1	66.1 65	60.4 59.2	0	5.7 5.8
B504 B505	1	51,048	Yes	1	63.4	57.8	0	5.6
B506	1	51,048	Yes	1	62.2	56.6	0	5.6
B507	1	51,048	Yes	1	61.3	55.9	0	5.4
B508	1	51,048	Yes	1	60.9	55.6	0	5.3
B509	1	51,048	Yes	1	60.1	54.9	0	5.2
B510 B511	1	51,048 51,048	Yes No	0	59.5 58.8	54.5 53.9	0	5 4.9
B511 B512	1	51,048	No No	0	58.8 60	56.7	0	3.3
B512	1	51,048	No	0	63.9	59	0	4.9
B514	1	51,048	Yes	1	64.5	58.9	0	5.6
B515	1	51,048	Yes	1	62.4	57.4	0	5
B516	1	51,048	No	0	59.6	55.8	0	3.8
					Impacted			Benefitted

		DR Tea	ım Noise Impact	Assessment Ra	rrier 6 Desig	'n		
		DD Tea	·-	Total of Number of	Total Number of	,	Percentage of	
Height Range	Wall Length	Barrier Cost	Cost Per Benefited Receiver	Benefitted Dwelling	Impacted		First Row 8 dBA	
17-25	2119	\$ 1,712,480.00	\$ 26,757.50	Units 64	Receivers 37		reduction 96.67%	
Wall	# of Dwelling Units Represented	Barrier Area (sq foot)	Does Wall Achieve a 5 dBA Reduction	Benefitted Dwelling Units	Sound Level Without Wall	Sound Level With Wall	First Row, Greater than 8 dBA?	Decibel Reduction
	пергезептей	(54 1000)	abrineadedon	os	William William		than o dort.	neddetion
B118	1	48,928	No	0	70.7	70.3	0	0.4
B119	1	48,928	Yes	1	77.2	62.1	1	15.1
B120 B121	1	48,928 48.928	Yes Yes	1	72.7 67.4	63.5 59.2	1	9.2 8.2
B121	1	48,928	Yes	1	69.6	60.1	1	9.5
B123	1	48,928	Yes	1	71	60.9	1	10.1
B124	1	48,928	Yes	1	72.3	61.7	1	10.6
B125	1	48,928	Yes	1	73.7	62.2	1	11.5
B126	1	48,928	Yes	1	75.1	62.7	1	12.4
B127	1	48,928	Yes	1	76.2	62.8	1	13.4
B128 B129	1	48,928 48,928	Yes Yes	1	76.4 76.9	63.3 63.3	1	13.1 13.6
B130	1	48,928	Yes	1	77.5	64	1	13.5
B131	1	48,928	Yes	1	68.5	59.7	1	8.8
B132	1	48,928	Yes	1	69.8	60.3	1	9.5
B133	1	48,928	Yes	1	70.3	60.4	1	9.9
B134	1	48,928	Yes	1	70.6	60.5	1	10.1
B135	1	48,928	Yes	1	70.8	60.4	1	10.4
B136 B137	1	48,928 48,928	Yes Yes	1	71.9 69.8	61.2 60.2	1	10.7 9.6
B137 B138	1	48,928 48,928	Yes Yes	1	73.6	60.2	1	9.6
B139	1	48,928	Yes	1	76	62.9	1	13.1
B140	1	48,928	Yes	1	76.6	63.1	1	13.5
B141	1	48,928	Yes	1	76.1	63.1	1	13
B142	1	48,928	Yes	1	72.9	63.3	1	9.6
B143	1	48,928	Yes	1	71.3	62.4	1	8.9
B144	1	48,928	Yes	1	70.6 75.9	61.7	1	8.9 11.4
B214 B470	1	48,928 48,928	Yes Yes	1	65.8	64.5 58.6	0	7.2
B470	1	48,928	Yes	1	64.6	58.1	0	6.5
B472	1	48,928	Yes	1	63.2	57.4	0	5.8
B473	1	48,928	Yes	1	62.3	56.6	0	5.7
B474	1	48,928	Yes	1	61.3	56.1	0	5.2
B475	1	48,928	No	0	60.2	55.6	0	4.6
B476	1	48,928	No	0	59.3	55.1	0	4.2
B477 B478	1	48,928	No No	0	58.9 58.8	54.2 53.9	0	4.7 4.9
B478 B479	1	48,928 48,928	Yes	1	59.4	54.4	0	5
B480	1	48,928	Yes	1	59.2	54.2	0	5
B481	1	48,928	Yes	1	59.8	54.5	0	5.3
B482	1	48,928	Yes	1	59.9	54.4	0	5.5
B483	1	48,928	Yes	1	60.6	55	0	5.6
B484	1	48,928	Yes	1	60.5	54.9	0	5.6
B485	1	48,928	Yes Yes	1	61.2	55.4	0	5.8 6.2
B486 B487	1	48,928 48,928	Yes	1	62 61.9	55.8 55.7	0	6.2
B488	1	48,928	Yes	1	63	56.6	0	6.4
B489	1	48,928	Yes	1	64	57.2	0	6.8
B490	1	48,928	Yes	1	64.8	57.8	0	7
B491	1	48,928	Yes	1	66.1	58.5	0	7.6
B492	1	48,928	Yes	1	63.7	56.9	0	6.8
B493 B494	1	48,928 48,928	Yes Yes	1	63.9 64.3	57 57.2	0	6.9 7.1
B494 B495	1	48,928 48,928	Yes	1	66	57.2	0	7.1
B496	1	48,928	Yes	1	66.9	58.7	0	8.2
B497	1	48,928	Yes	1	67.1	58.9	0	8.2
B498	1	48,928	Yes	1	66.1	58.6	0	7.5
B499	1	48,928	Yes	1	69.2	60.9	1	8.3
B500	1	48,928	Yes	1	68.2	60.2	1	8
B501	1	48,928	Yes	1	67.3 66.4	59.7	0	7.6 7.4
B502 B503	1	48,928 48,928	Yes Yes	1	65.6	59 58.4	0	7.4
B504	1	48,928	Yes	1	64.5	57.6	0	6.9
B505	1	48,928	Yes	1	62.8	56.5	0	6.3
B506	1	48,928	Yes	1	61.6	55.7	0	5.9
B507	1	48,928	Yes	1	60.7	55	0	5.7
B508	1	48,928	Yes	1	60.3	54.8	0	5.5
B509	1	48,928	Yes	1	59.5	54.2	0	5.3
B510 B511	1	48,928 48,928	Yes No	0	58.9 58.2	53.9 53.4	0	5 4.8
B511 B512	1	48,928 48,928	No No	0	58.2	53.4	0	2.2
B512	1	48,928	No	0	62.8	59.5	0	3.3
B514	1	48,928	No	0	63.3	59.1	0	4.2
B515	1	48,928	No	0	61.4	57.7	0	3.7
B516	1	48,928	No	0	59.1	56.3	0	2.8
					Impacted			Benefitted

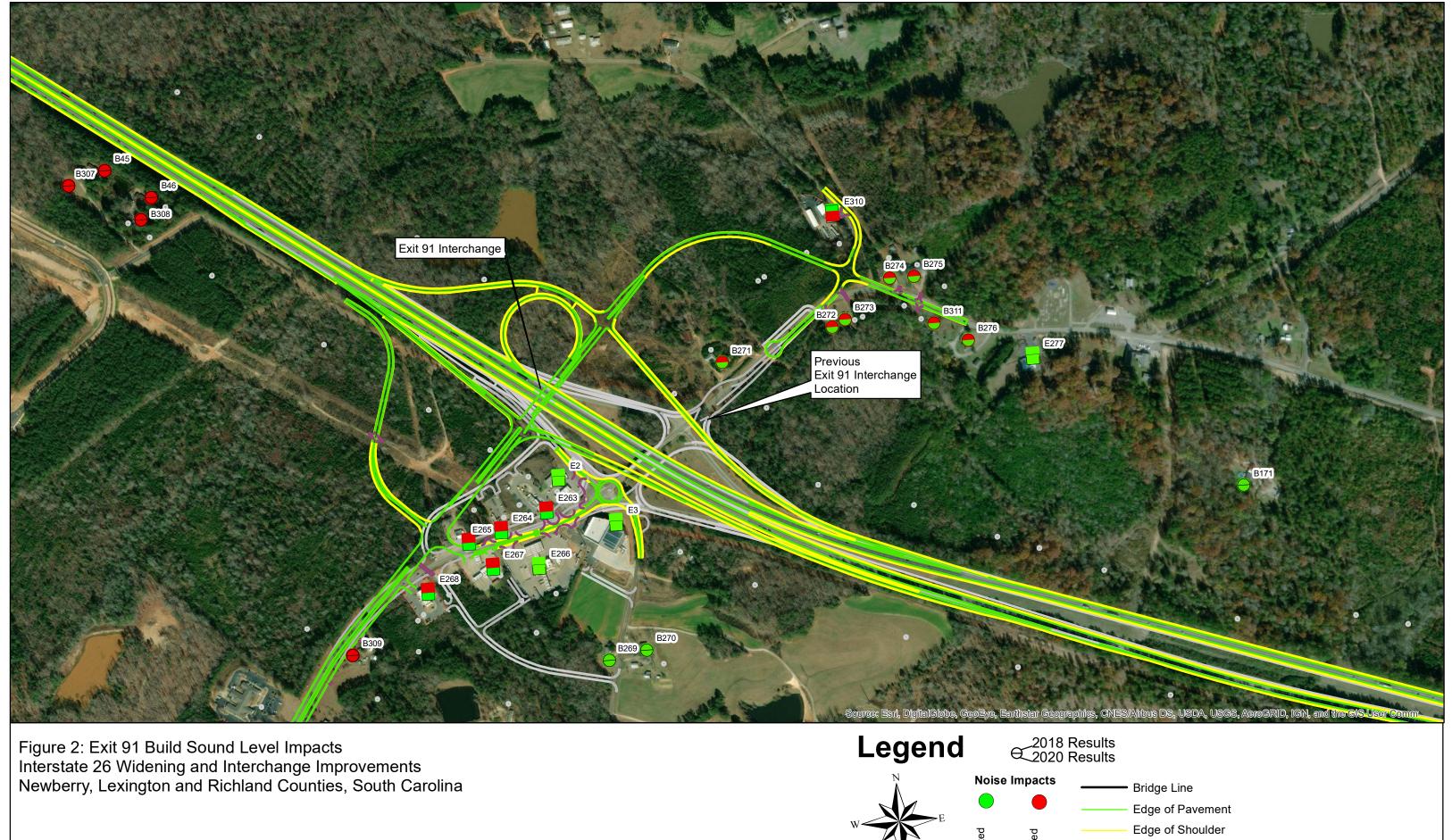
Attachment B – Noise Barrier Design Details

			BARRIER	5 DESIGN			
Sta.	х	Υ	Ground	Barrier Height	Length of Wall	Top of Wall	Cumm. Length
890+08.00	1,922,870.90	844,123.80	Elevation 367.2	25	20	392.2	0
890+08.00		·	367.43	25	20	392.2	20
	1,922,852.60	844,132.10 844,140.30		25	20		40
890+48.00	1,922,834.40		367.66 367.88	25	20	392.66	60
890+68.00	1,922,816.30	844,148.60		25	20	392.88	80
890+88.00	1,922,798.00	844,156.80 844,165.10	368.11	25	20	393.11	100
891+08.00	1,922,779.80	844,173.30	368.29	25	20	393.29	120
891+28.00	1,922,761.60	,	368.39 368.49	25	20	393.39	140
891+48.00	1,922,743.30	844,181.60		25	20	393.49	160
891+68.00	1,922,725.10	844,189.90	368.58			393.58	+
891+88.00	1,922,706.90	844,198.10	368.68	25 25	20 20	393.68	180
892+08.00	1,922,688.80	844,206.40	368.78			393.78	200
892+28.00	1,922,670.50	844,214.60	368.88	25	20	393.88	220
892+48.00	1,922,652.30	844,222.90	368.98	25	20	393.98	240
892+68.00	1,922,634.00	844,231.10	369.09	25	20	394.09	260
892+88.00	1,922,615.80	844,239.40	369.19	25	20	394.19	280
893+08.00	1,922,597.60	844,247.70	369.33	25	20	394.33	300
893+28.00	1,922,579.40	844,255.90	369.51	25	20	394.51	320
893+48.00	1,922,561.30	844,264.20	369.7	25	20	394.7	340
893+68.00	1,922,543.00	844,272.40	371.05	25	20	396.05	360
893+88.00	1,922,524.80	844,280.70	371.3	25	20	396.3	380
894+08.00	1,922,506.50	844,288.90	371.57	25	20	396.57	400
894+28.00	1,922,488.30	844,297.20	371.88	25	20	396.88	420
894+48.00	1,922,470.10	844,305.50	372.19	25	20	397.19	440
894+68.00	1,922,451.90	844,313.70	371.05	25	20	396.05	460
894+88.00	1,922,433.80	844,322.00	371.3	25	20	396.3	480
895+08.00	1,922,415.50	844,330.20	371.57	25	20	396.57	500
895+28.00	1,922,397.30	844,338.50	371.88	25	20	396.88	520
895+48.00	1,922,379.00	844,346.70	372.19	25	20	397.19	540
895+68.00	1,922,360.80	844,355.00	372.5	25	20	397.5	560
895+88.00	1,922,342.60	844,363.30	372.81	25	20	397.81	580
896+08.00	1,922,324.40	844,371.50	373.15	25	20	398.15	600
896+28.00	1,922,306.30	844,379.80	373.54	25	20	398.54	620
896+48.00	1,922,287.90	844,388.00	373.92	25	20	398.92	640
896+68.00	1,922,269.80	844,396.30	374.31	25	20	399.31	660
896+88.00	1,922,251.50	844,404.50	374.69	25	20	399.69	680
897+08.00	1,922,233.30	844,412.80	375.1	25	20	400.1	700
897+28.00	1,922,215.10	844,421.10	375.56	25	20	400.56	720
897+48.00	1,922,196.90	844,429.30	376.01	25	20	401.01	740
897+68.00	1,922,178.60	844,437.60	376.47	25	20	401.47	760
897+88.00	1,922,160.40	844,445.80	376.93	25	20	401.93	780
898+08.00	1,922,142.30	844,454.10	377.4	25	20	402.4	800
898+28.00	1,922,124.00	844,462.30	377.88	25	20	402.88	820
898+48.00	1,922,105.80	844,470.60	378.37	25	20	403.37	840
898+68.00	1,922,087.60	844,478.90	378.86	25	20	403.86	860
898+88.00	1,922,069.30	844,487.10	379.35	25	20	404.35	880
899+08.00	1,922,051.10	844,495.40	379.83	25	20	404.83	900
899+28.00	1,922,032.90	844,503.60	380.31	25	20	405.31	920
899+48.00	1,922,014.80	844,511.90	380.78	25	20	405.78	940
899+68.00	1,921,996.50	844,520.10	381.26	25	20	406.26	960
899+88.00	1,921,978.30	844,528.40	381.73	25	20	406.73	980
900+08.00	1,921,960.10	844,536.70	382.2	25	20	407.2	1000

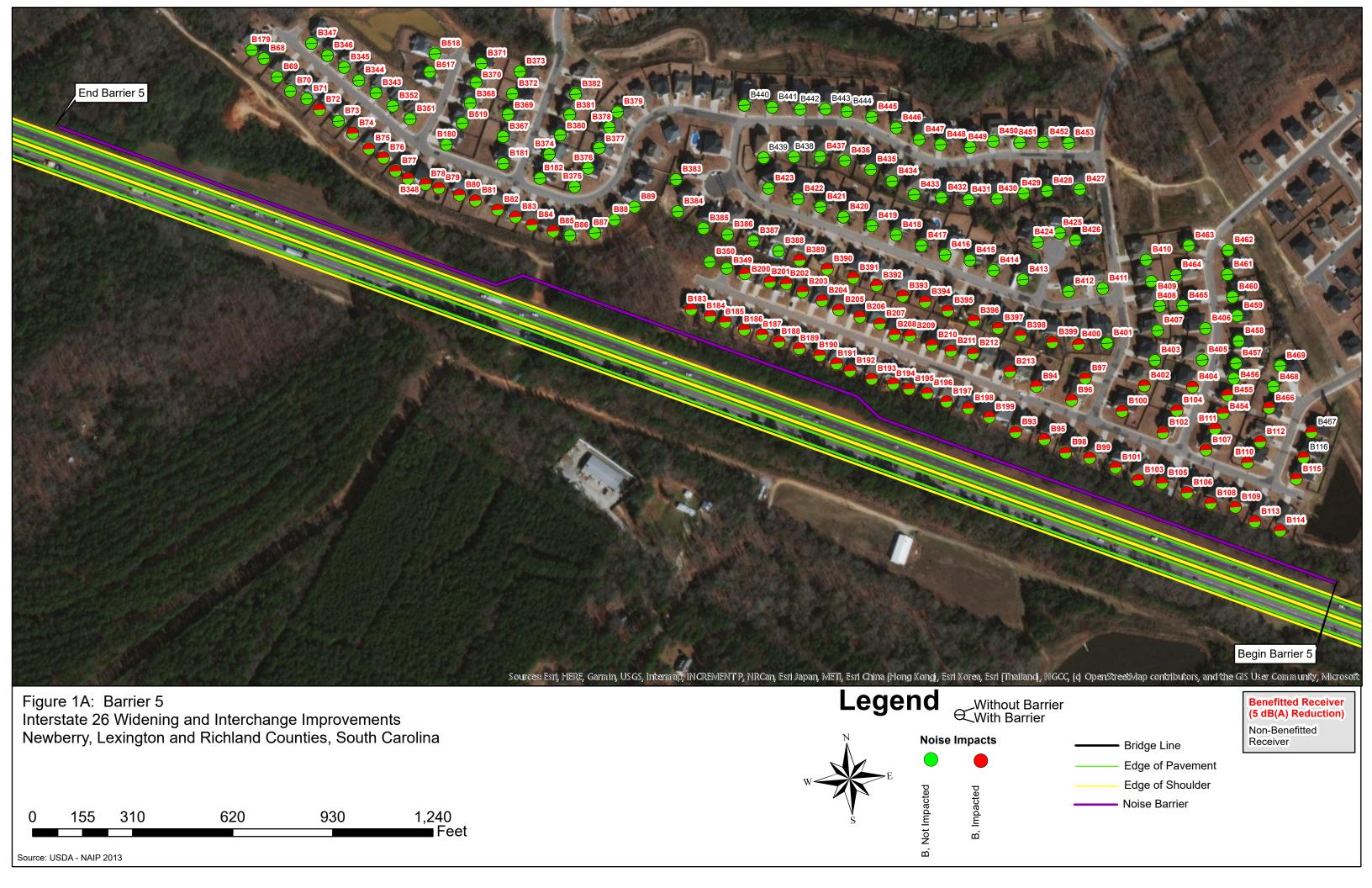
			BARRIER	5 DESIGN			
Sta.	х	Y	Ground Elevation	Barrier Height	Length of Wall	Top of Wall	Cumm. Length
900+28.00	1,921,941.80	844,544.90	382.66	25	20	407.66	1020
900+48.00	1,921,923.60	844,553.20	383.12	25	20	408.12	1040
900+68.00	1,921,905.40	844,561.40	383.58	25	20	408.58	1060
900+88.00	1,921,887.30	844,569.70	384.04	25	20	409.04	1080
901+08.00	1,921,869.00	844,577.90	384.49	25	20	409.49	1100
901+28.00	1,921,850.80	844,586.20	384.93	25	20	409.93	1120
901+48.00	1,921,832.50	844,594.40	385.38	25	20	410.38	1140
901+68.00	1,921,814.30	844,602.70	385.83	25	20	410.83	1160
901+88.00	1,921,796.10	844,611.00	386.27	25	20	411.27	1180
902+08.00	1,921,777.90	844,619.20	386.72	25	20	411.72	1200
902+28.00	1,921,759.80	844,627.50	387.17	25	20	412.17	1220
902+48.00	1,921,741.50	844,635.70	387.62	25	20	412.62	1240
902+68.00	1,921,723.30	844,644.00	388.06	25	20	413.06	1260
902+88.00	1,921,705.00	844,652.20	388.51	25	20	413.51	1280
903+08.00	1,921,686.80	844,660.50	388.96	25	20	413.96	1300
903+28.00	1,921,668.60	844,668.80	389.41	25	20	414.41	1320
903+48.00	1,921,650.40	844,677.00	389.86	25	20	414.86	1340
903+68.00	1,921,632.30	844,685.30	390.32	25	20	415.32	1360
903+88.00	1,921,613.90	844,693.50	390.77	25	20	415.77	1380
904+08.00	1,921,595.80	844,701.80	391.22	25	20	416.22	1400
904+28.00	1,921,577.50	844,710.00	391.68	25	20	416.68	1420
904+48.00	1,921,559.30	844,718.30	392.14	25	20	417.14	1440
904+68.00	1,921,541.10	844,726.60	392.6	25	20	417.6	1460
904+88.00	1,921,522.90	844,734.80	393.06	25	20	418.06	1480
905+08.00	1,921,504.80	844,743.10	393.76	25	2	418.76	1500
905+09.98	1,921,502.80	844,743.90	393.87	25	20	418.87	1502
905+29.98	1,921,489.40	844,758.70	394.94	25	20	419.94	1522
905+49.98	1,921,476.00	844,773.50	396.02	25	20	421.02	1542
905+69.98	1,921,462.60	844,788.40	397.09	25	20	422.09	1562
905+89.98	1,921,449.30	844,803.20	398.17	23	18	421.17	1582
906+08.08	1,921,437.00	844,816.60	399.14	23	20	422.14	1600
906+28.08	1,921,418.80	844,824.90	399.75	23	20	422.75	1620
906+48.08	1,921,400.60	844,833.10	400.36	23	20	423.36	1640
906+68.08	1,921,382.40	844,841.40	400.97	23	20	423.97	1660
906+88.08	1,921,364.10	844,849.60	401.58	23	20	424.58	1680
907+08.08	1,921,345.90	844,857.90	402.19	23	20	425.19	1700
907+28.08	1,921,327.80	844,866.10	402.84	23	20	425.84	1720
907+48.08	1,921,309.50	844,874.40	403.5	23	20	426.5	1740
907+68.08	1,921,291.30	844,882.70	404.15	23	20	427.15	1760
907+88.08	1,921,273.10	844,890.90	404.81	23	20	427.81	1780
908+08.08	1,921,254.80	844,899.20	405.47	23	20	428.47	1800
908+28.08	1,921,236.60	844,907.40	406.27	23	20	429.27	1820
908+48.08	1,921,218.40	844,915.70	407.08	23	20	430.08	1840
908+68.08	1,921,200.30	844,923.90	407.88	23	20	430.88	1860
908+88.08	1,921,182.00	844,932.20	408.69	23	20	431.69	1880
909+08.08	1,921,163.80	844,940.40	409.5	23	20	432.5	1900
909+28.08	1,921,145.50	844,948.70	411.33	23	20	434.33	1920
909+48.08	1,921,127.30	844,957.00	413.15	23	20	436.15	1940
909+68.08	1,921,109.10	844,965.20	414.98	23	20	437.98	1960
909+88.08	1,921,090.90	844,973.50	416.8	23	20	439.8	1980
910+08.08	1,921,072.80	844,981.70	418.62	23	20	441.62	2000

			BARRIER	5 DESIGN			
Sta.	х	Υ	Ground Elevation	Barrier Height	Length of Wall	Top of Wall	Cumm. Length
910+28.08	1,921,054.50	844,990.00	419.69	23	20	442.69	2020
910+48.08	1,921,036.30	844,998.20	420.75	23	20	443.75	2040
910+68.08	1,921,018.00	845,006.50	421.82	23	20	444.82	2060
910+88.08	1,920,999.80	845,014.80	422.89	23	20	445.89	2080
911+08.08	1,920,981.60	845,023.00	423.95	23	20	446.95	2100
911+28.08	1,920,963.40	845,031.30	424.69	23	20	447.69	2120
911+48.08	1,920,945.30	845,039.50	425.43	23	20	448.43	2140
911+68.08	1,920,926.90	845,047.80	426.17	23	20	449.17	2160
911+88.08	1,920,908.80	845,056.00	426.91	23	20	449.91	2180
912+08.08	1,920,890.50	845,064.30	427.65	23	20	450.65	2200
912+28.08	1,920,872.30	845,072.50	428.17	23	20	451.17	2220
912+48.08	1,920,854.10	845,080.80	428.69	23	20	451.69	2240
912+68.08	1,920,835.90	845,089.10	429.22	23	20	452.22	2260
912+88.08	1,920,817.60	845,097.30	429.74	23	20	452.74	2280
913+08.08	1,920,799.40	845,105.60	430.26	25	20	455.26	2300
913+28.08	1,920,781.30	845,113.80	429.33	25	20	454.33	2320
913+48.08	1,920,763.00	845,122.10	428.4	25	20	453.4	2340
913+68.08	1,920,744.80	845,130.30	427.47	25	20	452.47	2360
913+88.08	1,920,726.60	845,138.60	426.54	25	20	451.54	2380
914+08.08	1,920,708.30	845,146.90	425.62	25	20	450.62	2400
914+28.08	1,920,690.10	845,155.10	424.75	25	20	449.75	2420
914+48.08	1,920,671.90	845,163.40	423.89	25	20	448.89	2440
914+68.08	1,920,653.80	845,171.60	423.03	25	20	448.03	2460
914+88.08	1,920,635.50	845,179.90	422.16	25	20	447.16	2480
915+08.08	1,920,617.30	845,188.10	421.3	25	20	446.3	2500
915+28.08	1,920,599.00	845,196.40	420.43	25	20	445.43	2520
915+48.08	1,920,580.80	845,204.60	419.56	25	20	444.56	2540
915+68.08	1,920,562.60	845,212.90	418.68	25	20	443.68	2560
915+88.08	1,920,544.40	845,221.20	417.81	25	20	442.81	2580
916+08.08	1,920,526.30	845,229.40	416.94	15	20	431.94	2600
916+28.08	1,920,508.00	845,237.70	416.38	15	20	431.38	2620
916+48.08	1,920,489.80	845,245.90	415.82	15	20	430.82	2640
916+68.08	1,920,471.50	845,254.20	415.26	23	20	438.26	2660
916+88.08	1,920,453.30	845,262.40	414.7	23	20	437.7	2680
917+08.10	1,920,435.10	845,270.70	414.14	23	20	437.14	2700
917+28.10	1,920,415.80	845,265.60	413.56	23	20	436.56	2720
917+48.10	1,920,396.40	845,260.40	412.92	23	20	435.92	2740
917+68.10	1,920,377.10	845,255.30	412.28	23	20	435.28	2760
917+88.10	1,920,357.80	845,250.10	411.63	23	8	434.63	2780
917+96.17	1,920,350.00	845,248.10	411.37	23	20	434.37	2788
918+16.17	1,920,331.80	845,256.30	410.73	23	20	433.73	2808
918+36.17	1,920,313.50	845,264.60	410.41	23	20	433.41	2828
918+56.17	1,920,295.30	845,272.80	410.25	23	20	433.25	2848
918+76.17	1,920,277.10	845,281.10	410.09	23	20	433.09	2868
918+96.17	1,920,258.90	845,289.40	409.93	23	20	432.93	2888
919+16.17	1,920,240.80	845,297.60	409.77	23	20	432.77	2908
919+36.17	1,920,222.50	845,305.90	409.63	23	20	432.63	2928
919+56.17	1,920,204.30	845,314.10	409.51	23	20	432.51	2948
919+76.17	1,920,186.00	845,322.40	409.38	23	20	432.38	2968
919+96.17	1,920,167.80	845,330.60	409.25	23	20	432.25	2988
920+16.17	1,920,149.60	845,338.90	409.13	23	20	432.13	3008

			BARRIER	5 DESIGN			
Sta.	x	Υ	Ground	Barrier Height	Length of Wall	Top of Wall	Cumm. Length
			Elevation	_		-	
920+36.17	1,920,131.40	845,347.20	408.68	23	20	431.68	3028
920+56.17	1,920,113.30	845,355.40	408.07	23	20	431.07	3048
920+76.17	1,920,094.90	845,363.70	407.46	23	20	430.46	3068
920+96.17	1,920,076.80	845,371.90	406.85	23	20	429.85	3088
921+16.17	1,920,058.50	845,380.20	406.24	23	20	429.24	3108
921+36.17	1,920,040.30	845,388.40	405.91	23	20	428.91	3128
921+56.17	1,920,022.10	845,396.70	405.74	23	20	428.74	3148
921+76.17	1,920,003.90	845,405.00	405.57	23	20	428.57	3168
921+96.17	1,919,985.80	845,413.20	405.4	23	20	428.4	3188
922+16.17	1,919,967.40	845,421.50	405.23	23	20	428.23	3208
922+36.17	1,919,949.30	845,429.70	404.86	23	20	427.86	3228
922+56.17	1,919,931.00	845,438.00	404.39	23	20	427.39	3248
922+76.17	1,919,912.80	845,446.20	403.91	23	20	426.91	3268
922+96.17	1,919,894.60	845,454.50	403.44	23	20	426.44	3288
923+16.17	1,919,876.40	845,462.80	402.97	23	20	425.97	3308
923+36.17	1,919,858.10	845,471.00	402.54	23	20	425.54	3328
923+56.17	1,919,839.90	845,479.30	402.13	23	20	425.13	3348
923+76.17	1,919,821.80	845,487.50	401.72	23	20	424.72	3368
923+96.17	1,919,803.50	845,495.80	401.32	23	20	424.32	3388
924+16.17	1,919,785.30	845,504.00	400.91	23	20	423.91	3408
924+36.17	1,919,767.10	845,512.30	400.5	23	20	423.5	3428
924+56.17	1,919,748.80	845,520.50	400.1	23	20	423.1	3448
924+76.17	1,919,730.60	845,528.80	399.69	23	20	422.69	3468
924+96.17	1,919,712.40	845,537.10	399.28	23	20	422.28	3488
925+16.17	1,919,694.30	845,545.30	398.87	23	20	421.87	3508
925+36.17	1,919,676.00	845,553.60	398.47	23	20	421.47	3528
925+56.17	1,919,657.80	845,561.80	398.07	23	20	421.07	3548
925+76.17	1,919,639.50	845,570.10	397.67	23	20	420.67	3568
925+96.17	1,919,621.30	845,578.30	397.28	23	20	420.28	3588
926+16.17	1,919,603.10	845,586.60	396.88	23	20	419.88	3608
926+36.17	1,919,584.90	845,594.90	396.5	23	20	419.5	3628
926+56.17	1,919,566.80	845,603.10	396.13	23	20	419.13	3648
926+76.17	1,919,548.50	845,611.40	395.75	23	20	418.75	3668
926+96.17	1,919,530.30	845,619.60	395.38	23	20	418.38	3688
927+16.17	1,919,512.00	845,627.90	395.01	23	20	418.01	3708
927+36.17	1,919,493.80	845,636.10	394.61	23	20	417.61	3728
927+56.17	1,919,475.60	845,644.40	394.2	23	20	417.2	3748
927+76.17	1,919,457.40	845,652.70	393.79	23	20	416.79	3768
927+96.17	1,919,439.30	845,660.90	393.38	23	20	416.38	3788
928+16.17	1,919,421.00	845,669.20	392.97	23	20	415.97	3808
928+36.17	1,919,402.80	845,677.40	392.51	23	20	415.51	3828
928+56.17	1,919,384.50	845,685.70	392.02	23	20	415.02	3848
928+76.17	1,919,366.30	845,693.90	391.54	23	20	414.54	3868
928+96.17	1,919,348.10	845,702.20	391.05	23	20	414.05	3888
929+16.17	1,919,329.90	845,710.50	390.57	23	20	413.57	3908
929+36.17	1,919,311.80	845,718.70	390.2	23	20	413.2	3928
929+56.17	1,919,293.40	845,727.00	389.88	23	20	412.88	3948
929+76.17	1,919,275.30	845,735.20	389.57	23	20	412.57	3968
929+96.17	1,919,257.00	845,743.50	389.26	23	20	412.26	3988
930+16.17	1,919,238.80	845,751.70	388.95	23	20	411.95	4008
930+36.17	1,919,220.60	845,760.00	388.59	23	20	411.59	4028


			BARRIER	5 DESIGN			
Sta.	x	Υ	Ground Elevation	Barrier Height	Length of Wall	Top of Wall	Cumm. Length
930+56.17	1,919,202.40	845,768.30	388.22	23	20	411.22	4048
930+76.17	1,919,184.10	845,776.50	387.85	23	20	410.85	4068
930+96.17	1,919,165.90	845,784.80	387.47	23	20	410.47	4088
931+16.17	1,919,147.80	845,793.00	387.1	23	20	410.1	4108
931+36.17	1,919,129.50	845,801.30	386.96	23	20	409.96	4128
931+56.17	1,919,111.30	845,809.50	386.94	23	20	409.94	4148
931+76.17	1,919,093.10	845,817.80	386.92	21	20	407.92	4168
931+96.17	1,919,074.80	845,826.10	386.9	21	20	407.9	4188
932+16.17	1,919,056.60	845,834.30	386.89	19	20	405.89	4208
932+36.17	1,919,038.40	845,842.60	387.37	19	0	406.37	4228

			BARRIE	R 6 DESIGN			
Sta.	x	Υ	Elevation	Barrier Height	Length of Wall	Top of Wall	Cumm. Length
768+00.00	1,933,586.64	838,278.86	382.1071	21	20	403.1071	0
768+20.00	1,933,569.10	838,288.47	381.4361	21	20	402.4361	20
768+40.00	1,933,551.56	838,298.08	380.7651	21	20	401.7651	40
768+60.00	1,933,534.02	838,307.68	380.094	21	20	401.094	60
768+80.00	1,933,516.48	838,317.29	379.423	21	20	400.423	80
769+00.00	1,933,498.94	838,326.90	378.752	21	20	399.752	100
769+20.00	1,933,481.40	838,336.51	377.6475	21	20	398.6475	120
769+40.00	1,933,463.86	838,346.12	376.543	23	20	399.543	140
769+60.00	1,933,446.32	838,355.73	375.4385	23	20	398.4385	160
769+80.00	1,933,428.78	838,365.34	374.334	23	20	397.334	180
770+00.00	1,933,411.24	838,374.95	373.2294	23	20	396.2294	200
770+20.00	1,933,393.70	838,384.56	372.6206	23	20	395.6206	220
770+40.00	1,933,376.16	838,394.17	372.0117	23	20	395.0117	240
770+60.00	1,933,358.62	838,403.78	371.4028	23	20	394.4028	260
770+80.00	1,933,341.08	838,413.39	370.7939	23	20	393.7939	280
771+00.00	1,933,323.54	838,423.00	370.185	23	20	393.185	300
771+20.00	1,933,306.00	838,432.61	370.586	23	20	393.586	320
771+40.00	1,933,288.46	838,442.21	370.987	23	20	393.987	340
771+60.00	1,933,270.92	838,451.82	371.388	23	20	394.388	360
771+80.00	1,933,253.38	838,461.43	371.7891	23	20	394.7891	380
772+00.00	1,933,235.84	838,471.04	372.1901	23	20	395.1901	400
772+20.00	1,933,218.30	838,480.65	371.6933	23	20	394.6933	420
772+40.00	1,933,200.76	838,490.26	371.1965	23	20	394.1965	440
772+60.00	1,933,183.21	838,499.87	370.6997	25	20	395.6997	460
772+80.00	1,933,165.67	838,509.48	370.2029	25	20	395.2029	480
773+00.00	1,933,148.13	838,519.09	369.7061	25	20	394.7061	500
773+20.00	1,933,130.59	838,528.70	368.2252	25	20	393.2252	520
773+40.00	1,933,113.05	838,538.31	366.6531	25	20	391.6531	540
773+60.00	1,933,095.56	838,547.97	364.2256	25	20	389.2256	560
773+80.00	1,933,083.67	838,564.05	362.7785	25	20	387.7785	580
774+00.00	1,933,071.79	838,580.14	365.6687	25	20	390.6687	600
774+20.00	1,933,059.90	838,596.22	361.8037	25	20	386.8037	620
774+40.00	1,933,048.01	838,612.31	363.223	25	20	388.223	640
774+60.00	1,933,036.13	838,628.39	365.9492	25	20	390.9492	660
774+80.00	1,933,021.42	838,641.24	367.618	25	20	392.618	680
775+00.00	1,933,003.88	838,650.85	368.2661	25	20	393.2661	700
775+20.00	1,932,986.34	838,660.46	367.6915	25	20	392.6915	720
775+40.00	1,932,968.80	838,670.07	367.53	25	20	392.53	740
775+60.00	1,932,951.26	838,679.68	367.3686	25	20	392.3686	760
775+80.00	1,932,933.72	838,689.29	367.2071	25	20	392.2071	780
776+00.00	1,932,916.18	838,698.90	367.0456	25	20	392.0456	800
776+20.00	1,932,898.64	838,708.51	366.6843	25	19	391.6843	820
776+40.00	1,932,879.91	838,713.54	365.9041	25	20	390.9041	839
776+60.00	1,932,859.91	838,713.65	363.1969	23	20	386.1969	859
776+80.00	1,932,839.91	838,713.77	365.9736	23	20	388.9736	879
777+00.00	1,932,819.91	838,713.88	369.7243	23	20	392.7243	899
777+20.00	1,932,799.91	838,713.99	373.3466	23	20	396.3466	919
777+40.00	1,932,782.21	838,722.97	373.8364	23	20	396.8364	939
777+60.00	1,932,764.67	838,732.58	374.2498	23	20	397.2498	959
777+80.00	1,932,747.13	838,742.19	374.6633	23	20	397.6633	979


			BARRIE	R 6 DESIGN			
Sta.	x	Y	Elevation	Barrier Height	Length of Wall	Top of Wall	Cumm. Length
778+00.00	1,932,729.59	838,751.80	375.0768	23	20	398.0768	999
778+20.00	1,932,712.05	838,761.41	375.4903	23	20	398.4903	1019
778+40.00	1,932,694.51	838,771.02	375.9526	23	20	398.9526	1039
778+60.00	1,932,676.97	838,780.63	376.4179	23	20	399.4179	1059
778+80.00	1,932,659.43	838,790.24	376.8832	23	20	399.8832	1079
779+00.00	1,932,641.89	838,799.85	377.3484	23	20	400.3484	1099
779+20.00	1,932,624.35	838,809.46	377.8137	23	20	400.8137	1119
779+40.00	1,932,606.81	838,819.07	377.9003	23	20	400.9003	1139
779+60.00	1,932,589.27	838,828.68	377.9644	23	20	400.9644	1159
779+80.00	1,932,571.73	838,838.29	378.0285	23	20	401.0285	1179
780+00.00	1,932,554.19	838,847.89	378.0927	23	20	401.0927	1199
780+20.00	1,932,536.65	838,857.50	378.1568	23	20	401.1568	1219
780+40.00	1,932,519.11	838,867.11	377.5535	23	20	400.5535	1239
780+60.00	1,932,501.57	838,876.72	376.9105	23	20	399.9105	1259
780+80.00	1,932,484.03	838,886.33	376.2676	23	20	399.2676	1279
781+00.00	1,932,466.49	838,895.94	375.6246	23	20	398.6246	1299
781+20.00	1,932,448.95	838,905.55	374.9817	23	20	397.9817	1319
781+40.00	1,932,431.40	838,915.16	374.0713	23	20	397.0713	1339
781+60.00	1,932,413.86	838,924.77	373.145	23	20	396.145	1359
781+80.00	1,932,396.32	838,934.38	372.2187	23	20	395.2187	1379
782+00.00	1,932,378.78	838,943.99	371.2925	23	20	394.2925	1399
782+20.00	1,932,361.24	838,953.60	370.3662	23	20	393.3662	1419
782+40.00	1,932,343.70	838,963.21	369.2134	23	20	392.2134	1439
782+60.00	1,932,326.16	838,972.81	368.0471	23	20	391.0471	1459
782+80.00	1,932,308.62	838,982.42	366.8808	23	20	389.8808	1479
783+00.00	1,932,291.08	838,992.03	365.7146	25	20	390.7146	1499
783+20.00	1,932,273.54	839,001.64	364.5483	25	20	389.5483	1519
783+40.00	1,932,256.00	839,011.25	363.9733	25	20	388.9733	1539
783+60.00	1,932,238.46	839,020.86	363.4334	25	20	388.4334	1559
783+80.00	1,932,220.92	839,030.47	362.8935	25	20	387.8935	1579
784+00.00	1,932,203.38	839,040.08	362.3536	25	20	387.3536	1599
784+00.00	1,932,203.38	839,040.08	361.8137	25	20	386.8137	1619
784+40.00	1,932,163.84		362.5176	25	20	387.5176	1639
784+60.00	1,932,150.76	839,059.30 839,068.91	363.2952	25	20	388.2952	1659
784+80.00	1,932,130.70	839,008.91	364.0728	25	20	389.0728	1679
785+00.00	1,932,133.22	839,078.32	364.8504	25	20	389.8504	1699
785+20.00	1,932,113.08	839,088.13	365.628	23	20	388.628	1719
				23			1719
785+40.00	1,932,080.60	839,107.34	364.6597		20	387.6597	
785+60.00 785+80.00	1,932,063.06	839,116.95	363.5878 362.5159	23 23	20 20	386.5878 385.5159	1759 1779
	1,932,045.52	839,126.56					
786+00.00 786+20.00	1,932,027.98	839,136.17	361.4439	23 23	20	384.4439	1799
	1,932,010.44	839,145.78	360.372		20	383.372	1819
786+40.00	1,931,992.90	839,155.39	359.6037	23	20	382.6037	1839
786+60.00	1,931,975.36	839,165.00	358.8535	23	20	381.8535	1859
786+80.00	1,931,957.82	839,174.61	358.1032	23	20	381.1032	1879
787+00.00	1,931,940.28	839,184.22	357.353	23	20	380.353	1899
787+20.00	1,931,922.74	839,193.83	356.6027	23	20	379.6027	1919
787+40.00	1,931,905.20	839,203.44	356.8986	21	20	377.8986	1939
787+60.00	1,931,887.66	839,213.05	357.2566	21	20	378.2566	1959
787+80.00	1,931,870.11	839,222.65	357.6145	19	20	376.6145	1979

	BARRIER 6 DESIGN										
Sta.	х	Y	Elevation	Barrier Height	Length of Wall	Top of Wall	Cumm. Length				
788+00.00	1,931,852.57	839,232.26	357.9725	19	20	376.9725	1999				
788+20.00	1,931,835.03	839,241.87	358.3305	19	20	377.3305	2019				
788+40.00	1,931,817.49	839,251.48	358.5398	19	20	377.5398	2039				
788+60.00	1,931,799.95	839,261.09	358.7402	17	20	375.7402	2059				
788+80.00	1,931,782.41	839,270.70	358.9407	17	20	375.9407	2079				
789+00.00	1,931,764.87	839,280.31	359.1412	17	20	376.1412	2099				
789+20.00	1,931,747.33	839,289.92	359.3416	17	20	376.3416	2119				

Attachment C – Graphics

Noise Barrier 2,560 Feet 1,280 1,920 Source: USDA - NAIP 2013

Attachment D – TNM Noise Barrier Design Exports

n	4	C
ч	ľ	n

RESULTS: BARRIER-SEGMENT D	ESCRIPTION	NS					916					
CECS										31 March 2020)	
JLS										TNM 2.5		
RESULTS: BARRIER-SEGMENT D	FSCRIPTIO	NS										
PROJECT/CONTRACT:	916											
RUN:		idening Barr	ier 5 We	estcott								
BARRIER DESIGN:	Feasil			310011								
Barriers	i casik	Segments										
Name	Туре	Name	No.	Heights			Length	If Wall			If Berm	Cost
	. , , , ,			First	Average	Second	_0g	Area	On	Important	Volume	-
				Point	J-	Point				Reflections?	1	
				ft	ft	ft	ft	sq ft			cu yd	\$
Barrier 5 -Barrier41-Barrier42	W	890+08.00	747	25.0	0 25.00	25.00) 2	20 501	1			+
		890+28.00	748					20 500				+
		890+48.00	749) 2	20 499	9			+
		890+68.00	750	25.0	0 25.00	25.00) 2	20 500)			+
		890+88.00	751	25.0	0 25.00	25.00) 2	20 501				+
		891+08.00	752	25.0	0 25.00	25.00) 2	20 497	7			
		891+28.00	753	25.0	0 25.00	25.00) 2	20 504	1			1
		891+48.00	754	25.0	0 25.00	25.00) 2	20 498	3			
		891+68.00	755	25.0	0 25.00	25.00) 2	20 501				
		891+88.00	756	25.0	0 25.00	25.00) 2	20 498	3			
		892+08.00	757	25.0	0 25.00	25.00) 2	20 501				
		892+28.00	758	25.0	0 25.00	25.00) 2	20 501				
		892+48.00	759	25.0	0 25.00	25.00		20 501				
		892+68.00	760					20 501				
		892+88.00	761					20 499				
		893+08.00	762				2	20 500				
		893+28.00	764					20 499				
		893+48.00	532	25.0	25.00	25.00) 2	20 500				

893+68.00

893+88.00

894+08.00

894+28.00

894+48.00

894+68.00

894+88.00

895+08.00

533

534

535

536

537

538

539

540

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

0

0 0

0

0

0

0

0

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

20

20

20

20

20

20

501

500

501

499

500

499

500

501

895+28.00	541	25.00	25.00	25.00	20	500		0
895+48.00	542	25.00	25.00	25.00	20	501		0
895+68.00	543	25.00	25.00	25.00	20	499		0
895+88.00	544	25.00	25.00	25.00	20	500		0
896+08.00	545	25.00	25.00	25.00	20	499		0
896+28.00	546	25.00	25.00	25.00	20	503		0
896+48.00	547	25.00	25.00	25.00	20	499		0
896+68.00	548	25.00	25.00	25.00	20	500		0
896+88.00	549	25.00	25.00	25.00	20	501		0
897+08.00	550	25.00	25.00	25.00	20	499		0
897+28.00	551	25.00	25.00	25.00	20	500		0
897+48.00	552	25.00	25.00	25.00	20	501		0
897+68.00	553	25.00	25.00	25.00	20	500		0
897+88.00	554	25.00	25.00	25.00	20	499		0
898+08.00	555	25.00	25.00	25.00	20	500		0
898+28.00	556	25.00	25.00	25.00	20	501		0
898+48.00	557	25.00	25.00	25.00	20	498		0
898+68.00	558	25.00	25.00	25.00	20	504		0
898+88.00	559	25.00	25.00	25.00	20	498		0
899+08.00	560	25.00	25.00	25.00	20	501		0
899+28.00	561	25.00	25.00	25.00	20	498		0
899+48.00	562	25.00	25.00	25.00	20	501		0
899+68.00	563	25.00	25.00	25.00	20	501		0
899+88.00	564	25.00	25.00	25.00	20	499		0
900+08.00	565	25.00	25.00	25.00	20	503		0
900+28.00	566	25.00	25.00	25.00	20	499		0
900+48.00	567	25.00	25.00	25.00	20	500		0
900+68.00	568	25.00	25.00	25.00	20	499		0
900+88.00	569	25.00	25.00	25.00	20	500		0
901+08.00	570	25.00	25.00	25.00	20	501		0
901+28.00	571	25.00	25.00	25.00	20	500		0
901+48.00	572	25.00	25.00	25.00	20	501		0
901+68.00	573	25.00	25.00	25.00	20	499		0
901+88.00	574	25.00	25.00	25.00	20	500		0
902+08.00	575	25.00	25.00	25.00	20	499		0
902+28.00	576	25.00	25.00	25.00	20	500		0
902+48.00	577	25.00	25.00	25.00	20	501		0
902+68.00	578	25.00	25.00	25.00	20	500		0
902+88.00	579	25.00	25.00	25.00	20	501		0

903+08.00	580	25.00	25.00	25.00	20	499		0
903+28.00	581	25.00	25.00	25.00	20	500		0
903+48.00	582	25.00	25.00	25.00	20	499		0
903+68.00	583	25.00	25.00	25.00	20	503		0
903+88.00	584	25.00	25.00	25.00	20	499		0
904+08.00	585	25.00	25.00	25.00	20	500		0
904+28.00	586	25.00	25.00	25.00	20	501		0
904+48.00	587	25.00	25.00	25.00	20	499		0
904+68.00	588	25.00	25.00	25.00	20	500		0
904+88.00	589	25.00	25.00	25.00	20	499		0
905+08.00		25.00	25.00	25.00	2	53		0
905+09.98		25.00	25.00	25.00	20	499		0
905+29.98		25.00	25.00	25.00	20	499		0
905+49.98		25.00	25.00	25.00	20	500		0
905+69.98		25.00	25.00	25.00	20	499		0
905+89.98		23.00	23.00	23.00	18	418		0
906+08.08		23.00	23.00	23.00	20	461		0
906+28.08		23.00	23.00	23.00	20	458		0
906+48.08		23.00	23.00	23.00	20	461		0
906+68.08		23.00	23.00	23.00	20	461		0
906+88.08			23.00	23.00	20	461		0
907+08.08		23.00	23.00	23.00	20	458		0
907+28.08		23.00	23.00	23.00	20	461		0
907+48.08		23.00	23.00	23.00	20	461		0
907+68.08		23.00	23.00	23.00	20	457		0
907+88.08		23.00	23.00	23.00	20	464		0
908+08.08		23.00	23.00	23.00	20	457		0
908+28.08		23.00	23.00	23.00	20	461		0
908+48.08		23.00	23.00	23.00	20	457		0
908+68.08			23.00	23.00	20	461		0
908+88.08	610		23.00	23.00	20	460		0
909+08.08		23.00	23.00	23.00	20	461		0
909+28.08		23.00	23.00	23.00	20	461		0
909+48.08		23.00	23.00	23.00	20	457		0
909+68.08			23.00	23.00	20	461		0
909+88.08			23.00	23.00	20	457		0
910+08.08			23.00	23.00	20	461		0
910+28.08		23.00	23.00	23.00	20	460		0
910+48.08	618	23.00	23.00	23.00	20	461		0

910+68.08	619	23.00	23.00	23.00	20	461	0
910+88.08	620	23.00	23.00	23.00	20	457	0
911+08.08	621	23.00	23.00	23.00	20	461	0
911+28.08	622	23.00	23.00	23.00	20	457	0
911+48.08	623	23.00	23.00	23.00	20	464	0
911+68.08	624	23.00	23.00	23.00	20	457	0
911+88.08	625	23.00	23.00	23.00	20	461	0
912+08.08	626	23.00	23.00	23.00	20	460	0
912+28.08	627	23.00	23.00	23.00	20	459	0
912+48.08	628	23.00	23.00	23.00	20	461	0
912+68.08	629	23.00	23.00	23.00	20	460	0
912+88.08	630	23.00	23.00	23.00	20	461	0
913+08.08	631	25.00	25.00	25.00	20	497	0
913+28.08	632	25.00	25.00	25.00	20	501	0
913+48.08	633	25.00	25.00	25.00	20	500	0
913+68.08	634	25.00	25.00	25.00	20	499	0
913+88.08	635	25.00	25.00	25.00	20	504	0
914+08.08	636	25.00	25.00	25.00	20	498	0
914+28.08	637	25.00	25.00	25.00	20	501	0
914+48.08	638	25.00	25.00	25.00	20	498	0
914+68.08	639	25.00	25.00	25.00	20	501	0
914+88.08	640	25.00	25.00	25.00	20	501	0
915+08.08	641	25.00	25.00	25.00	20	501	0
915+28.08	642	25.00	25.00	25.00	20	501	0
915+48.08	643	25.00	25.00	25.00	20	498	0
915+68.08	644	25.00	25.00	25.00	20	501	0
915+88.08	645	25.00	25.00	25.00	20	497	0
916+08.08	646	15.00	15.00	15.00	20	301	0
916+28.08	647	15.00	15.00	15.00	20	300	0
916+48.08	648	15.00	15.00	15.00	20	301	0
916+68.08	649	23.00	23.00	23.00	20	460	0
916+88.08	650	23.00	23.00	23.00	20	459	0
917+08.10	652	23.00	23.00	23.00	20	461	0
917+28.10	653	23.00	23.00	23.00	20	462	0
917+48.10	654	23.00	23.00	23.00	20	458	0
917+68.10	655	23.00	23.00	23.00	20	461	0
917+88.10	656	23.00	23.00	23.00	8	184	0
917+96.17	657	23.00	23.00	23.00	20	460	0
918+16.17	658	23.00	23.00	23.00	20	461	0

18+96.17 669 23.00 23.00 20 460 0 0 918+96.17 661 23.00 23.00 23.00 20 461 0 0 918+76.17 661 23.00 23.00 23.00 20 461 0 0 918+96.17 662 23.00 23.00 23.00 20 461 0 0 918+36.17 663 23.00 23.00 23.00 20 461 0 0 918+36.17 663 23.00 23.00 23.00 20 461 0 0 918+36.17 666 23.00 23.00 23.00 20 461 0 0 918+6.17 666 23.00 23.00 23.00 20 461 0 0 918+6.17 666 23.00 23.00 23.00 20 461 0 0 918+6.17 666 23.00 23.00 23.00 20 461 0 0 918+6.17 666 23.00 23.00 23.00 20 461 0 0 918+6.17 668 23.00 23.00 23.00 20 461 0 0 920+6.17 668 23.00 23.00 23.00 23.00 20 461 0 0 920+6.17 670 23.00 23.00 23.00 20 467 0 0 920+6.17 671 23.00 23.00 23.00 20 464 0 0 920+6.17 671 23.00 23.00 23.00 20 464 0 0 921+6.17 672 23.00 23.00 23.00 20 461 0 0 921+6.17 673 23.00 23.00 23.00 20 469 0 0 921+6.17 674 23.00 23.00 23.00 20 469 0 0 921+6.17 676 23.00 23.00 23.00 20 461 0 0 921+6.17 676 23.00 23.00 23.00 20 461 0 0 921+6.17 678 23.00 23.00 23.00 20 461 0 0 921+6.17 678 23.00 23.00 23.00 20 461 0 0 922+6.17 678 23.00 23.00 23.00 20 461 0 0 922+6.17 678 23.00 23.00 23.00 20 461 0 0 922+6.17 678 23.00 23.00 23.00 20 461 0 0 922+6.17 678 23.00 23.00 23.00 20 461 0 0 922+6.17 678 23.00 23.00 23.00 20 461 0 0 922+6.17 678 23.00 23.00 23.00 20 461 0 0 922+6.17 678 23.00 23.00 23.00 20 461 0 0 922+6.17 678 23.00 23.00 23.00 20 461 0 0 922+6.17 688 23.00 23.00 23.00 20 461 0 0 922+6.17 688 23.00 23.00 23.00 20 461 0									
918+76.17 661 23.00 23.00 20 461 0 0 918+96.17 662 23.00 23.00 23.00 20 461 0 0 919+6.17 663 23.00 23.00 23.00 20 461 0 0 919+36.17 664 23.00 23.00 23.00 20 461 0 0 919+56.17 665 23.00 23.00 23.00 20 461 0 0 919+6.17 666 23.00 23.00 23.00 20 461 0 0 919+96.17 666 23.00 23.00 23.00 20 461 0 0 919+96.17 667 23.00 23.00 23.00 20 461 0 0 920+36.17 668 23.00 23.00 23.00 20 461 0 0 920+36.17 669 23.00 23.00 23.00 20 457 0 0 920+56.17 670 23.00 23.00 23.00 20 457 0 0 920+66.17 671 23.00 23.00 23.00 20 457 0 0 920+16.17 671 23.00 23.00 23.00 20 457 0 0 920+16.17 671 23.00 23.00 23.00 20 461 0 0 921+66.17 672 23.00 23.00 23.00 20 461 0 0 921+66.17 673 23.00 23.00 23.00 20 461 0 0 921+56.17 676 23.00 23.00 23.00 20 461 0 0 921+56.17 676 23.00 23.00 23.00 20 461 0 0 921+66.17 678 23.00 23.00 23.00 20 461 0 0 921+66.17 678 23.00 23.00 23.00 20 461 0 0 922+66.17 680 23.00 23.00 23.00 20 461 0 0 922+56.17 680 23.00 23.00 23.00 20 461 0 0 922+66.17 681 23.00 23.00 23.00 20 461 0 0 922+66.17 681 23.00 23.00 23.00 20 461 0 0 922+66.17 681 23.00 23.00 23.00 20 461 0 0 922+66.17 686 23.00 23.00 23.00 20 461 0 0 922+66.17 686 23.00 23.00 23.00 20 461 0 0 923+66.17 686 23.00 23.00 23.00 20 461 0 0 923+66.17 686 23.00 23.00 23.00 20 461 0 0 923+66.17 686 23.00 23.00 23.00 20 461 0 0 923+66.17 686 23.00 23.00 23.00 20 461 0 0 923+66.17 686 23.00 23.00 23.00 20 461 0 0 923+66.17 686 23.00 23.00 23.0	918+36.17	659	23.00	23.00	23.00	20	460		0
9184-96.17 662 23.00 23.00 23.00 20 455 0 0 9194-16.17 663 23.00 23.00 23.00 20 461 0 0 9194-6.17 664 23.00 23.00 23.00 20 461 0 0 9194-6.17 666 23.00 23.00 23.00 20 461 0 0 9194-6.17 666 23.00 23.00 23.00 20 461 0 0 9194-6.17 666 23.00 23.00 23.00 20 461 0 0 9204-16.17 668 23.00 23.00 23.00 20 455 0 0 9204-16.17 668 23.00 23.00 23.00 20 455 0 0 9204-16.17 668 23.00 23.00 23.00 20 464 0 0 0 9204-16.17 669 23.00 23.00 23.00 20 464 0 0 9204-16.17 670 23.00 23.00 23.00 20 464 0 0 0 0 0 0 0 0 0	918+56.17	660	23.00	23.00	23.00	20	459		0
919+16.17 663 23.00 23.00 23.00 20 461 0 0	918+76.17	661	23.00	23.00	23.00	20	461		0
919+36.17 664 23.00 23.00 23.00 20 461 0 0	918+96.17	662	23.00	23.00	23.00	20	458		0
919+66.17 666 23.00 23.00 23.00 20 461 0 0	919+16.17	663	23.00	23.00	23.00	20	461		0
919+76.17 666 23.00 23.00 23.00 20 461 0 0 919+96.17 667 23.00 23.00 23.00 20 468 0 0 920+16.17 668 23.00 23.00 23.00 20 461 0 0 920+56.17 669 23.00 23.00 23.00 20 461 0 0 920+56.17 670 23.00 23.00 23.00 20 464 0 0 920+56.17 671 23.00 23.00 23.00 20 464 0 0 0 0 0 0 0 0 0	919+36.17	664	23.00	23.00	23.00	20	461		0
919+96.17 667 23.00 23.00 23.00 20 458 0 0	919+56.17	665	23.00	23.00	23.00	20	461		0
920+16.17 668 23.00 23.00 20 461 0 0	919+76.17	666	23.00	23.00	23.00	20	461		0
920+36.17 669 23.00 23.00 20.00 20 457 0 0	919+96.17	667	23.00	23.00	23.00	20	458		0
920+56.17 670 23.00 23.00 23.00 20 464 0 0	920+16.17	668	23.00	23.00	23.00	20	461		0
920+76.17 671 23.00 23.00 23.00 20 457 0	920+36.17	669	23.00	23.00	23.00	20	457		0
920+96.17 672 23.00 23.00 23.00 20 461 0 0	920+56.17	670	23.00	23.00	23.00	20	464		0
921+16.17 673 23.00 23.00 23.00 20 460 0 921+36.17 674 23.00 23.00 23.00 20 459 0 921+56.17 675 23.00 23.00 23.00 20 461 0 921+76.17 676 23.00 23.00 23.00 20 461 0 921+96.17 677 23.00 23.00 23.00 20 461 0 921+96.17 677 23.00 23.00 23.00 20 464 0 922+16.17 678 23.00 23.00 23.00 20 461 0 922+36.17 679 23.00 23.00 23.00 20 461 0 922+56.17 680 23.00 23.00 23.00 20 461 0 922+56.17 681 23.00 23.00 23.00 20 460 0 922+96.17 682 23.00 23.00 23.00 20 461 0 923+36.17 683 23.00 23.00 23.00 20 461 0 923+56.17 685 23.00 23.00 23.00 20 461 0 923+56.17 686 23.00 23.00 23.00 20 460 0 923+56.17 686 23.00 23.00 23.00 20 461 0 923+56.17 686 23.00 23.00 23.00 20 461 0 923+56.17 688 23.00 23.00 23.00 20 460 0 923+76.17 688 23.00 23.00 23.00 20 461 0 923+56.17 688 23.00 23.00 23.00 20 460 0 923+76.17 688 23.00 23.00 23.00 20 460 0 923+76.17 688 23.00 23.00 23.00 20 460 0 923+76.17 688 23.00 23.00 23.00 20 460 0 923+76.17 688 23.00 23.00 23.00 20 460 0 923+76.17 689 23.00 23.00 23.00 20 460 0 923+76.17 689 23.00 23.00 23.00 20 461 0 924+56.17 699 23.00 23.00 23.00 20 461 0 924+56.17 691 23.00 23.00 23.00 20 461 0 924+56.17 692 23.00 23.00 23.00 20 461 0 924+56.17 699 23.00 23.00 23.00 20 461 0 924+56.17 699 23.00 23.00 23.00 20 461 0 925+66.17 699 23.00 23.00 23.00 20 461 0 925+66.17 699 23.00 23.00 23.00 20 461 0 925+66.17 699 23.00 23.00 23.00 20 461 0 925+66.17 699 23.00 23.00 23.00 20 461 0 925+66.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 461 0 925+76.17 699 23.00 23.00 23.00 20 460 0	920+76.17	671	23.00	23.00	23.00	20	457		0
921+36.17 674 23.00 23.00 23.00 20 459 0 921+56.17 675 23.00 23.00 23.00 20 461 0 921+76.17 676 23.00 23.00 23.00 20 457 0 921+96.17 677 23.00 23.00 23.00 20 457 0 921+96.17 678 23.00 23.00 23.00 20 464 0 922+16.17 678 23.00 23.00 23.00 20 466 0 922+36.17 679 23.00 23.00 23.00 20 461 0 922+56.17 680 23.00 23.00 23.00 20 460 0 922+66.17 681 23.00 23.00 23.00 20 460 0 922+96.17 682 23.00 23.00 23.00 20 461 0 923+16.17 683 23.00 23.00 23.00 20 461 0 923+66.17 684 23.00 23.00 23.00 20 461 0 923+66.17 685 23.00 23.00 23.00 20 461 0 923+66.17 685 23.00 23.00 23.00 20 461 0 923+66.17 685 23.00 23.00 23.00 20 461 0 923+66.17 685 23.00 23.00 23.00 20 461 0 923+66.17 686 23.00 23.00 23.00 20 461 0 923+66.17 686 23.00 23.00 23.00 20 461 0 923+66.17 686 23.00 23.00 23.00 20 461 0 923+66.17 686 23.00 23.00 23.00 20 461 0 923+66.17 686 23.00 23.00 23.00 20 461 0 923+66.17 686 23.00 23.00 23.00 20 461 0 923+61.17 688 23.00 23.00 23.00 20 460 0 924+6.17 691 23.00 23.00 23.00 20 463 0 924+76.17 691 23.00 23.00 23.00 20 461 0 924+76.17 691 23.00 23.00 23.00 20 461 0 925+76.17 692 23.00 23.00 23.00 20 461 0 925+76.17 692 23.00 23.00 23.00 20 461 0 925+76.17 692 23.00 23.00 23.00 20 461 0 925+76.17 692 23.00 23.00 23.00 20 461 0 925+76.17 692 23.00 23.00 23.00 20 461 0 925+76.17 692 23.00 23.00 23.00 20 461 0 925+76.17 692 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0	920+96.17	672	23.00	23.00	23.00	20	461		0
921+56.17 675 23.00 23.00 23.00 20 461 0 921+76.17 676 23.00 23.00 23.00 20 457 0 921+96.17 677 23.00 23.00 23.00 20 457 0 922+16.17 678 23.00 23.00 23.00 20 464 0 922+36.17 679 23.00 23.00 23.00 20 461 0 922+36.17 680 23.00 23.00 23.00 20 460 0 922+96.17 681 23.00 23.00 23.00 20 460 0 922+96.17 682 23.00 23.00 23.00 20 461 0 923+16.17 683 23.00 23.00 23.00 20 460 0 923+36.17 684 23.00 23.00 23.00 20 461 0 923+76.17 686 23.00 23.00 23.00 20 461 0 923+76.17 686 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 461 0 923+96.17 686 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 460 0 923+96.17 687 23.00 23.00 23.00 20 460 0 923+96.17 688 23.00 23.00 23.00 20 461 0 923+96.17 689 23.00 23.00 23.00 20 460 0 924+6.17 690 23.00 23.00 23.00 20 459 0 924+76.17 691 23.00 23.00 23.00 20 461 0 924+76.17 691 23.00 23.00 23.00 20 461 0 925+36.17 692 23.00 23.00 23.00 20 461 0 925+36.17 693 23.00 23.00 23.00 20 461 0 925+36.17 693 23.00 23.00 23.00 20 461 0 925+36.17 692 23.00 23.00 23.00 20 461 0 925+36.17 693 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 461 0 925+36.17 695 23.00 23.00 23.00 20 461 0 925+36.17 695 23.00 23.00 23.00 20 460 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+66.17 695 23.00 23.00 23.00 20 461 0 925+66.17 695 23.00 23.00 23.00 20 461 0 925+66.17 695 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+66.17 695 23.00 23.00 23.00 20 461 0 925+66.17 696 23.00 23.00 23.00 20 461 0 925+66.17 695 23.00 23.00 23.00 20 461 0 925+66.17 695 23.00 23.00 23.00 20 461 0	921+16.17	673	23.00	23.00	23.00	20	460		0
921+76.17 676 23.00 23.00 23.00 20 457 0 921+96.17 677 23.00 23.00 23.00 20 464 0 922+16.17 678 23.00 23.00 23.00 20 464 0 922+36.17 679 23.00 23.00 23.00 20 461 0 922+56.17 680 23.00 23.00 23.00 20 460 0 922+96.17 681 23.00 23.00 23.00 20 460 0 922+96.17 682 23.00 23.00 23.00 20 461 0 923+16.17 683 23.00 23.00 23.00 20 461 0 923+36.17 684 23.00 23.00 23.00 20 461 0 923+56.17 686 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 461 0 923+96.17 688 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 460 0 924+36.17 689 23.00 23.00 23.00 20 463 0 924+56.17 691 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 460 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+56.17 696 23.00 23.00 23.00 20 461 0 925+56.17 696 23.00 23.00 23.00 20 461 0 925+66.17 696 23.00 23.00 23.00 20 461 0 925+66.17 696 23.00 23.00 23.00 20 461 0 925+56.17 696 23.00 23.00 23.00 20 461 0 925+66.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.0	921+36.17	674	23.00	23.00	23.00	20	459		0
921+96.17 677 23.00 23.00 23.00 20 464 0 922+16.17 678 23.00 23.00 23.00 20 457 0 922+36.17 680 23.00 23.00 23.00 20 460 0 922+76.17 681 23.00 23.00 23.00 20 460 0 922+96.17 682 23.00 23.00 23.00 20 461 0 922+96.17 682 23.00 23.00 23.00 20 460 0 923+36.17 684 23.00 23.00 23.00 20 461 0 923+6.17 686 23.00 23.00 23.00 20 461 0 923+6.17 686 23.00 23.00 23.00 20 461 0 923+96.17 686 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 460 0 924+16.17 688 23.00 23.00 23.00 20 460 0 924+56.17 689 23.00 23.00 23.00 20 463 0 924+76.17 691 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 460 0 925+56.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00	921+56.17	675	23.00	23.00	23.00	20	461		0
922+16.17 678 23.00 23.00 23.00 20 457 0 922+36.17 679 23.00 23.00 23.00 20 461 0 922+56.17 680 23.00 23.00 23.00 20 460 0 922+76.17 681 23.00 23.00 23.00 20 460 0 922+96.17 682 23.00 23.00 23.00 20 461 0 923+16.17 683 23.00 23.00 23.00 20 461 0 923+36.17 684 23.00 23.00 23.00 20 461 0 923+56.17 685 23.00 23.00 23.00 20 461 0 923+56.17 686 23.00 23.00 23.00 20 461 0 923+6.17 686 23.00 23.00 23.00 20 461 0 923+6.17 686 23.00 23.00 23.00 20 461 0 923+6.17 686 23.00 23.00 23.00 20 461 0 923+6.17 686 23.00 23.00 23.00 20 461 0 923+6.17 686 23.00 23.00 23.00 20 461 0 923+6.17 687 23.00 23.00 23.00 20 460 0 924+6.17 688 23.00 23.00 23.00 20 469 0 924+6.17 689 23.00 23.00 23.00 20 463 0 924+6.17 690 23.00 23.00 23.00 20 461 0 924+6.17 691 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 20 461 0 925+6.17 693 23.00 23.00 23.00 20 461 0 925+6.17 694 23.00 23.00 23.00 20 461 0 925+6.17 695 23.00 23.00 23.00 20 460 0 925+6.17 695 23.00 23.00 23.00 20 460 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 695 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 460 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 461 0 925+6.17 696 23.00 23.00 23.00 20 460 0	921+76.17	676	23.00	23.00	23.00	20	457		0
922+36.17 679 23.00 23.00 23.00 20 461 0 0 922+56.17 680 23.00 23.00 23.00 20 460 0 0 922+96.17 681 23.00 23.00 23.00 20 459 0 0 922+96.17 682 23.00 23.00 23.00 20 461 0 0 923+16.17 683 23.00 23.00 23.00 20 461 0 0 923+36.17 684 23.00 23.00 23.00 20 461 0 0 923+56.17 685 23.00 23.00 23.00 20 461 0 0 923+76.17 686 23.00 23.00 23.00 20 461 0 0 923+76.17 686 23.00 23.00 23.00 20 461 0 0 923+96.17 687 23.00 23.00 23.00 20 461 0 0 924+16.17 688 23.00 23.00 23.00 20 460 0 0 924+16.17 689 23.00 23.00 23.00 23.00 20 469 0 0 924+56.17 691 23.00 23.00 23.00 20 461 0 0 924+76.17 691 23.00 23.00 23.00 20 461 0 0 924+96.17 692 23.00 23.00 23.00 20 461 0 0 924+96.17 691 23.00 23.00 23.00 20 461 0 0 924+96.17 691 23.00 23.00 23.00 20 461 0 0 924+96.17 692 23.00 23.00 23.00 20 461 0 0 924+96.17 692 23.00 23.00 23.00 20 461 0 0 925+16.17 693 23.00 23.00 23.00 20 461 0 0 925+36.17 694 23.00 23.00 23.00 20 460 0 0 925+36.17 695 23.00 23.00 23.00 20 460 0 0 925+76.17 696 23.00 23.00 23.00 20 460 0 0		677	23.00	23.00	23.00	20	464		
922+56.17 680 23.00 23.00 23.00 20 460 0 922+76.17 681 23.00 23.00 23.00 20 459 0 922+96.17 682 23.00 23.00 23.00 20 461 0 923+16.17 683 23.00 23.00 23.00 20 461 0 923+56.17 686 23.00 23.00 23.00 20 461 0 923+76.17 687 23.00 23.00 23.00 20 461 0 923+6.17 688 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 460 0 924+16.17 688 23.00 23.00 23.00 20 461 0 924+76.17 689 23.00 23.00 23.00 20 460 0 924+76.17 690 23.00 23.00 23.00 20 463 0 924+76.17 691 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 20 461 0 925+16.17 693 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 461 0 925+36.17 695 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 460 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0	922+16.17	678	23.00		23.00	20	457		0
922+76.17 681 23.00 23.00 23.00 20 459 0 922+96.17 682 23.00 23.00 23.00 20 461 0 923+16.17 683 23.00 23.00 23.00 20 460 0 923+36.17 684 23.00 23.00 23.00 20 461 0 923+56.17 685 23.00 23.00 23.00 20 461 0 923+76.17 686 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 461 0 924+16.17 688 23.00 23.00 23.00 20 460 0 924+36.17 689 23.00 23.00 23.00 20 463 0 924+56.17 690 23.00 23.00 23.00 20 463 0 924+76.17 691 23.00 23.00 23.00 20 461 0 924+76.17 692 23.00 23.00 23.00 20 461 0 925+16.17 692 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0									
922+96.17 682 23.00 23.00 20 461 0 923+16.17 683 23.00 23.00 23.00 20 460 0 923+36.17 684 23.00 23.00 23.00 20 461 0 923+56.17 685 23.00 23.00 23.00 20 461 0 923+76.17 686 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 460 0 924+16.17 688 23.00 23.00 23.00 20 460 0 924+36.17 690 23.00 23.00 23.00 20 461 0 924+56.17 691 23.00 23.00 23.00 20 461 0 924+96.17 691 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 20 461 0 924+96.17 691 23.00 23.00 23.00 20 461 0 925+16.17 693 23.00 23.00 23.00 20 461 0 925+16.17 693 23.00 23.00 23.00 20 461 0 925+16.17 693 23.00 23.00 23.00 20 461 0 925+56.17 694 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 695 23.00 23.00 23.00 20 461 0 925+76.17 695 23.00 23.00 23.00 20 461 0 925+76.17 695 23.00 23.00 23.00 20 461 0 925+76.17 695 23.00 23.00 23.00 20 461 0 925+76.17 695 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0 925+76.17 696 23.00 23.00 23.00 20 460 0	922+56.17	680				20			0
923+16.17 683 23.00 23.00 23.00 20 460 0 923+36.17 684 23.00 23.00 23.00 20 461 0 923+56.17 685 23.00 23.00 23.00 20 457 0 923+76.17 686 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 460 0 924+16.17 688 23.00 23.00 23.00 20 469 0 924+36.17 689 23.00 23.00 23.00 20 463 0 924+56.17 690 23.00 23.00 23.00 20 459 0 924+76.17 691 23.00 23.00 23.00 20 459 0 924+96.17 692 23.00 23.00 23.00 20 461 0 925+16.17 693 23.00 23.00 23.00 20 461 0 925+56.17 695									0
923+36.17 684 23.00 23.00 20 461 0 923+56.17 685 23.00 23.00 23.00 20 457 0 923+76.17 686 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 460 0 924+16.17 688 23.00 23.00 23.00 20 459 0 924+36.17 689 23.00 23.00 23.00 20 463 0 924+56.17 690 23.00 23.00 23.00 20 459 0 924+76.17 691 23.00 23.00 23.00 20 459 0 924+96.17 691 23.00 23.00 23.00 20 461 0 925+16.17 692 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00	922+96.17	682	23.00	23.00	23.00	20	461		0
923+56.17 685 23.00 23.00 23.00 20 457 0 923+76.17 686 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 460 0 924+16.17 688 23.00 23.00 23.00 20 459 0 924+36.17 689 23.00 23.00 23.00 20 463 0 924+56.17 690 23.00 23.00 23.00 20 459 0 924+76.17 691 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 20 457 0 925+16.17 693 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 696									0
923+76.17 686 23.00 23.00 23.00 20 461 0 923+96.17 687 23.00 23.00 23.00 20 460 0 924+16.17 688 23.00 23.00 23.00 20 459 0 924+36.17 689 23.00 23.00 23.00 20 463 0 924+56.17 690 23.00 23.00 23.00 20 459 0 924+76.17 691 23.00 23.00 23.00 20 459 0 924+96.17 691 23.00 23.00 23.00 20 461 0 925+16.17 692 23.00 23.00 23.00 20 457 0 925+36.17 694 23.00 23.00 23.00 20 461 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0	923+36.17	684	23.00	23.00	23.00	20	461		0
923+96.17 687 23.00 23.00 23.00 20 460 0 924+16.17 688 23.00 23.00 23.00 20 459 0 924+36.17 689 23.00 23.00 23.00 20 463 0 924+56.17 690 23.00 23.00 23.00 20 459 0 924+76.17 691 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 2457 0 925+16.17 693 23.00 23.00 23.00 2461 0 925+36.17 694 23.00 23.00 23.00 2460 0 925+56.17 695 23.00 23.00 23.00 2461 0 925+76.17 696 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0									
924+16.17 688 23.00 23.00 23.00 20 459 0 924+36.17 689 23.00 23.00 23.00 20 463 0 924+56.17 690 23.00 23.00 23.00 20 459 0 924+76.17 691 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 20 457 0 925+16.17 693 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 460 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0	923+76.17	686	23.00			20	461		
924+36.17 689 23.00 23.00 23.00 20 463 0 924+56.17 690 23.00 23.00 23.00 20 459 0 924+76.17 691 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 20 457 0 925+16.17 693 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 460 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0		687	23.00			20	460		0
924+56.17 690 23.00 23.00 23.00 20 459 0 924+76.17 691 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 20 457 0 925+16.17 693 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 460 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0		688							
924+76.17 691 23.00 23.00 23.00 20 461 0 924+96.17 692 23.00 23.00 23.00 20 457 0 925+16.17 693 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 460 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0	924+36.17	689					463		0
924+96.17 692 23.00 23.00 23.00 20 457 0 925+16.17 693 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 460 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0		690							
925+16.17 693 23.00 23.00 23.00 20 461 0 925+36.17 694 23.00 23.00 23.00 20 460 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0		691					461		0
925+36.17 694 23.00 23.00 20 460 0 925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0		692	23.00	23.00	23.00	20	457		0
925+56.17 695 23.00 23.00 23.00 20 461 0 925+76.17 696 23.00 23.00 23.00 20 460 0		693	23.00	23.00	23.00	20	461		0
925+76.17 696 23.00 23.00 20 460 0		694	23.00	23.00	23.00	20	460		
						20			
925+96.17 697 23.00 23.00 20 459 0	925+76.17	696	23.00	23.00	23.00	20			
	925+96.17	697	23.00	23.00	23.00	20	459		0

926+16.17	698	23.00	23.00	23.00	20	461		0
926+36.17	699	23.00	23.00	23.00	20	458		0
926+56.17	700	23.00	23.00	23.00	20	461		0
926+76.17	701	23.00	23.00	23.00	20	461		0
926+96.17	702	23.00	23.00	23.00	20	461		0
927+16.17	703	23.00	23.00	23.00	20	461		0
927+36.17	704	23.00	23.00	23.00	20	458		0
927+56.17	705	23.00	23.00	23.00	20	461		0
927+76.17	706	23.00	23.00	23.00	20	457		0
927+96.17	707	23.00	23.00	23.00	20	461		0
928+16.17	708	23.00	23.00	23.00	20	460		0
928+36.17	709	23.00	23.00	23.00	20	461		0
928+56.17	710	23.00	23.00	23.00	20	460		0
928+76.17	711	23.00	23.00	23.00	20	459		0
928+96.17	712	23.00	23.00	23.00	20	461		0
929+16.17	713	23.00	23.00	23.00	20	457		0
929+36.17	714	23.00	23.00	23.00	20	464		0
929+56.17	715	23.00	23.00	23.00	20	457		0
929+76.17	716	23.00	23.00	23.00	20	461		0
929+96.17	717	23.00	23.00	23.00	20	460		0
930+16.17	718	23.00	23.00	23.00	20	459		0
930+36.17	719	23.00	23.00	23.00	20	461		0
930+56.17	720	23.00	23.00	23.00	20	460		0
930+76.17	721	23.00	23.00	23.00	20	461		0
930+96.17	722	23.00	23.00	23.00	20	457		0
931+16.17	723	23.00	23.00	23.00	20	461		0
931+36.17	724	23.00	23.00	23.00	20	460		0
931+56.17	725	23.00	23.00	23.00	20	459		0
931+76.17	726	21.00	21.00	21.00	20	424		0
931+96.17	727	21.00	21.00	21.00	20	418		0
932+16.17	728	19.00	19.00	19.00	20	381		0
932+36.17	729	0.00	0.00	0.00	0	0		0
932+56.17	730	0.00	0.00	0.00	0	0		0
932+76.17	731	0.00	0.00	0.00	0	0		0
932+96.17	732	0.00	0.00	0.00	0	0		0
933+16.17	733	0.00	0.00	0.00	0	0		0
933+36.17	734	0.00	0.00	0.00	0	0		0
933+56.17	735	0.00	0.00	0.00	0	0		0
933+76.17	736	0.00	0.00	0.00	0	0		0

RESULTS: BARRIER-SEGMENT DESCRIPTIONS

916

933+96.17	737	0.00	0.00	0.00	0	0		0
934+16.17	738	0.00	0.00	0.00	0	0		0

CECS					31 March 2020	
JLS					TNM 2.5	

RESULTS: BARRIER-SEGMENT DESCRIPTIONS

PROJECT/CONTRACT: 916

RUN: I-26 Widening Barrier 6 Arbor Springs

BARRIER DESIGN:	Barrie	r 6 Final										
Barriers		Segments										
Name	Туре	Name	No.	Heights			Length	If Wall			If Berm	Cost
				First	Average	Second		Area	On	Important	Volume	
				Point		Point			Struc?	Reflections?		
				ft	ft	ft	ft	sq ft			cu yd	\$
Barrier9	W	768+00.00	335	21.00	21.00	21.00	20	419				
		768+20.00	336	21.00	21.00	21.00	20	419				
		768+40.00	337	21.00	21.00	21.00	20	421				
		768+60.00	338	21.00	21.00	21.00	20	419				
		768+80.00	339	21.00	21.00	21.00	20	421				
		769+00.00	340	21.00	21.00	21.00	20	419				
		769+20.00	341	21.00	21.00	21.00	20	419				
		769+40.00	342	23.00	23.00	23.00	20	461				
		769+60.00	343	23.00	23.00	23.00	20	459				
		769+80.00	344	23.00	23.00	23.00	20	459				
		770+00.00	345	23.00	23.00	23.00	20	461				
		770+20.00	346									
		770+40.00	347	23.00	23.00	23.00						
		770+60.00	348	23.00	23.00							
		770+80.00	349									
		771+00.00	350	23.00	23.00	23.00	20	459				
		771+20.00	351	23.00	23.00	23.00	20	459				
		771+40.00	352	23.00	23.00	23.00						
		771+60.00	353	23.00	23.00	23.00	20	459				
		771+80.00	354	23.00	23.00	23.00	20	462				
		772+00.00	355									
		772+20.00	356				_					
		772+40.00	357	23.00	23.00							
		772+60.00	358	25.00	25.00	25.00	20	499				
		772+80.00	359	25.00	25.00	25.00	20	502				
		773+00.00	360	25.00	25.00	25.00	20	499				

77	73+20.00	361	25.00	25.00	25.00	20	499		0
77	73+40.00	362	25.00	25.00	25.00	20	500		0
77	73+60.00	363	25.00	25.00	25.00	20	501		0
77	73+80.00	364	25.00	25.00	25.00	20	500		0
77	74+00.00	365	25.00	25.00	25.00	20	499		0
77	74+20.00	366	25.00	25.00	25.00	20	501		0
77	74+40.00	367	25.00	25.00	25.00	20	499		0
77	74+60.00	368	25.00	25.00	25.00	20	488		0
77	74+80.00	369	25.00	25.00	25.00	20	500		0
77	75+00.00	370	25.00	25.00	25.00	20	502		0
77	75+20.00	371	25.00	25.00	25.00	20	499		0
	75+40.00	372	25.00	25.00	25.00	20	499		0
	75+60.00	373	25.00	25.00	25.00	20	499		0
	75+80.00	374	25.00	25.00	25.00	20	499		0
	76+00.00	375	25.00	25.00	25.00	20	502		0
77	76+20.00	376	25.00	25.00	25.00	19	485		0
	76+40.00	377	25.00	25.00	25.00	20	500		0
	76+60.00	378	23.00	23.00	23.00	20	460		0
	76+80.00	379	23.00	23.00	23.00	20	460		0
	77+00.00	380	23.00	23.00	23.00	20	460		0
	77+20.00	381	23.00	23.00	23.00	20	455		0
	77+40.00	382	23.00	23.00	23.00	20	459		0
	77+60.00	383	23.00	23.00	23.00	20	461		0
	77+80.00	384	23.00	23.00	23.00	20	459		0
	78+00.00	385	23.00	23.00	23.00	20	461		0
	78+20.00	386	23.00	23.00	23.00	20	459		0
	78+40.00	387	23.00	23.00	23.00	20	459		0
	78+60.00	388	23.00	23.00	23.00	20	461		0
	78+80.00	389	23.00	23.00	23.00	20	459		0
	79+00.00	390	23.00	23.00	23.00	20	463		0
77	79+20.00	391	23.00	23.00	23.00	20	459		0
	79+40.00	392	23.00	23.00	23.00	20	459		0
	79+60.00	393	23.00	23.00	23.00	20	459		0
	79+80.00	394	23.00	23.00	23.00	20	459		0
	30+00.00	395	23.00	23.00	23.00	20	462		0
	30+20.00	396	23.00	23.00	23.00	20	459		0
	30+40.00	397	23.00	23.00	23.00	20	459		0
	30+60.00	398	23.00	23.00	23.00	20	462		0
78	30+80.00	399	23.00	23.00	23.00	20	459		0

781+00.00	400	23.00	23.00	23.00	20	463		0
781+20.00	401	23.00	23.00	23.00	20	459		0
781+40.00	402	23.00	23.00	23.00	20	459		0
781+60.00	403	23.00	23.00	23.00	20	461		0
781+80.00	404	23.00	23.00	23.00	20	459		0
782+00.00	405	23.00	23.00	23.00	20	459		0
782+20.00	406	23.00	23.00	23.00	20	459		0
782+40.00	407	23.00	23.00	23.00	20	459		0
782+60.00	408	23.00	23.00	23.00	20	461		0
782+80.00	409	23.00	23.00	23.00	20	459		0
783+00.00	410	25.00	25.00	25.00	20	502		0
783+20.00	411	25.00	25.00	25.00	20	500		0
783+40.00	412	25.00	25.00	25.00	20	499		0
783+60.00	413	25.00	25.00	25.00	20	502		0
783+80.00	414	25.00	25.00	25.00	20	499		0
784+00.00	415	25.00	25.00	25.00	20	501		0
784+20.00	416	25.00	25.00	25.00	20	499		0
784+40.00	417	25.00	25.00	25.00	20	499		0
784+60.00	418	25.00	25.00	25.00	20	499		0
784+80.00	419	25.00	25.00	25.00	20	499		0
785+00.00	420	25.00	25.00	25.00	20	501		0
785+20.00	421	23.00	23.00	23.00	20	459		0
785+40.00	422	23.00	23.00	23.00	20	460		0
785+60.00	423	23.00	23.00	23.00	20	462		0
785+80.00	424	23.00	23.00	23.00	20	459		0
786+00.00	425	23.00	23.00	23.00	20	462		0
786+20.00	426	23.00	23.00	23.00	20	459		0
786+40.00	427	23.00	23.00	23.00	20	459		0
786+60.00	428	23.00	23.00	23.00	20	462		0
786+80.00	429	23.00	23.00	23.00	20	459		0
787+00.00	430	23.00	23.00	23.00	20	459		0
787+20.00	431	23.00	23.00	23.00	20	459		0
787+40.00	432	21.00	21.00	21.00	20	419		0
787+60.00	433	21.00	21.00	21.00	20	422		0
787+80.00	434	19.00	19.00	19.00	20	379		0
788+00.00	435	19.00	19.00	19.00	20	381		0
788+20.00	436	19.00	19.00	19.00	20	379	_	0
788+40.00	437	19.00	19.00	19.00	20	379		0
788+60.00	438	17.00	17.00	17.00	20	341		0

RESULTS: BARRIER-SEGMENT DESCRIPTIONS

916

788+80.00	439	17.00	17.00	17.00	20	340		0
789+00.00	440	17.00	17.00	17.00	20	341		0

Attachment E – TNM Sound Level Exports

<Project Name?>

NESSETS. SOOND ELVEES						`	i roject iva					
<organization?></organization?>							7 April 20	20				
<analysis by?=""></analysis>							7 April 202	20				
Alialysis by :>							_	d with TNN	12.5			
RESULTS: SOUND LEVELS							Guiodiato		. 2.0			
PROJECT/CONTRACT:		<proje< td=""><td>ct Name?></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></proje<>	ct Name?>									
RUN:		<run 1<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></run>										
BARRIER DESIGN:			HEIGHTS					Average r	avement type	shall be use	d unless	
										y substantiate		
ATMOSPHERICS:		68 deg	F, 50% RH							approval of F		
Receiver												-
Name	No.	#DUs	Existing	No Barrier					With Barrier			
				LAeq1h		Increase over	existing	Туре	Calculated	Noise Reduc	tion	
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
												Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
G1	2		0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	3 0.0
E5	3		0.0	0.0	66	0.0	10	inactive	0.0	0.0	3	3 0.0
E6	4		0.0	0.0	66	0.0	10	inactive	0.0	0.0	3	3 0.0
B45	33		0.0	0.0	66	0.0	10	inactive	0.0	0.0	3	3 0.0
B46	34		0.0	0.0	66	0.0	10	inactive	0.0	0.0	3	0.0
B47	35		0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B48	36		0.0	0.0	66	0.0	10	inactive	0.0	0.0	3	0.0
B49	37		0.0	0.0	66	0.0	10	inactive	0.0	0.0	3	0.0
B50	38		0.0	0.0	66	0.0	10	inactive	0.0	0.0	3	0.0
B51	39	1	0.0						0.0	0.0	3	- 1
B52	40	_	0.0	0.0			10	inactive	0.0	0.0	3	0.0
B53	41	_	0.0	0.0			10	inactive	0.0	0.0	3	0.0
B54	42		0.0	0.0				inactive	0.0	0.0		
B55	43	1	0.0	0.0				inactive	0.0	0.0		0.0
B56	44		0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	
B57	45		0.0	0.0				inactive	0.0	0.0	8	
B58	46	1	0.0	0.0			10	inactive	0.0	0.0		
B59	47		0.0	0.0					0.0			0.0
B60	48	1	0.0						0.0			
B61	49			0.0					0.0			0.0
B62	50	1							0.0			
B63	51								0.0			
B64	52	1							0.0			0.0
B65	53		0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0

RESULTS: SOUND LEVELS						<proj< th=""><th>ect Nan</th><th>ne?></th><th></th><th></th><th></th><th></th></proj<>	ect Nan	ne?>				
B66	54	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B67	55	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B68	56	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B69	57	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B70	58	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B71	59	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B72	60	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B73	61	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B74	62	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B75	63	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B76	64	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B77	65	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B78	66	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B79	67	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B80	68	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B81	69	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B82	70	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B83	71	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B84	72	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B85	73	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B86	74	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B87	75	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B88	76	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B89	77	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
E90	78	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B91	79	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
E92	80	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B93	81	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B94	82	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B95	83	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B96	84	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B97	85	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B98	86	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B99	87	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B100	88	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B101	89	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B102	90	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B103	91	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B104	92	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B105	93	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B106	94	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0

RESULTS: SOUND LEVEL	S				<	Project Nan	ne?>				
B107	95	1 0.0	0.0	66	0.0		inactive	0.0	0.0	8	0.0
B108	96	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B109	97	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B110	98	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B111	99	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B112	100	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B113	101	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B114	102	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B115	103	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B116	104	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B171	156	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B172	157	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B173	158	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B174	159	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B175	160	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B176	161	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B177	162	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B178	163	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B179	164	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B180	165	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B181	166	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B182	167	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B183	168	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B184	169	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B185	170	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B186		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B187		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B188		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B189		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B190		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B191		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B192		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B193		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B194		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B195	100	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0		0.0
B196		1 0.0	0.0	66	0.0		inactive	0.0	0.0		0.0
B197	-	1 0.0	0.0	66	0.0		inactive	0.0	0.0		0.0
B198		1 0.0	0.0	66	0.0		inactive	0.0	0.0		0.0
B199		1 0.0	0.0	66	0.0		inactive	0.0	0.0		0.0
B200		1 0.0	0.0	66	0.0		inactive	0.0	0.0		0.0
B201	186	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0

RESULTS: SOUND LEVELS	}				<	Project Nan	ne?>				
B202	187	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B203	188	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B204	189	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B205	190	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B206	191	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B207	192	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B208	193	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B209	194	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B210	195	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B211	196	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B212	197	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B213	198	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
G249	205	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
G250	206	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B307	224	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B308	225	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B312	226	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B313	227	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B314	228	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B315	229	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B316	230	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B317	231	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B318		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B319	233	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B320	234	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B321		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B322		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B323	_~.	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B324		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B325		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B326		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B327		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B328		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B329		1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B330	240	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0		0.0
B331		1 0.0	0.0	66	0.0		inactive	0.0	0.0		0.0
B332		1 0.0	0.0	66	0.0		inactive	0.0			0.0
B333	-	1 0.0	0.0	66	0.0		inactive	0.0	0.0		0.0
E334		1 0.0	0.0	66	0.0		inactive	0.0	0.0		0.0
B335		1 0.0	0.0	66	0.0		inactive	0.0	0.0		0.0
B336	251	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0

RESULTS: SOUND LEVELS					<	Project Nan	ne?>				
B337	252	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B338	253	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
C339	254	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B340	255	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B341	256	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
C342	257	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B343	258	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B344	259	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B345	260	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B346	261	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B347	262	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B348	263	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B349	264	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B350	265	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B351	266	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B352	267	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B353	268	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B367	281	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B368	282	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B369	283	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B370	284	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B371	285	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B372	286	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B373	287	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B374	288	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B375	289	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B376	290	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B377	291	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B378	292	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B379	293	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B380	294	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B381	295	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B382	296	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B383	297	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B384	298	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B385	299	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B386	300	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B387	301	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B388	302	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B389	303	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B390	304	1 0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0

B391 B392 B393	305 306	1	0.0	0.0	66	0.0	4.0			0.0		
	306			0.0	00	0.0	10	inactive	0.0	0.0	8	0.0
Pana		1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
Dogo	307	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B394	308	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B395	309	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B396	310	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B397	311	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B398	312	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B399	313	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B400	314	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B401	315	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B402	316	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B403	317	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B404	318	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B405	319	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B406	320	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B407	321	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B408	322	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B409	323	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B410	324	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B411	325	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B412	326	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B413	327	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B414	328	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B415	329	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B416	330	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B417	331	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B418	332	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B419	333	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B420	334	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B421	335	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B422	336	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B423	337	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B424	338	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B425	339	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B426	340	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B427	341	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B428	342	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B429	343	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B430	344	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B431	345	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0

RESULTS: SOUND LEVELS						<proj< th=""><th>ject Nan</th><th>ne?></th><th></th><th></th><th></th><th></th></proj<>	ject Nan	ne?>				
B432	346	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B433	347	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B434	348	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B435	349	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B436	350	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B437	351	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B438	352	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B439	353	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B440	354	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B441	355	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B442	356	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B443	357	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B444	358	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B445	359	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B446	360	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B447	361	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B448	362	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B449	363	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B450	364	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B451	365	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B452	366	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B453	367	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B454	368	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B455	369	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B456	370	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B457	371	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B458	372	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B459	373	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B460	374	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B461	375	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B462	376	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B463	377	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B464	378	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B465	379	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B466	380	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B467	381	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B468	382	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B469	383	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B517	431	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B518	432	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0
B519	433	1	0.0	0.0	66	0.0	10	inactive	0.0	0.0	8	0.0

RESULTS: SOUND LEVELS							<	Project Nar	ne?>				
E2	477	1	0.0	6	8.8	66	68.8	10		68.8	0.0	8	-8.0
E3	478	1	0.0	6	7.0	66	67.0	10	Snd Lvl	67.0	0.0	8	-8.0
E1	479	1	0.0	6	7.1	66	67.1	10	Snd Lvl	67.1	0.0	8	-8.0
E263	480	1	0.0	6	6.4	66	66.4	10	Snd Lvl	66.4	0.0	8	-8.0
E264	481	1	0.0	6	7.1	66	67.1	10	Snd Lvl	67.1	0.0	8	-8.0
E265	482	1	0.0	6	9.9	66	69.9	10	Snd Lvl	69.9	0.0	8	-8.0
E266	483	1	0.0	6	2.4	66	62.4	10		62.4	0.0	8	-8.0
E267	484	1	0.0	6	4.5	66	64.5	10		64.5	0.0	8	-8.0
E268	485	1	0.0	6	7.9	66	67.9	10	Snd Lvl	67.9	0.0	8	-8.0
B269	486	1	0.0	5	7.1	66	57.1	10		57.1	0.0	8	-8.0
B270	487	1	0.0	5	8.3	66	58.3	10		58.3	0.0	8	-8.0
B271	488	1	0.0	6	2.5	66	62.5	10		62.5	0.0	8	-8.0
B272	489	1	0.0	6	2.3	66	62.3	10		62.3	0.0	8	-8.0
B273	491	1	0.0	6	1.8	66	61.8	10		61.8	0.0	8	-8.0
B274	492	1	0.0	6	5.6	66	65.6	10		65.6	0.0	8	-8.0
B275	493	1	0.0	6	0.7	66	60.7	10		60.7	0.0	8	-8.0
B276	494	1	0.0	5	9.3	66	59.3	10		59.3	0.0	8	-8.0
E277	495	1	0.0	5	5.7	66	55.7	10		55.7	0.0	8	-8.0
B309	496	1	0.0	7	5.3	66	75.3	10	Snd Lvl	75.3	0.0	8	-8.0
E310	497	1	0.0	6	7.3	66	67.3	10	Snd Lvl	67.3	0.0	8	-8.0
B311	499	1	0.0	6	4.4	66	64.4	10		64.4	0.0	8	-8.0
Dwelling Units		# DUs	Noise Red	duction									
			Min	Avg	Max								
			dB	dB	dB								

0.0

0.0

0.0

291

0.0

0.0

0.0

0.0

0.0

0.0

All Selected

All Impacted

All that meet NR Goal

				1					1			
CECS							21 March	2020				
JLS							31 March TNM 2.5	2020				
JLO							_	d with TNN	125			
RESULTS: SOUND LEVELS							Calculated	u with finiv	1 2.5			
PROJECT/CONTRACT:		916										
RUN:			donina Bar	rier 5 Westco	44							
BARRIER DESIGN:		Feasibl	_	ilei 5 Westco	u			Avorago r	avoment type	shall be use	d unloce	
BARRIER DESIGN.		reasibi	e							silali be use substantiate		
ATMOSPHERICS:		97 dog	F, 50% RH							approval of F		
		or ueg	1 , 30 /6 KH		-	+		OI a ulliel	ent type with	approvar or r		
Receiver												
Name	No.	#DUs	Existing	No Barrier				_	With Barrier			
			LAeq1h	LAeq1h		Increase over		Туре	Calculated	Noise Reduc		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
			ID 4	15.4	ID A	in.	in .		ID 4	15	l n	Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
B68	162		0.0						57.4			
B69	163		0.0	65.1	66		15		57.5			
B70	164								57.6			
B71	165	1	0.0	65.8	66	65.8	15		57.5			
B72	166				66		_		57.9			_
B73	167		0.0						57.8			
B74	168		0.0	66.0					57.8			
B75	169								57.9			
B76	170	1	0.0						58.2			
B77	171	1							58.5			
B78	172		0.0						58.6			
B79	173						_		58.4		1	
B80	174		0.0						58.4			
B81	175								58.4			
B82	176		0.0				_		58.5		_	
B83	177				66				58.6			
B84	178		0.0						58.6			
B85	179		0.0						58.6			
B86	180		0.0						58.1			
B87	181								57.2			
B88	182								56.4			
B89	183		0.0				_		55.9			
B93	184		0.0						61.2		8	
B94	185	1	0.0	70.5	66	70.5	15	Snd Lvl	59.4	11.1	8	3.1

B95	186	1	0.0	74.9	66	74.9	15	Snd Lvl	61.0	13.9	8	5.9
B96	187	1	0.0	70.5	66	70.5		Snd Lvl	59.6	10.9	8	2.9
B97	188	1	0.0	68.6	66	68.6		Snd Lvl	58.6	10.0	8	2.0
B98	391	1	0.0	75.3	66	75.3	15	Snd Lvl	61.7	13.6	8	5.6
B99	594	1	0.0	74.0	66	74.0	15	Snd Lvl	61.2	12.8	8	4.8
B100	595	1	0.0	69.4	66	69.4	15	Snd Lvl	59.5	9.9	8	1.9
B101	596	1	0.0	73.9	66	73.9		Snd Lvl	61.3	12.6	8	4.6
B102	597	1	0.0	70.3	66	70.3		Snd Lvl	60.2	10.1	8	2.1
B103	598	1	0.0	75.3	66	75.3	15	Snd Lvl	61.6	13.7	8	5.7
B104	599	1	0.0	68.6	66	68.6	15	Snd Lvl	59.5	9.1	8	1.1
B105	600	1	0.0	74.9	66	74.9	15	Snd Lvl	61.8	13.1	8	5.1
B106	601	1	0.0	74.4	66	74.4		Snd Lvl	62.1	12.3	8	4.3
B107	602	1	0.0	70.3	66	70.3		Snd Lvl	61.0	9.3	8	1.3
B108	603	1	0.0	73.6	66	73.6		Snd Lvl	62.5	11.1	8	3.1
B109	604	1	0.0	71.5	66	71.5	15	Snd Lvl	62.9	8.6	8	0.6
B110	605	1	0.0	70.1	66	70.1	15	Snd Lvl	62.1	8.0	8	0.0
B111	606	1	0.0	68.8	66	68.8	15	Snd Lvl	60.4	8.4	8	0.4
B112	607	1	0.0	68.3	66	68.3	15	Snd Lvl	61.4	6.9	8	-1.1
B113	608	1	0.0	71.4	66	71.4	15	Snd Lvl	63.7	7.7	8	-0.3
B114	610	1	0.0	71.0	66	71.0	15	Snd Lvl	64.4	6.6	8	-1.4
B115	611	1	0.0	68.6	66	68.6	15	Snd Lvl	63.5	5.1	8	-2.9
B116	612	1	0.0	67.6	66	67.6	15	Snd Lvl	62.8	4.8	8	-3.2
B179	613	1	0.0	64.4	66	64.4	15		57.5	6.9	8	-1.1
B180	614	1	0.0	64.9	66	64.9	15		56.6	8.3	8	0.3
B181	615	1	0.0	64.2	66	64.2	15		56.5	7.7	8	-0.3
B182	616	1	0.0	63.7	66	63.7	15		56.4	7.3	8	-0.7
B183	617	1	0.0	73.7	66	73.7	15	Snd Lvl	61.4	12.3	8	4.3
B184	618	1	0.0	73.2	66	73.2		Snd Lvl	61.2	12.0	8	4.0
B185	619	1	0.0	73.9	66	73.9		Snd Lvl	61.6	12.3	8	4.3
B186	620	1	0.0	74.3	66	74.3	15	Snd Lvl	61.8	12.5	8	4.5
B187	621	1	0.0	74.1	66	74.1	15	Snd Lvl	61.6	12.5	8	4.5
B188	622	1	0.0	74.6	66	74.6		Snd Lvl	61.7	12.9	8	4.9
B189	623	1	0.0	74.0	66	74.0		Snd Lvl	60.9	13.1	8	5.1
B190	624	1	0.0	74.1	66	74.1	15	Snd Lvl	61.1	13.0	8	5.0
B191	625	1	0.0	74.8	66	74.8	15	Snd Lvl	61.5	13.3	8	5.3
B192	626	1	0.0	75.1	66	75.1		Snd Lvl	61.6	13.5	8	5.5
B193	627	1	0.0	75.1	66	75.1		Snd Lvl	61.3	13.8	8	5.8
B194	628	1	0.0	74.9	66	74.9		Snd Lvl	61.3	13.6	8	5.6
B195	629	1	0.0	74.8	66	74.8		Snd Lvl	61.7	13.1	8	5.1
B196	630	1	0.0	74.5	66	74.5	15	Snd Lvl	61.1	13.4	8	5.4
B197	631	1	0.0	74.6	66	74.6	15	Snd Lvl	61.0	13.6	8	5.6

RESULTS: SOUND LEVELS	
-----------------------	--

NEGOLIO. GOOIND LEVELS						310	•					
B198	632	1	0.0	74.4	66	74.4	15	Snd Lvl	60.8	13.6	8	5.6
B199	633	1	0.0	74.6	66	74.6	15	Snd Lvl	60.7	13.9	8	5.9
B200	634	1	0.0	67.2	66	67.2	15	Snd Lvl	58.7	8.5	8	0.5
B201	635	1	0.0	68.5	66	68.5	15	Snd Lvl	59.3	9.2	8	1.2
B202	636	1	0.0	68.6	66	68.6	15	Snd Lvl	59.4	9.2	8	1.2
B203	637	1	0.0	68.9	66	68.9	15	Snd Lvl	59.3	9.6	8	1.6
B204	638	1	0.0	69.1	66	69.1	15	Snd Lvl	59.1	10.0	8	2.0
B205	639	1	0.0	69.4	66	69.4	15	Snd Lvl	59.2	10.2	8	2.2
B206	640	1	0.0	69.5	66	69.5	15	Snd Lvl	59.2	10.3	8	2.3
B207	749	1	0.0	69.6	66	69.6	15	Snd Lvl	59.1	10.5	8	2.5
B208	688	1	0.0	70.2	66	70.2	15	Snd Lvl	59.3	10.9	8	2.9
B209	689	1	0.0	69.9	66	69.9	15	Snd Lvl	59.2	10.7	8	2.7
B210	690	1	0.0	69.9	66	69.9	15	Snd Lvl	59.3	10.6	8	2.6
B211	691	1	0.0	70.0	66	70.0	15	Snd Lvl	59.2	10.8	8	2.8
B212	692	1	0.0	69.4	66	69.4	15	Snd Lvl	58.8	10.6	8	2.6
B213	693	1	0.0	69.9	66	69.9	15	Snd Lvl	59.0	10.9	8	2.9
B343	694	1	0.0	63.9	66	63.9	15		55.9	8.0	8	0.0
B344	695	1	0.0	63.8	66	63.8	15		55.9	7.9	8	-0.1
B345	696	1	0.0	63.5	66	63.5	15		55.8	7.7	8	-0.3
B346	697	1	0.0	63.2	66	63.2	15		55.9	7.3	8	-0.7
B347	698	1	0.0	63.0	66	63.0	15		55.9	7.1	8	-0.9
B348	699	1	0.0	67.8	66	67.8	15	Snd Lvl	58.7	9.1	8	1.1
B349	735	1	0.0	65.7	66	65.7	15		58.2	7.5	8	-0.5
B350	736	1	0.0	64.5	66	64.5	15		57.8	6.7	8	-1.3
B351	749	1	0.0	64.6	66	64.6	15		56.4	8.2	8	0.2
B352	749	1	0.0	64.3	66	64.3	15		56.2	8.1	8	0.1
B367	749	1	0.0	63.0	66	63.0	15		55.5	7.5	8	-0.5
B368	749	1	0.0	62.2	66	62.2	15		54.8	7.4	8	-0.6
B369	749	1	0.0	61.7	66	61.7	15		54.6	7.1	8	-0.9
B370	749	1	0.0	61.3	66	61.3	15		54.1	7.2	8	-0.8
B371	749	1	0.0	60.5	66	60.5	15		53.6	6.9	8	-1.1
B372	749	1	0.0	60.7	66	60.7	15		53.9	6.8	8	-1.2
B373	749	1	0.0	59.9	66	59.9	15		53.2	6.7	8	-1.3
B374	749	1	0.0	62.2	66	62.2	15		55.4	6.8	8	-1.2
B375	749	1	0.0	62.6	66	62.6	15		56.0	6.6	8	-1.4
B376	749	1	0.0	61.2	66	61.2	15		55.2	6.0	8	-2.0
B377	749	1	0.0	60.2	66	60.2	15		54.6	5.6	8	-2.4
B378	749	1	0.0	59.3	66	59.3	15		53.7	5.6	8	-2.4
B379	749	1	0.0	58.7	66	58.7	15		53.2	5.5	8	-2.5
B380	749	1	0.0	61.0	66	61.0	15		54.6	6.4	8	-1.6
B381	749	1	0.0	60.0	66	60.0	15		53.8	6.2	8	-1.8

916

RESULTS: SOI	JND LEVELS
--------------	------------

B393								-					
B384			1					15					
B385 749 1 0.0 61.2 68 61.2 15 66.0 5.2 8 -2.8 B386 749 1 0.0 63.1 66 61.8 15 56.2 5.6 8 -2.4 B387 749 1 0.0 63.1 66 63.1 15 56.8 6.5 8 -1.5 B388 749 1 0.0 66.3 66 66.3 15 5md LW 57.8 8.5 6 0.5 B390 749 1 0.0 66.7 66 66.7 15 Smd LW 57.8 8.9 8 0.9 B391 749 1 0.0 66.2 66 66.7 15 Smd LW 57.6 9.1 8 0.9 B393 749 1 0.0 66.7 66 66.5 15 Smd LW 57.5 9.0 6 1.0			1	0.0				15				8	II
B386	B384		1	0.0				15				8	
B387			1	0.0		66	61.2	15		56.0	5.2	8	
B388	B386	749	1	0.0	61.8	66	61.8	15		56.2	5.6	8	II
B389			1	0.0				15			6.5	8	
B390	B388		1	0.0	65.3		65.3	15		57.3	8.0	8	
B391			1	0.0				15	Snd Lvl			8	
B392	B390		1	0.0				15		57.8	8.9	8	
B393			1	0.0	66.7			15			9.1	8	
B394			1	0.0	66.2	66	66.2	15	Snd Lvl	57.4	8.8	8	8.0
B396			1	0.0				15		57.5		8	
B396			1	0.0		66		15			9.2	8	
B397 750 1 0.0 67.2 66 67.2 15 Snd Lvl 57.6 9.6 8 1.6 B398 750 1 0.0 67.2 66 67.2 15 Snd Lvl 57.5 9.6 8 1.6 B400 750 1 0.0 66.7 66 66.7 15 Snd Lvl 57.4 9.3 8 1.3 B401 750 1 0.0 66.7 66 66.7 15 Snd Lvl 57.4 9.3 8 1.3 B401 750 1 0.0 66.6 66.7 15 Snd Lvl 55.7 8.5 8 0.5 B402 750 1 0.0 66.8 66.8 15 57.7 8.1 8 0.1 B403 750 1 0.0 66.9 66 66.9 15 Snd Lvl 58.8 8.1 8 0.1 B406	B395		1	0.0	66.9	66		15			9.4	8	
B398 750 1 0.0 67.2 66 67.2 15 Snd Lvl 57.6 9.6 8 1.6 B399 750 1 0.0 66.7 16 66 67.1 15 Snd Lvl 57.5 9.6 8 1.6 B400 750 1 0.0 66.7 66 66.7 15 Snd Lvl 57.4 9.3 8 1.3 B401 750 1 0.0 66.6 66.7 15 57.2 8.5 8 0.5 B402 750 1 0.0 67.6 66 65.8 15 57.7 8.1 8 0.1 B403 750 1 0.0 66.9 66 66.9 15 Snd Lvl 58.8 8.1 8 0.1 B404 750 1 0.0 65.2 66 65.2 15 56.0 7.2 8 -0.8	B396	750	1	0.0	67.3	66	67.3	15		57.7	9.6	8	
B399 750 1 0.0 67.1 66 67.1 15 Snd Lvl 57.5 9.6 8 1.6 B400 750 1 0.0 66.7 66 66.7 15 Snd Lvl 57.4 9.3 8 1.3 B401 750 1 0.0 67.6 66 66.7 15 Snd Lvl 57.2 8.5 8 0.5 B402 750 1 0.0 67.6 66 67.6 15 Snd Lvl 58.5 9.1 8 1.1 B403 750 1 0.0 65.8 66 65.8 15 57.7 8.1 8 0.1 B403 750 1 0.0 66.9 66 66.9 15 Snd Lvl 58.8 8.1 8 0.1 B406 750 1 0.0 63.2 66 63.2 15 56.8 6.4 8 -1.6			1	0.0	67.2	66		15		57.6	9.6	8	1.6
B400 750 1 0.0 66.7 66 66.7 15 Snd Lvl 57.4 9.3 8 1.3 B401 750 1 0.0 65.7 66 65.7 15 57.2 8.5 8 0.5 B402 750 1 0.0 67.6 66 67.6 15 Snd Lvl 56.5 9.1 8 1.1 B403 750 1 0.0 66.8 66 65.8 15 57.7 8.1 8 0.1 B404 750 1 0.0 66.9 66 66.9 15 Snd Lvl 58.8 8.1 8 0.1 B405 750 1 0.0 65.2 66 65.2 15 56.8 6.4 8 -1.3 B408 750 1 0.0 62.7 66 62.7 15 56.8 6.4 8 -1.6	B398	750	1	0.0	67.2	66	67.2	15	Snd Lvl	57.6	9.6	8	1.6
B401 750 1 0.0 65.7 66 65.7 15 57.2 8.5 8 0.5 B402 750 1 0.0 67.6 66 67.6 15 Snd Lvl 58.5 9.1 8 1.1 B403 750 1 0.0 66.9 66 65.8 15 57.7 8.1 8 0.1 B404 750 1 0.0 66.9 66 66.9 15 Snd Lvl 58.8 8.1 8 0.1 B405 750 1 0.0 66.2 66 65.2 15 56.8 6.4 8 -1.6 B406 750 1 0.0 63.2 66 63.2 15 56.8 6.4 8 -1.6 B407 750 1 0.0 62.7 66 62.7 15 56.7 7.2 8 -0.8			1	0.0				15			9.6	8	1.6
B402 750 1 0.0 67.6 66 67.6 15 Snd Lvl 58.5 9.1 8 1.1 B403 750 1 0.0 65.8 66 65.8 15 57.7 8.1 8 0.1 B404 750 1 0.0 66.9 66 66.9 15 Snd Lvl 58.8 8.1 8 0.1 B405 750 1 0.0 65.2 66 65.2 15 58.0 7.2 8 -0.8 B406 750 1 0.0 63.9 66 63.2 15 56.8 6.4 8 -1.6 B407 750 1 0.0 62.7 66 62.7 15 56.0 6.7 8 -1.3 B409 750 1 0.0 61.7 66 61.7 15 56.0 6.7 8 -1.6	B400	750	1	0.0	66.7	66	66.7	15	Snd Lvl	57.4	9.3	8	
B403 750 1 0.0 65.8 66 65.8 15 57.7 8.1 8 0.1 B404 750 1 0.0 66.9 66 66.9 15 Snd Lvl 58.8 8.1 8 0.1 B405 750 1 0.0 65.2 66 65.2 15 58.0 7.2 8 -0.8 B407 750 1 0.0 63.9 66 63.9 15 56.8 6.4 8 -1.6 B408 750 1 0.0 62.7 66 62.7 15 56.7 7.2 8 -0.8 B408 750 1 0.0 61.7 66 62.7 15 56.0 6.7 8 -1.3 B410 750 1 0.0 60.8 66 60.8 15 55.5 6.4 8 -1.8	B401	750	1	0.0	65.7	66	65.7	15		57.2	8.5	8	
B404 750 1 0.0 66.9 66 66.9 15 Snd LvI 58.8 8.1 8 0.1 B405 750 1 0.0 65.2 66 65.2 15 58.0 7.2 8 -0.8 B406 750 1 0.0 63.2 66 63.2 15 56.8 6.4 8 -1.6 B407 750 1 0.0 63.9 66 63.9 15 56.8 6.4 8 -1.6 B408 750 1 0.0 62.7 66 62.7 15 56.0 6.7 8 -1.3 B409 750 1 0.0 61.7 66 61.7 15 55.3 6.4 8 -1.6 B410 750 1 0.0 62.9 66 62.9 15 55.5 7.4 8 -0.6 <td>B402</td> <td>750</td> <td>1</td> <td>0.0</td> <td>67.6</td> <td>66</td> <td>67.6</td> <td>15</td> <td>Snd Lvl</td> <td>58.5</td> <td>9.1</td> <td>8</td> <td>1.1</td>	B402	750	1	0.0	67.6	66	67.6	15	Snd Lvl	58.5	9.1	8	1.1
B405 750 1 0.0 65.2 66 65.2 15 58.0 7.2 8 -0.8 B406 750 1 0.0 63.2 66 63.2 15 56.8 6.4 8 -1.6 B407 750 1 0.0 63.9 66 63.9 15 56.7 7.2 8 -0.8 B408 750 1 0.0 62.7 66 62.7 15 56.0 6.7 8 -1.3 B409 750 1 0.0 61.7 66 61.7 15 55.3 6.4 8 -1.6 B410 750 1 0.0 60.8 66 60.8 15 55.5 7.4 8 -0.6 B412 750 1 0.0 63.6 66 63.6 15 55.5 7.4 8 -0.6 <tr< td=""><td>B403</td><td>750</td><td>1</td><td>0.0</td><td>65.8</td><td>66</td><td>65.8</td><td>15</td><td></td><td>57.7</td><td>8.1</td><td>8</td><td></td></tr<>	B403	750	1	0.0	65.8	66	65.8	15		57.7	8.1	8	
B406 750 1 0.0 63.2 66 63.2 15 56.8 6.4 8 -1.6 B407 750 1 0.0 63.9 66 63.9 15 56.7 7.2 8 -0.8 B408 750 1 0.0 62.7 66 62.7 15 56.0 6.7 8 -1.3 B409 750 1 0.0 61.7 66 61.7 15 55.3 6.4 8 -1.6 B410 750 1 0.0 60.8 66 60.8 15 55.5 6.4 8 -1.6 B411 750 1 0.0 63.6 66 62.9 15 55.5 7.4 8 -0.6 B412 750 1 0.0 63.6 66 63.6 15 55.5 7.9 8 -0.1	B404	750	1	0.0	66.9	66	66.9	15	Snd Lvl	58.8	8.1	8	0.1
B407 750 1 0.0 63.9 66 63.9 15 56.7 7.2 8 -0.8 B408 750 1 0.0 62.7 66 62.7 15 56.0 6.7 8 -1.3 B409 750 1 0.0 61.7 66 61.7 15 55.3 6.4 8 -1.6 B410 750 1 0.0 60.8 66 60.8 15 54.6 6.2 8 -1.8 B411 750 1 0.0 62.9 66 62.9 15 55.5 7.4 8 -0.6 B412 750 1 0.0 63.6 66 63.6 15 55.7 7.9 8 -0.1 B413 750 1 0.0 63.8 66 63.8 15 55.5 8.3 8 0.3 <	B405	750	1	0.0	65.2	66	65.2	15		58.0	7.2	8	-0.8
B408 750 1 0.0 62.7 66 62.7 15 56.0 6.7 8 -1.3 B409 750 1 0.0 61.7 66 61.7 15 55.3 6.4 8 -1.6 B410 750 1 0.0 60.8 66 60.8 15 54.6 6.2 8 -1.8 B411 750 1 0.0 62.9 66 62.9 15 55.5 7.4 8 -0.6 B412 750 1 0.0 63.6 66 63.6 15 55.5 7.4 8 -0.6 B413 750 1 0.0 63.8 66 63.8 15 55.5 8.3 8 0.3 B414 8 1 0.0 63.4 66 63.4 15 55.5 8.3 8 0.0			1	0.0	63.2	66	63.2	15		56.8	6.4	8	
B409 750 1 0.0 61.7 66 61.7 15 55.3 6.4 8 -1.6 B410 750 1 0.0 60.8 66 60.8 15 54.6 6.2 8 -1.8 B411 750 1 0.0 62.9 66 62.9 15 55.5 7.4 8 -0.6 B412 750 1 0.0 63.6 66 63.6 15 55.5 7.4 8 -0.6 B413 750 1 0.0 63.8 66 63.8 15 55.5 8.3 8 -0.1 B413 750 1 0.0 63.4 66 63.8 15 55.5 8.3 8 0.3 B414 8 1 0.0 63.4 66 63.4 15 55.5 8.0 8 0.0	B407	750	1	0.0	63.9	66	63.9	15		56.7	7.2	8	-0.8
B410 750 1 0.0 60.8 66 60.8 15 54.6 6.2 8 -1.8 B411 750 1 0.0 62.9 66 62.9 15 55.5 7.4 8 -0.6 B412 750 1 0.0 63.6 66 63.6 15 55.7 7.9 8 -0.1 B413 750 1 0.0 63.8 66 63.8 15 55.5 8.3 8 -0.1 B413 750 1 0.0 63.4 66 63.8 15 55.5 8.3 8 0.3 B414 8 1 0.0 63.4 66 63.4 15 55.4 8.0 8 0.0 B415 752 1 0.0 63.4 66 63.4 15 55.3 8.1 8 0.1 <			1					15			I .	8	
B411 750 1 0.0 62.9 66 62.9 15 55.5 7.4 8 -0.6 B412 750 1 0.0 63.6 66 63.6 15 55.7 7.9 8 -0.1 B413 750 1 0.0 63.8 66 63.8 15 55.5 8.3 8 0.3 B414 8 1 0.0 63.4 66 63.4 15 55.5 8.3 8 0.3 B415 752 1 0.0 63.4 66 63.4 15 55.3 8.1 8 0.0 B416 753 1 0.0 63.4 66 63.4 15 55.4 8.0 8 0.0 B417 754 1 0.0 63.1 66 63.1 15 55.3 7.8 8 -0.2 B418 755 1 0.0 62.7 66 62.7 15 <td>B409</td> <td>750</td> <td>1</td> <td>0.0</td> <td>61.7</td> <td>66</td> <td>61.7</td> <td>15</td> <td></td> <td>55.3</td> <td>6.4</td> <td>8</td> <td>-1.6</td>	B409	750	1	0.0	61.7	66	61.7	15		55.3	6.4	8	-1.6
B412 750 1 0.0 63.6 66 63.6 15 55.7 7.9 8 -0.1 B413 750 1 0.0 63.8 66 63.8 15 55.5 8.3 8 0.3 B414 8 1 0.0 63.4 66 63.4 15 55.4 8.0 8 0.0 B415 752 1 0.0 63.4 66 63.4 15 55.3 8.1 8 0.1 B416 753 1 0.0 63.4 66 63.4 15 55.3 8.1 8 0.1 B417 754 1 0.0 63.1 66 63.1 15 55.3 7.8 8 -0.2 B418 755 1 0.0 62.7 66 62.7 15 55.2 7.5 8 -0.5 B420 757 1 0.0 62.2 66 62.2 15	B410		1	0.0	60.8	66	60.8	15		54.6	6.2	8	-1.8
B413 750 1 0.0 63.8 66 63.8 15 55.5 8.3 8 0.3 B414 8 1 0.0 63.4 66 63.4 15 55.4 8.0 8 0.0 B415 752 1 0.0 63.4 66 63.4 15 55.3 8.1 8 0.1 B416 753 1 0.0 63.4 66 63.4 15 55.4 8.0 8 0.0 B417 754 1 0.0 63.1 66 63.1 15 55.3 7.8 8 -0.2 B418 755 1 0.0 62.7 66 62.7 15 55.2 7.5 8 -0.5 B419 756 1 0.0 62.4 66 62.4 15 55.2 7.2 8 -0.8 <t< td=""><td>B411</td><td>750</td><td>1</td><td>0.0</td><td>62.9</td><td>66</td><td>62.9</td><td>15</td><td></td><td>55.5</td><td>7.4</td><td>8</td><td>-0.6</td></t<>	B411	750	1	0.0	62.9	66	62.9	15		55.5	7.4	8	-0.6
B414 8 1 0.0 63.4 66 63.4 15 55.4 8.0 8 0.0 B415 752 1 0.0 63.4 66 63.4 15 55.3 8.1 8 0.1 B416 753 1 0.0 63.4 66 63.4 15 55.4 8.0 8 0.0 B417 754 1 0.0 63.1 66 63.1 15 55.3 7.8 8 -0.2 B418 755 1 0.0 62.7 66 62.7 15 55.2 7.5 8 -0.5 B419 756 1 0.0 62.4 66 62.4 15 55.2 7.2 8 -0.8 B420 757 1 0.0 62.2 66 62.2 15 55.2 7.0 8 -1.0 B421 758 1 0.0 61.6 66 61.6 15 <td>B412</td> <td>750</td> <td>1</td> <td>0.0</td> <td>63.6</td> <td>66</td> <td>63.6</td> <td>15</td> <td></td> <td>55.7</td> <td>7.9</td> <td>8</td> <td>-0.1</td>	B412	750	1	0.0	63.6	66	63.6	15		55.7	7.9	8	-0.1
B415 752 1 0.0 63.4 66 63.4 15 55.3 8.1 8 0.1 B416 753 1 0.0 63.4 66 63.4 15 55.4 8.0 8 0.0 B417 754 1 0.0 63.1 66 63.1 15 55.3 7.8 8 -0.2 B418 755 1 0.0 62.7 66 62.7 15 55.2 7.5 8 -0.5 B419 756 1 0.0 62.4 66 62.4 15 55.2 7.2 8 -0.8 B420 757 1 0.0 62.2 66 62.2 15 55.2 7.0 8 -1.0 B421 758 1 0.0 61.6 66 61.6 15 54.9 6.7 8 -1.3		750	1	0.0	63.8		63.8	15		55.5	8.3	8	0.3
B416 753 1 0.0 63.4 66 63.4 15 55.4 8.0 8 0.0 B417 754 1 0.0 63.1 66 63.1 15 55.3 7.8 8 -0.2 B418 755 1 0.0 62.7 66 62.7 15 55.2 7.5 8 -0.5 B419 756 1 0.0 62.4 66 62.4 15 55.2 7.2 8 -0.8 B420 757 1 0.0 62.2 66 62.2 15 55.2 7.0 8 -1.0 B421 758 1 0.0 61.6 66 61.6 15 54.9 6.7 8 -1.3	B414	8	1	0.0	63.4	66	63.4	15		55.4	8.0	8	0.0
B417 754 1 0.0 63.1 66 63.1 15 55.3 7.8 8 -0.2 B418 755 1 0.0 62.7 66 62.7 15 55.2 7.5 8 -0.5 B419 756 1 0.0 62.4 66 62.4 15 55.2 7.2 8 -0.8 B420 757 1 0.0 62.2 66 62.2 15 55.2 7.0 8 -1.0 B421 758 1 0.0 61.6 66 61.6 15 54.9 6.7 8 -1.3	B415	752	1	0.0	63.4	66	63.4	15		55.3	8.1	8	0.1
B418 755 1 0.0 62.7 66 62.7 15 55.2 7.5 8 -0.5 B419 756 1 0.0 62.4 66 62.4 15 55.2 7.2 8 -0.8 B420 757 1 0.0 62.2 66 62.2 15 55.2 7.0 8 -1.0 B421 758 1 0.0 61.6 66 61.6 15 54.9 6.7 8 -1.3	B416	753	1	0.0	63.4	66	63.4	15		55.4	8.0	8	
B419 756 1 0.0 62.4 66 62.4 15 55.2 7.2 8 -0.8 B420 757 1 0.0 62.2 66 62.2 15 55.2 7.0 8 -1.0 B421 758 1 0.0 61.6 66 61.6 15 54.9 6.7 8 -1.3			1	0.0				15				8	II
B420 757 1 0.0 62.2 66 62.2 15 55.2 7.0 8 -1.0 B421 758 1 0.0 61.6 66 61.6 15 54.9 6.7 8 -1.3	B418	755	1	0.0	62.7	66	62.7	15		55.2	7.5	8	-0.5
B421 758 1 0.0 61.6 66 61.6 15 54.9 6.7 8 -1.3			1	0.0		66		15				8	
	B420	757	1	0.0	62.2	66	62.2	15		55.2	7.0	8	-1.0
B422 759 1 0.0 60.8 66 60.8 15 54.8 6.0 8 -2.0			1	0.0	61.6	66	61.6	15		54.9	6.7	8	-1.3
	B422	759	1	0.0	60.8	66	60.8	15		54.8	6.0	8	-2.0

B423 760	-1.0 -1.2 -1.3 -1.6 -1.5 -1.1 -1.2 -1.3 -1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3
B425 762 1 0.0 60.7 66 60.7 15 53.9 6.8 B426 763 1 0.0 60.8 66 60.8 15 54.1 6.7 1 B427 764 1 0.0 59.1 66 59.1 15 52.9 6.2 B428 765 1 0.0 59.3 66 59.3 15 52.9 6.4 B429 766 1 0.0 59.6 66 59.6 15 53.1 6.5 B430 767 1 0.0 60.4 66 60.4 15 53.6 6.8 18 B431 768 1 0.0 60.4 66 60.4 15 53.6 6.8 18 B433 770 1 0.0 60.4 66 60.4 15 53.7 6.	-1.2 -1.3 -1.6 -1.5 -1.1 -1.2 -1.3 -1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3
B426 763 1 0.0 60.8 66 60.8 15 54.1 6.7 4 B427 764 1 0.0 59.1 66 59.1 15 52.9 6.2 i B428 765 1 0.0 59.3 66 59.3 15 52.9 6.4 is B429 766 1 0.0 59.6 66 59.6 15 53.1 6.5 is B430 767 1 0.0 60.4 66 60.4 15 53.5 6.9 is B431 768 1 0.0 60.4 66 60.4 15 53.6 6.8 is B432 769 1 0.0 60.4 66 60.4 15 53.7 6.7 is B433 771 1 0.0 60.1 66 60.1 <td>-1.3 -1.8 -1.6 -1.5 -1.1 -1.2 -1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3</td>	-1.3 -1.8 -1.6 -1.5 -1.1 -1.2 -1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3
B427 764 1 0.0 59.1 66 59.1 15 52.9 6.2 1 B428 765 1 0.0 59.3 66 59.3 15 52.9 6.4 8 B429 766 1 0.0 59.6 66 59.6 15 52.9 6.4 8 B430 767 1 0.0 60.4 66 60.4 15 53.5 6.9 8 B431 768 1 0.0 60.4 66 60.4 15 53.6 6.8 6 B432 769 1 0.0 60.4 66 60.4 15 53.7 6.7 6.7 B433 770 1 0.0 60.4 66 60.4 15 53.5 6.6 B436 772 1 0.0 59.3 66 59.3 15	-1.8 -1.6 -1.5 -1.1 -1.2 -1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3
B428 765 1 0.0 59.3 66 59.3 15 52.9 6.4 is B429 766 1 0.0 59.6 66 59.6 15 53.1 6.5 is B430 767 1 0.0 60.4 66 60.4 15 53.5 6.9 is B431 768 1 0.0 60.4 66 60.4 15 53.6 6.8 is B432 769 1 0.0 60.4 66 60.4 15 53.7 6.7 is B433 770 1 0.0 60.4 66 60.4 15 53.7 6.7 is B434 771 1 0.0 59.3 66 59.3 15 53.5 6.6 B435 772 1 0.0 58.1 66 58.7 15 <td>-1.6 -1.5 -1.1 -1.2 -1.3 -1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3</td>	-1.6 -1.5 -1.1 -1.2 -1.3 -1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3
B429 766 1 0.0 59.6 66 59.6 15 53.1 6.5 48 B430 767 1 0.0 60.4 66 60.4 15 53.5 6.9 4 B431 768 1 0.0 60.4 66 60.4 15 53.6 6.8 4 B432 769 1 0.0 60.4 66 60.4 15 53.7 6.7 6 B433 770 1 0.0 60.4 66 60.4 15 53.7 6.7 6 B434 771 1 0.0 60.4 66 60.4 15 53.7 6.7 6 B435 772 1 0.0 59.3 66 59.3 15 53.1 5.6 6 6 58.7 15 53.1 5.6 6 58.7	-1.5 -1.1 -1.2 -1.3 -1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3
B430 767 1 0.0 60.4 66 60.4 15 53.5 6.9 8 B431 768 1 0.0 60.4 66 60.4 15 53.6 6.8 8 B432 769 1 0.0 60.4 66 60.4 15 53.7 6.7 6.7 B433 770 1 0.0 60.4 66 60.4 15 53.7 6.7 6.7 B433 771 1 0.0 60.1 66 60.1 15 53.7 6.7 6.7 B435 772 1 0.0 59.3 66 59.3 15 53.3 6.0 6.0 B436 773 1 0.0 58.7 66 58.7 15 53.1 5.6 6 B437 774 1 0.0 58.1 66 58.1 </td <td>-1.1 -1.2 -1.3 -1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3</td>	-1.1 -1.2 -1.3 -1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3
B431 768 1 0.0 60.4 66 60.4 15 53.6 6.8 8 B432 769 1 0.0 60.4 66 60.4 15 53.7 6.7 3 B433 770 1 0.0 60.4 66 60.4 15 53.7 6.7 3 B434 771 1 0.0 60.1 66 60.1 15 53.5 6.6 B435 772 1 0.0 59.3 66 59.3 15 53.3 6.0 3 B436 773 1 0.0 58.7 66 58.7 15 53.1 5.6 3 B437 774 1 0.0 58.1 66 58.1 15 53.0 5.1 3 B438 775 1 0.0 58.0 66 58.1 15	-1.2 -1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3
B432 769 1 0.0 60.4 66 60.4 15 53.7 6.7 a B433 770 1 0.0 60.4 66 60.4 15 53.7 6.7 a B434 771 1 0.0 60.1 66 60.1 15 53.5 6.6 a B435 772 1 0.0 59.3 66 59.3 15 53.3 6.0 a B436 773 1 0.0 58.7 66 58.7 15 53.3 6.0 a B437 774 1 0.0 58.1 66 58.1 15 53.0 5.1 a B438 775 1 0.0 58.1 66 58.1 15 53.2 4.9 a B439 776 1 0.0 56.6 66 56.0	-1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3
B433 770 1 0.0 60.4 66 60.4 15 53.7 6.7 6 8 8434 771 1 0.0 60.1 66 60.1 15 53.5 6.6 6	-1.3 -1.4 -2.0 -2.4 -2.9 -3.1 -3.3
B434 771 1 0.0 60.1 66 60.1 15 53.5 6.6 8 B435 772 1 0.0 59.3 66 59.3 15 53.3 6.0 8 B436 773 1 0.0 58.7 66 58.7 15 53.1 5.6 8 B437 774 1 0.0 58.1 66 58.1 15 53.0 5.1 6 B438 775 1 0.0 58.1 66 58.1 15 53.2 4.9 6 6 58.1 15 53.2 4.9 6 6 58.1 15 53.2 4.9 6 6 58.1 15 53.2 4.9 6 6 58.0 15 53.3 4.7 6 6 58.0 15 53.3 4.7	-1.4 -2.0 -2.4 -2.9 -3.1 -3.3
B435 772 1 0.0 59.3 66 59.3 15 53.3 6.0 6 B436 773 1 0.0 58.7 66 58.7 15 53.1 5.6 6 B437 774 1 0.0 58.1 66 58.1 15 53.0 5.1 6 B438 775 1 0.0 58.1 66 58.1 15 53.2 4.9 6 B439 776 1 0.0 58.0 66 58.0 15 53.3 4.7 6 B440 777 1 0.0 56.6 66 56.6 15 52.0 4.6 6 B441 778 1 0.0 56.6 66 56.6 15 52.0 4.6 6 B442 779 1 0.0 56.5 66 56.5 <td>-2.0 -2.4 -2.9 -3.1 -3.3</td>	-2.0 -2.4 -2.9 -3.1 -3.3
B436 773 1 0.0 58.7 66 58.7 15 53.1 5.6 6 B437 774 1 0.0 58.1 66 58.1 15 53.0 5.1 6 B438 775 1 0.0 58.1 66 58.1 15 53.2 4.9 6 B439 776 1 0.0 58.0 66 58.0 15 53.3 4.7 6 B440 777 1 0.0 56.6 66 56.6 15 52.0 4.6 6 B441 778 1 0.0 56.6 66 56.6 15 52.0 4.6 6 B442 779 1 0.0 56.6 66 56.6 15 51.9 4.7 6 B443 780 1 0.0 56.5 66 56.5 <td>-2.4 -2.9 -3.1 -3.3</td>	-2.4 -2.9 -3.1 -3.3
B437 774 1 0.0 58.1 66 58.1 15 53.0 5.1 8 B438 775 1 0.0 58.1 66 58.1 15 53.2 4.9 8 B439 776 1 0.0 58.0 66 58.0 15 53.3 4.7 8 B440 777 1 0.0 56.6 66 56.6 15 52.0 4.6 3 B441 778 1 0.0 56.6 66 56.6 15 52.0 4.6 3 B442 779 1 0.0 56.6 66 56.6 15 51.9 4.7 3 B443 780 1 0.0 56.5 66 56.5 15 51.8 4.7 4.9 3 B444 781 1 0.0 56.6 66 56.5 15 51.7 4.9 3 B445 782	-2.9 -3.1 -3.3
B438 775 1 0.0 58.1 66 58.1 15 53.2 4.9 8 B439 776 1 0.0 58.0 66 58.0 15 53.3 4.7 8 B440 777 1 0.0 56.6 66 56.6 15 52.0 4.6 8 B441 778 1 0.0 56.6 66 56.6 15 52.0 4.6 8 B442 779 1 0.0 56.6 66 56.6 15 51.9 4.7 8 B443 780 1 0.0 56.5 66 56.5 15 51.8 4.7 8 B444 781 1 0.0 56.6 66 56.6 15 51.7 4.9 8 B445 782 1 0.0 56.7 66 56.7 15 51.7 5.0 8 B446 783 1	-3.1 -3.3
B439 776 1 0.0 58.0 66 58.0 15 53.3 4.7 8 B440 777 1 0.0 56.6 66 56.6 15 52.0 4.6 3 B441 778 1 0.0 56.6 66 56.6 15 52.0 4.6 3 B442 779 1 0.0 56.6 66 56.6 15 51.9 4.7 3 B443 780 1 0.0 56.5 66 56.5 15 51.8 4.7 3 B444 781 1 0.0 56.6 66 56.6 15 51.7 4.9 3 B445 782 1 0.0 56.7 66 56.7 15 51.7 5.0 3 B446 783 1 0.0 57.0 66 57.0 <td>-3.3</td>	-3.3
B440 777 1 0.0 56.6 66 56.6 15 52.0 4.6 8 B441 778 1 0.0 56.6 66 56.6 15 52.0 4.6 8 B442 779 1 0.0 56.6 66 56.6 15 51.9 4.7 8 B443 780 1 0.0 56.5 66 56.5 15 51.8 4.7 8 B444 781 1 0.0 56.6 66 56.6 15 51.7 4.9 8 B445 782 1 0.0 56.7 66 56.7 15 51.7 5.0 8 B446 783 1 0.0 57.0 66 57.0 15 51.9 5.1 8 B447 784 1 0.0 57.4 66 57.4 15 52.1 5.3 8 B448 785 1	
B441 778 1 0.0 56.6 66 56.6 15 52.0 4.6 8 B442 779 1 0.0 56.6 66 56.6 15 51.9 4.7 8 B443 780 1 0.0 56.5 66 56.5 15 51.8 4.7 8 B444 781 1 0.0 56.6 66 56.6 15 51.7 4.9 8 B445 782 1 0.0 56.7 66 56.7 15 51.7 5.0 8 B446 783 1 0.0 57.0 66 57.0 15 51.9 5.1 8 B447 784 1 0.0 57.4 66 57.4 15 52.1 5.3 8 B448 785 1 0.0 57.6 66 57.6 15 52.1 5.5 5	-3.4
B442 779 1 0.0 56.6 66 56.6 15 51.9 4.7 8 B443 780 1 0.0 56.5 66 56.5 15 51.8 4.7 8 B444 781 1 0.0 56.6 66 56.6 15 51.7 4.9 8 B445 782 1 0.0 56.7 66 56.7 15 51.7 5.0 8 B446 783 1 0.0 57.0 66 57.0 15 51.9 5.1 8 B447 784 1 0.0 57.4 66 57.4 15 52.1 5.3 8 B448 785 1 0.0 57.6 66 57.6 15 52.1 5.5	
B443 780 1 0.0 56.5 66 56.5 15 51.8 4.7 8 B444 781 1 0.0 56.6 66 56.6 15 51.7 4.9 8 B445 782 1 0.0 56.7 66 56.7 15 51.7 5.0 8 B446 783 1 0.0 57.0 66 57.0 15 51.9 5.1 8 B447 784 1 0.0 57.4 66 57.4 15 52.1 5.3 8 B448 785 1 0.0 57.6 66 57.6 15 52.1 5.5 8	1
B444 781 1 0.0 56.6 66 56.6 15 51.7 4.9 6 B445 782 1 0.0 56.7 66 56.7 15 51.7 5.0 6 B446 783 1 0.0 57.0 66 57.0 15 51.9 5.1 6 B447 784 1 0.0 57.4 66 57.4 15 52.1 5.3 6 B448 785 1 0.0 57.6 66 57.6 15 52.1 5.5 6	
B445 782 1 0.0 56.7 66 56.7 15 51.7 5.0 6 B446 783 1 0.0 57.0 66 57.0 15 51.9 5.1 6 B447 784 1 0.0 57.4 66 57.4 15 52.1 5.3 6 B448 785 1 0.0 57.6 66 57.6 15 52.1 5.5 6	-3.3
B446 783 1 0.0 57.0 66 57.0 15 51.9 5.1 8 B447 784 1 0.0 57.4 66 57.4 15 52.1 5.3 8 B448 785 1 0.0 57.6 66 57.6 15 52.1 5.5 8	
B447 784 1 0.0 57.4 66 57.4 15 52.1 5.3 6 B448 785 1 0.0 57.6 66 57.6 15 52.1 5.5 6	-3.0
B448 785 1 0.0 57.6 66 57.6 15 52.1 5.5	
B449 786 1 0.0 57.7 66 57.7 15 52.1 5.6	-2.5
B450 787 1 0.0 57.5 66 57.5 15 51.9 5.6	-2.4
B451 788 1 0.0 57.5 66 57.5 15 51.9 5.6	-2.4
B452 789 1 0.0 57.4 66 57.4 15 51.9 5.5	-2.5
B453 790 1 0.0 57.2 66 57.2 15 51.8 5.4	
B454 791 1 0.0 67.7 66 67.7 15 Snd Lvl 59.9 7.8	1
B455 792 1 0.0 66.6 66 66.6 15 Snd Lvl 59.4 7.2	-0.8
B456 793 1 0.0 65.6 66 65.6 15 58.8 6.8	-1.2
B457 794 1 0.0 64.7 66 64.7 15 58.3 6.4	-1.6
B458 795 1 0.0 63.4 66 63.4 15 57.5 5.9	-2.1
B459 796 1 0.0 61.9 66 61.9 15 56.6 5.3	-2.7
B460 797 1 0.0 61.3 66 61.3 15 55.9 5.4	-2.6
B461 798 1 0.0 60.6 66 60.6 15 55.1 5.5	-2.5
B462 799 1 0.0 59.8 66 59.8 15 54.4 5.4	
B463 800 1 0.0 59.7 66 59.7 15 54.2 5.5	

916

5

RESULTS: SOUND LEVELS						9	16					
B464	801	1	0.0	61.1	66	61.1	15		55.1	6.0	8	-2.0
B465	802	1	0.0	62.3	66	62.3	15		56.0	6.3	8	-1.7
B466	803	1	0.0	66.4	66	66.4	15	Snd Lvl	60.2	6.2	8	-1.8
B467	804	1	0.0	66.3	66	66.3	15	Snd Lvl	61.7	4.6	8	-3.4
B468	805	1	0.0	64.9	66	64.9	15		59.4	5.5	8	-2.5
B469	806	1	0.0	63.8	66	63.8	15		58.6	5.2	8	-2.8
B517	807	1	0.0	62.0	66	62.0	15		54.5	7.5	8	-0.5
B518	808	1	0.0	61.1	66	61.1	15		54.0	7.1	8	-0.9
B519	809	1	0.0	63.3	66	63.3	15		55.6	7.7	8	-0.3
B520	810	1	0.0	63.5	66	63.5	15		60.4	3.1	8	-4.9
B521	811	1	0.0	62.6	66	62.6	15		60.0	2.6	8	-5.4
B522	812	1	0.0	61.0	66	61.0	15		58.4	2.6	8	-5.4
B523	813	1	0.0	59.9	66	59.9	15		57.4	2.5	8	-5.5
B524	814	1	0.0	59.0	66	59.0	15		56.4	2.6	8	-5.4
B525	815	1	0.0	58.3	66	58.3	15		55.6	2.7	8	-5.3
B526	816	1	0.0	57.5	66	57.5	15		54.7	2.8	8	-5.2
B527	817	1	0.0	57.0	66	57.0	15		54.0	3.0	8	-5.0
B528	818	1	0.0	58.8	66	58.8	15		55.2	3.6	8	-4.4
B529	819	1	0.0	59.7	66	59.7	15		55.9	3.8	8	-4.2
B530	820	1	0.0	60.9	66	60.9	15		57.0	3.9	8	-4.1
B531	821	1	0.0	62.2	66	62.2	15		58.6	3.6	8	-4.4
B532	822	1	0.0	60.9	66	60.9	15		57.7	3.2	8	-4.8
B533	823	1	0.0	59.8	66	59.8	15		56.7	3.1	8	-4.9
Dwelling Units		# DUs	Noise Red	uction								
			Min	Avg	Max							
			dB	dB	dB							
All Selected		211	2.5	7.8	14.1							
All Impacted		87	4.6	10.2	14.1							

14.1

8.0

10.3

All that meet NR Goal

									1			
CECS							31 March	2020				
JLS							TNM 2.5	2020				
JLS							_	d with TNN	125			
DECLII TO, COUND I EVEL C							Calculated	a WILLI IINIV	1 2.5			
RESULTS: SOUND LEVELS PROJECT/CONTRACT:		916										
RUN:			donina Bor	rior C Arbor S	hringo							
BARRIER DESIGN:		Barrier	_	rier 6 Arbor S	prings			A.,		e shall be use	laaa	
BARRIER DESIGN.		Darrier	o Filiai							y substantiate		
ATMOSPHERICS:		97 dos	E 600/ DU							approval of F		
		or ueg	F, 50% RH	 	+	+		or a uniter	ent type with	approval of F	HVVA.	
Receiver									1			
Name	No.	#DUs	Existing	No Barrier				_	With Barrier	_		
			LAeq1h	LAeq1h	1	Increase over		Туре	Calculated	Noise Reduc		
				Calculated	Crit'n	Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
							Sub'l Inc					minus
			15.4	ID A	ID A	in.	in.		ID A	I.D.	I.D.	Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
B118	162		0.0						70.3			
B119	163								62.1			
B120	164								63.5			
B121	165		0.0	67.4	66	67.4	15		59.2			
B122	166								60.1			_
B123	167	1					_		60.9		_	
B124	168		0.0	72.3					61.7	10.6		
B125	169								62.2			
B126	170								62.7			
B127	171	1							62.8			
B128	172								63.3			
B129	173						_		63.3		1	
B130	174								64.0			
B131	175								59.7			
B132	176						_		60.3		_	1
B133	177								60.4			
B134	178								60.5			
B135	179		0.0						60.4			
B136	180								61.2			
B137	181	1							60.2			
B138	182								61.8			
B139	183						_		62.9			1
B140	184	1							63.1			1
B141	185	1	0.0	76.1	66	76.1	15	Snd Lvl	63.1	13.0	8	5.0

RESULTS: SOUND LEVELS			91	6

B142 18	6 1	0.0	72.9	66	72.9	15	Snd Lvl	63.3	9.6	8	1.6
B143 18	7 1	0.0	71.3	66	71.3	15	Snd Lvl	62.4	8.9	8	0.9
B144 18	8 1	0.0	70.6	66	70.6	15	Snd Lvl	61.7	8.9	8	0.9
B214 39	1 1	0.0	75.9	66	75.9	15	Snd Lvl	64.5	11.4	8	3.4
B470 59	4 1	0.0	65.8	66	65.8	15		58.6	7.2	8	-0.8
B471 59	5 1	0.0	64.6	66	64.6	15		58.1	6.5	8	-1.5
B472 59	6 1	0.0	63.2	66	63.2	15		57.4	5.8	8	-2.2
B473 59	7 1	0.0	62.3	66	62.3	15		56.6	5.7	8	-2.3
B474 59		0.0	61.3	66	61.3	15		56.1	5.2	8	-2.8
B475 59	9 1	0.0	60.2	66	60.2	15		55.6	4.6	8	-3.4
B476 60		0.0	59.3	66	59.3	15		55.1	4.2	8	-3.8
B477 60		0.0	58.9	66	58.9	15		54.2	4.7	8	-3.3
B478 60		0.0	58.8	66	58.8	15		53.9	4.9	8	-3.1
B479 60		0.0	59.4	66	59.4	15		54.4	5.0	8	-3.0
B480 60		0.0	59.2	66	59.2	15		54.2	5.0	8	-3.0
B481 60	5 1	0.0	59.8	66	59.8	15		54.5		8	-2.7
B482 60		0.0	59.9	66	59.9	15		54.4	5.5	8	-2.5
B483 60	7 1	0.0	60.6	66	60.6	15		55.0	5.6	8	-2.4
B484 60		0.0	60.5	66	60.5	15		54.9	5.6	8	-2.4
B485 61		0.0	61.2	66	61.2	15		55.4	5.8	8	-2.2
B486 61		0.0	62.0	66	62.0	15		55.8	6.2	8	-1.8
B487 61		0.0	61.9	66	61.9	15		55.7	6.2	8	-1.8
B488 61	3 1	0.0	63.0	66	63.0	15		56.6	6.4	8	-1.6
B489 61		0.0	64.0	66	64.0	15		57.2	6.8	8	-1.2
B490 61		0.0	64.8	66	64.8	15		57.8	7.0	8	-1.0
B491 61	6 1	0.0	66.1	66	66.1	15	Snd Lvl	58.5		8	-0.4
B492 61		0.0	63.7	66	63.7	15		56.9	6.8	8	-1.2
B493 61		0.0	63.9	66	63.9	15		57.0	6.9	8	-1.1
B494 61	9 1	0.0	64.3	66	64.3	15		57.2	7.1	8	-0.9
B495 62		0.0	66.0	66	66.0	15	Snd Lvl	58.3	7.7	8	-0.3
B496 62		0.0	66.9	66	66.9	15	Snd Lvl	58.7	8.2	8	0.2
B497 62		0.0	67.1	66	67.1	15	Snd Lvl	58.9	8.2	8	0.2
B498 62		0.0	66.1	66	66.1	15	Snd Lvl	58.6		8	-0.5
B499 62		0.0	69.2	66	69.2	15	Snd Lvl	60.9	8.3	8	0.3
B500 62		0.0	68.2	66	68.2	15	Snd Lvl	60.2	8.0	8	0.0
B501 62		0.0	67.3	66	67.3	15	Snd Lvl	59.7	7.6	8	-0.4
B502 62		0.0	66.4	66	66.4	15	Snd Lvl	59.0		8	-0.6
B503 62		0.0	65.6	66	65.6	15		58.4	7.2	8	-0.8
B504 62		0.0	64.5	66	64.5	15		57.6		8	-1.1
B505 63		0.0	62.8	66	62.8	15		56.5	6.3	8	-1.7
B506 63	1 1	0.0	61.6	66	61.6	15		55.7	5.9	8	-2.1

RESU			

-	
u	16

								1			
632	1	0.0	60.7	66	60.7	15		55.0	5.7	8	-2.3
633	1	0.0	60.3	66	60.3	15		54.8	5.5	8	-2.5
634	1	0.0	59.5	66	59.5	15		54.2	5.3	8	-2.7
635	1	0.0	58.9	66	58.9	15		53.9	5.0	8	-3.0
636	1	0.0	58.2	66	58.2	15		53.4	4.8	8	-3.2
637	1	0.0	59.4	66	59.4	15		57.2	2.2	8	-5.8
638	1	0.0	62.8	66	62.8	15		59.5	3.3	8	-4.7
639	1	0.0	63.3	66	63.3	15		59.1	4.2	8	-3.8
640	1	0.0	61.4	66	61.4	15		57.7	3.7	8	-4.3
641	1	0.0	59.1	66	59.1	15		56.3	2.8	8	-5.2
	# DUs	Noise Red	duction								
		Min	Avg	Max							
		dB	dB	dB							
	75	0.4	7.7	15.1							
	37	0.4	10.0	15.1							
	30	8.2	10.8	15.1							
	633 634 635 636 637 638 639 640	635 1 636 1 637 1 638 1 639 1 640 1 641 1 # DUs	633 1 0.0 634 1 0.0 635 1 0.0 636 1 0.0 637 1 0.0 638 1 0.0 639 1 0.0 640 1 0.0 641 1 0.0 #DUS Noise Red Min dB 75 0.4 37 0.4	633 1 0.0 60.3 634 1 0.0 59.5 635 1 0.0 58.9 636 1 0.0 59.4 637 1 0.0 59.4 638 1 0.0 62.8 639 1 0.0 63.3 640 1 0.0 61.4 641 1 0.0 59.1 # DUs Noise Reduction Min Avg dB dB dB 10.0	633 1 0.0 60.3 66 634 1 0.0 59.5 66 635 1 0.0 58.9 66 636 1 0.0 58.2 66 637 1 0.0 59.4 66 638 1 0.0 62.8 66 639 1 0.0 63.3 66 640 1 0.0 61.4 66 641 1 0.0 59.1 66 # DUS Noise Reduction Min Avg Max dB dB dB 75 0.4 7.7 15.1 37 0.4 10.0 15.1	633 1 0.0 60.3 66 60.3 634 1 0.0 59.5 66 59.5 635 1 0.0 58.9 66 58.9 636 1 0.0 58.2 66 58.2 637 1 0.0 59.4 66 59.4 638 1 0.0 62.8 66 62.8 639 1 0.0 63.3 66 63.3 640 1 0.0 61.4 66 61.4 641 1 0.0 59.1 66 59.1 # DUS Noise Reduction Min Avg Max dB dB dB dB	633 1 0.0 60.3 66 60.3 15 634 1 0.0 59.5 66 59.5 15 635 1 0.0 58.9 66 58.9 15 636 1 0.0 58.2 66 58.2 15 637 1 0.0 59.4 66 59.4 15 638 1 0.0 62.8 66 62.8 15 639 1 0.0 63.3 66 63.3 15 640 1 0.0 61.4 66 61.4 15 641 1 0.0 59.1 66 59.1 15 # DUs Noise Reduction Min Avg Max dB dB dB	633	633 1 0.0 60.3 66 60.3 15 54.8 634 1 0.0 59.5 66 59.5 15 54.2 635 1 0.0 58.9 66 58.9 15 53.9 636 1 0.0 58.2 66 58.2 15 53.4 637 1 0.0 59.4 66 59.4 15 57.2 638 1 0.0 62.8 66 62.8 15 59.5 639 1 0.0 63.3 66 63.3 15 59.1 640 1 0.0 61.4 66 61.4 15 57.7 641 1 0.0 59.1 66 59.1 15 56.3 # DUs Noise Reduction Min Avg Max	633 1 0.0 60.3 66 60.3 15 54.8 5.5 634 1 0.0 59.5 66 59.5 15 54.2 5.3 635 1 0.0 58.9 66 58.9 15 53.9 5.0 636 1 0.0 58.2 66 58.2 15 53.4 4.8 637 1 0.0 59.4 66 59.4 15 57.2 2.2 638 1 0.0 62.8 66 62.8 15 59.5 3.3 639 1 0.0 63.3 66 63.3 15 59.1 4.2 640 1 0.0 59.1 66 59.1 15 57.7 3.7 641 1 0.0 59.1 66 59.1 15 56.3 2.	633 1 0.0 60.3 66 60.3 15 54.8 5.5 8 634 1 0.0 59.5 66 59.5 15 54.2 5.3 8 635 1 0.0 58.9 66 58.9 15 53.9 5.0 8 636 1 0.0 58.2 66 58.2 15 53.4 4.8 8 637 1 0.0 59.4 66 59.4 15 57.2 2.2 8 638 1 0.0 62.8 66 62.8 15 59.5 3.3 8 639 1 0.0 63.3 66 63.3 15 59.1 4.2 8 640 1 0.0 59.1 66 59.1 15 56.3 2.8 8 # DUs Nois

Attachment F – TNM 2.5 (digital copy only)

Attachment G – Reasonable and Feasible Worksheets

SCDOT Feasibility and Reasonableness Worksheet

March 31 2020 Date: Project Name | I-26 Interstate Widening Noise Barrier 5 **Highway Traffic Noise Abatement Measure Feasibility** Number of Impacted Receivers | 87 Number of Benefited Receivers 188 Percentage of Impacted Receivers that would achieve a 5 dBA reduction from the proposed 97 noise abatement measure Is the proposed noise abatement measure acoustically feasible? × Yes No NOTE:SCDOT Policy indicates that 75% of the impacted receivers must achieve at least a 5 dBA reduction for it to be acoustically feasible. Would any of the following issues limit the ability of the abatement measure to achieve the noise reduction goal? **Topography** No Yes No Safety Drainage No \times Yes No Utilities Yes Maintenance Yes No Access X No Yes Exposed Height of Wall If "Yes" was marked for any of the questions above, please explain below. A power line crosses barrier 5 perpendicularly that has been surveyed and the final barrier 5 design i.e., panel heights has been developed in accordance with the radial clearance necessary for this above ground power line.

Reasonableness

According to 23 CFR 772.13(d)(2)(iv) the abatement measure must collectively achieve each of these criteria to be reasonable. Therefore if any of the three mandatory reasonable factors are not achieved, then the abatement measure is determined NOT to be reasonable. When completing the form it is not necessary to detail each of the criteria if one was determined not to be reasonable.

#1: Noise Reduction Design Goal		
Number of Benefited Receivers 188		Number of Benefited Receivers that achieve at least an 8 dBA reduction
	NOTE: SCDOT Police	s that would achieve at least a 8 dBA reduction from y indicates that 80% of the benefited receivers in the for it to be reasonable.
Does the proposed noise abatement measu	are meet the noise redu	action design goal? X Yes No
If "Yes" is marked, contin	ue to #2. If "No" is mo	arked, then abatement is determined NOT to be reasonable.
#2: Cost Effectiveness		
Estimated cost per square foot for noise abatement measure	35	Estimated construction cost for noise abatement measure 3,513,020
Estimated cost per Benefited Receiver	8,686	
NOTE: SCDOT Policy states that the prelimin specific construction cost should be applied at	nary noise analysis is bas a cost per square foot ba	would the abatement measure be reasonable? ed on \$35.00 per square foot and a more project- sis during the detailed noise abatement evaluation. Arked, then abatement is determined NOT to be reasonable.
#3: Viewpoints of the property own	•	
Number of Benefited Receivers (same as	above) 188	
Number of Benefited Receivers in support of noise abatement measure	100	Percentage of Benefited Receivers in support of noise abatement measure
Number of Benefited Receivers opposed to noise abatement measure	3	Percentage of Benefited Receivers opposed to noise abatement measure
Number of Benefited Receivers that did respond to solicitation on noise abateme measure	((() ()	Percentage of Benefited Receivers that did not respond to solicitation on noise abatement measure 45%
Based on the viewpoints of the property of abatement measure be reasonable? NOTE constructed unless greater than 50% of the	E: SCDOT Policy indi	cates that the noise abatement shall be
Final Determination for Noise Abatement Mo	easure	

ID	Barrier	Response	Name	Address	City	State	Zip	Receiver	Benefitted
1	5	Yes	Adkins	225 Cayden	Chaplin	South Carolina	29036	B405	Yes
2	5	Yes	Allen	553 Everton	Chaplin	South Carolina	29036	B388	Yes
3	5	Yes	Altman	319 Massey	Chaplin	South Carolina	29036	B83	Yes
4	5	Yes	Amin	175 Westcott Ridge	Chaplin	South Carolina	29036	B409	Yes
5	5	Yes	Andrews	377 Massey	Chaplin	South Carolina	29036	B71	Yes
6	5	Yes	Anfinson	335 Hollow Cove	Chaplin	South Carolina	29036	B205	Yes
7	5	Yes	Anon	Anonymous	Chaplin	South Carolina	29036	-	#N/A
8	5	Yes	Anonymous	Anonymous	Chaplin	South Carolina	29036	-	#N/A
9	5	No	Anonymous	Anonymous	Chaplin	South Carolina	29036	-	#N/A
10	6	Yes	Arnold	276 Glen Arbor	Chaplin	South Carolina	29036	1	#N/A
11	5	Yes	Baker	135 Breedlove	Chaplin	South Carolina	29036	B381	Yes
12	5	Yes	Baxley	278 Massey	Chaplin	South Carolina	29036	B379	Yes
13	5	Yes	Black	524 Everton	Chaplin	South Carolina	29036	B415	Yes
14	5	Yes	Bostick	300 Hollow Cove	Chaplin	South Carolina	29036	B183	Yes
15	5	Yes	Brock	317 Hollow Cove	Chaplin	South Carolina	29036	B201	Yes
16	5	Yes	Brown	305 Massey	Chaplin	South Carolina	29036	B86	Yes
17	5	Yes	Bugs	428 Hollow Cove	Chaplin	South Carolina	29036	B106	Yes
18	5	Yes	Bunce	356 Massey	Chaplin	South Carolina	29036	B351	Yes
19	5	Yes	Burgess	380 Hollow Cove	Chaplin	South Carolina	29036	B199	Yes
20	5	Yes	Burk	320 Hollow Cove	Chaplin	South Carolina	29036	B187	Yes
21	5	Yes	Callahan	414 Hollow Cove	Chaplin	South Carolina	29036	B103	Yes
22	5	Yes	Carnes	22 Grovemont	Chaplin	South Carolina	29036	B370	Yes
23	5	Yes	Cirmella	321 Hollow Cove	Chaplin	South Carolina	29036	B202	Yes
24	5	Yes	Clerc	248 Massey	Chaplin	South Carolina	29036	B441	No
25	5	No	Clifton	241 Massey	Chaplin	South Carolina	29036	B437	Yes
26	5	Yes	Cochran	293 Massey	Chaplin	South Carolina	29036	B89	Yes
27	5	Yes	Colbert	561 Everton	Chaplin	South Carolina	29036	B386	Yes
28		Yes	Collins	205 Massey	Chaplin	South Carolina	29036	B428	Yes
29		Yes	Conte	521 Everton	Chaplin	South Carolina	29036	B396	Yes
30		Yes	Cox	454 Hollow Cove	Chaplin	South Carolina	29036	B114	Yes
31		Yes	Crews	141 Breedlove	Chaplin	South Carolina	29036	B380	Yes
32		Yes	Cummings	6 Kagel	Chaplin	South Carolina	29036	B426	Yes
33		Yes	Cutlip	537 Everton	Chaplin	South Carolina	29036	B392	Yes
34		Yes	Dahl	384 Massey	Chaplin	South Carolina	29036	B347	Yes
35		Yes	Davis	314 Hollow Cove	Chaplin	South Carolina	29036	B186	Yes
36		Yes	Davis	364 Massey	Chaplin	South Carolina	29036	B343	Yes
37		Yes	Dickerson	528 Everton	Chaplin	South Carolina	29036	B416	Yes
38		Yes	Dornburg	244 Massey	Chaplin	South Carolina	29036	B442	No
39		No	Dunbar	129 Breedlove	Chaplin	South Carolina	29036	B382	Yes
40		Yes	Ficeto	391 Massey	Chaplin	South Carolina	29036	B68	Yes
41		Yes	Fleetwood	5 Kagle Ct	Chaplin	South Carolina	29036	B424	Yes
42		Yes	Goodale	306 Hollow Cove	Chaplin	South Carolina	29036	B184	Yes
43		Yes	Green	450 Hollow Cove	Chaplin	South Carolina	29036	B113	Yes
44		Yes	Gujral	250 Cayden	Chaplin	South Carolina	29036	B461	Yes
45		Yes	Hales	212 Cayden	Chaplin	South Carolina	29036	B111	Yes
46		Yes	Hall	218 Cayden	Chaplin	South Carolina	29036	B455	Yes
47		Yes	Hall Heath	331 Hollow Cove	Chaplin	South Carolina South Carolina	29036 29036	B204	Yes #N/A
		Yes		291 Massey 295 Cayden	Chaplin		29036		
49 50		Yes Yes	Hendrick Herron	533 Everton	Chaplin	South Carolina South Carolina	29036	B393	#N/A
51		Yes			Chaplin	South Carolina			Yes
71		162	Hipps	241 Cayden	Chaplin	Journ Carolina	29036	B465	Yes

ID	Barrier	Response	Name	Address	City	State	Zip	Receiver	Benefitted
52		Yes	Howell	228 Cayden	Chaplin	South Carolina	29036	B458	Yes
53	5	Yes	Hutto	147 Breedlove	Chaplin	South Carolina	29036	B374	Yes
54		Yes	James	220 Massey	Chaplin	South Carolina	29036	B448	Yes
55	5	Yes	Jones	345 Massey	Chaplin	South Carolina	29036	B78	Yes
56	5	Yes	Kessler	271 Massey	Chaplin	South Carolina	29036	-	#N/A
57	5	Yes	Keys	187 Westcott Ridge	Chaplin	South Carolina	29036	B403	Yes
58	5	Yes	Khan	179 Westcott Ridge	Chaplin	South Carolina	29036	B408	Yes
59	5	Yes	King	552 Everton	Chaplin	South Carolina	29036	B422	Yes
60	5	Yes	Klein	202 Massey	Chaplin	South Carolina	29036	B452	Yes
61	5	Yes	Kozak	517 Everton	Chaplin	South Carolina	29036	B397	Yes
62	5	Yes	Land	219 Cayden	Chaplin	South Carolina	29036	B404	Yes
63	5	Yes	Lawson	529 Everton	Chaplin	South Carolina	29036	B394	Yes
64	5	Yes	LeGrand	360 Massey	Chaplin	South Carolina	29036	B352	Yes
65	5	Yes	Leonard	331 Massey	Chaplin	South Carolina	29036	B81	Yes
66	5	Yes	Livingston	211 Cayden	Chaplin	South Carolina	29036	B104	Yes
67	5	Yes	Livingston	360 Hollow Cove	Chaplin	South Carolina	29036	B196	Yes
68	5	Yes	Luther	500 Everton	Chaplin	South Carolina	29036	B411	Yes
69	5	Yes	Lynch	258 Massey	Chaplin	South Carolina	29036	-	#N/A
70	5	Yes	Mason	355 Massey	Chaplin	South Carolina	29036	B76	Yes
71	5	Yes	Mattei	688 Autumn Ridge	Chaplin	South Carolina	29036	B466	Yes
72	5	Yes	Matthews	505 Everton	Chaplin	South Carolina	29036	B400	Yes
73	5	Yes	McNeal	390 Hollow Cove	Chaplin	South Carolina	29036	B95	Yes
74	5	Yes	Mechling	222 Cayden	Chaplin	South Carolina	29036	B456	Yes
75	5	Yes	Melchert	420 Hollow Cove	Chaplin	South Carolina	29036	B105	Yes
76	5	Yes	Menning	692 Autumn Ridge	Chaplin	South Carolina	29036	B112	Yes
77	5	Yes	Metler	28 Grovemont	Chaplin	South Carolina	29036	B371	Yes
78	5	Yes	Miller	151 Breedlove	Chaplin	South Carolina	29036	B182	Yes
79	5	Yes	Moorey	545 Everton	Chaplin	South Carolina	29036	B390	Yes
80	5	No	Nelson	16 Grovemont	Chaplin	South Carolina	29036	B368	Yes
81	5	Yes	O'Hara	544 Everton	Chaplin	South Carolina	29036	B420	Yes
82	5	Yes	Parker	571 Everton	Chaplin	South Carolina	29036	-	#N/A
83	5	Yes	Patel	549 Everton	Chaplin	South Carolina	29036	B389	Yes
84	5	Yes	Peeples	381 Massey	Chaplin	South Carolina	29036	B70	Yes
85	5	Yes	Perez	557 Everton	Chaplin	South Carolina	29036	B387	Yes
86	5	Yes	Poyner	252 Massey	Chaplin	South Carolina	29036	B440	No
87	5	Yes	Prince	377 Hollow Cove	Chaplin	South Carolina	29036	B213	Yes
88	5	Yes	Pross	363 Hollow Cove	Chaplin	South Carolina	29036	B211	Yes
89	5	Yes	Question	577 Everon	Chaplin	South Carolina	29036	1	#N/A
90	5	Yes	Quintana	134 Breedlove	Chaplin	South Carolina	29036	B372	Yes
91		Yes	Ratliff	185 Westcott Ridge	Chaplin	South Carolina	29036	B407	Yes
92		Yes	Resident	374 Hollow Cove	Chaplin	South Carolina	29036	B199	Yes
93	5	Yes	Riordan	408 Hollow Cove	Chaplin	South Carolina	29036	B101	Yes
94	5	Yes	Roberts	525 Everton	Chaplin	South Carolina	29036	B395	Yes
95	5	Yes	Robertson	301 Massey	Chaplin	South Carolina	29036	B87	Yes
96		Yes	Rownd	370 Massey	Chaplin	South Carolina	29036	B344	Yes
97	5	Yes	Sarkis	19 Grovemeont	Chaplin	South Carolina	29036	B517	Yes
98		Yes	Schuler	381 Hollow Cove	Chaplin	South Carolina	29036	-	#N/A
99		Yes	Shealy	351 Massey	Chaplin	South Carolina	29036	B77	Yes
100	5	Yes	Shelton	504 Everton	Chaplin	South Carolina	29036	B412	Yes
101		No	Shockley	266 Massey	Chaplin	South Carolina	29036	-	#N/A
102	5	Yes	Simpson	236 Massey	Chaplin	South Carolina	29036	B444	No

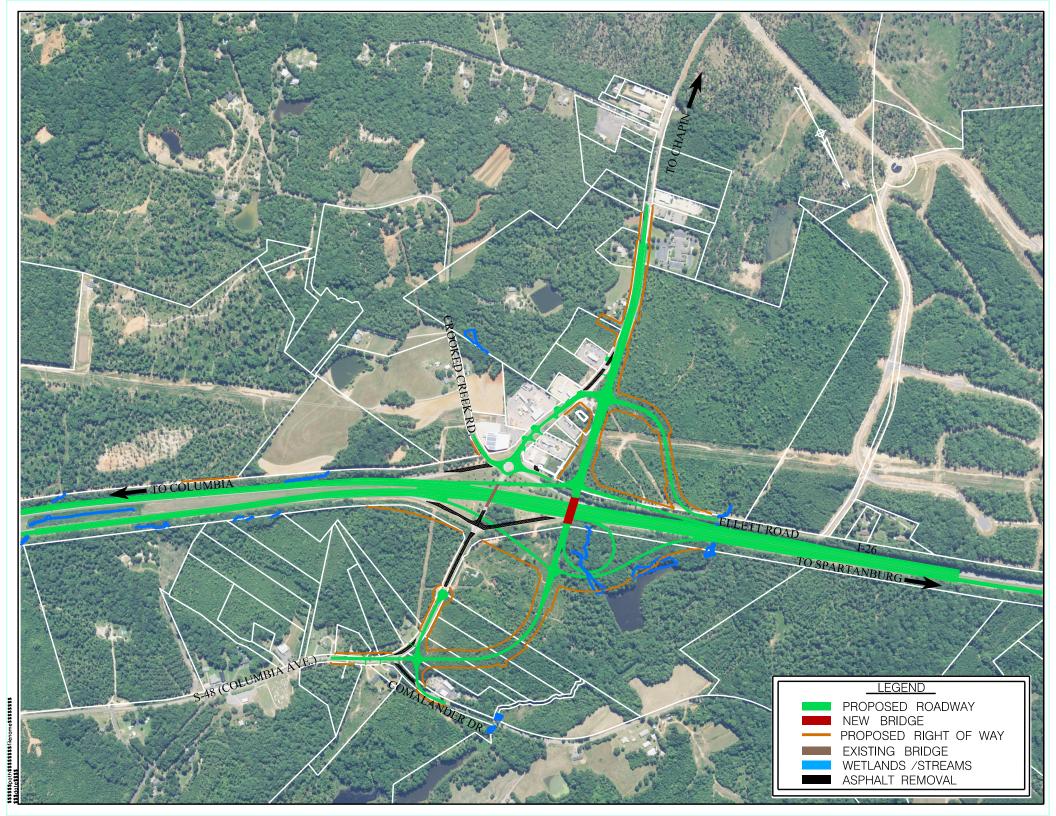
ID	Barrier	Response	Name	Address	City	State	Zip	Receiver	Benefitted
103	5	Yes	Slodski	146 Breedlove	Chaplin	South Carolina	29036	B367	Yes
104	5	Yes	Smith	200 Massey	Chaplin	South Carolina	29036	B453	Yes
105	5	Yes	Smith	359 Massey	Chaplin	South Carolina	29036	B75	Yes
106	5	Yes	Sorapuru	229 Massey	Chaplin	South Carolina	29036	B434	Yes
107	5	Yes	Stanley	696 Autumn Ridge	Chaplin	South Carolina	29036	B110	Yes
108	5	Yes	Steadman	195 Westcott Ridge	Chaplin	South Carolina	29036	B100	Yes
109	5	Yes	Steinhilper	224 Massey	Chaplin	South Carolina	29036	B447	Yes
110	5	Yes	Still	228 Massey	Chaplin	South Carolina	29036	B446	Yes
111	5	Yes	Sweeper	353 Hollow Cove	Chaplin	South Carolina	29036	B209	Yes
112	5	Yes	Thomas	509 Everton	Chaplin	South Carolina	29036	B399	Yes
113	5	Yes	Timmerman	442 Hollow Cove	Chaplin	South Carolina	29036	B109	Yes
114	5	Yes	Trembly	286 Massey	Chaplin	South Carolina	29036	B377	Yes
115	5	Yes	Vaught	7 Kagel	Chaplin	South Carolina	29036	B425	Yes
116	5	Yes	Voigt	240 Cayden	Chaplin	South Carolina	29036	B460	Yes
117	5	Yes	Welch	325 Massey	Chaplin	South Carolina	29036	B82	Yes
118	5	Yes	Whitehead	373 Massey	Chaplin	South Carolina	29036	B72	Yes
119	5	Yes	Yague	209 Massey	Chaplin	South Carolina	29036	B429	Yes

Vote not counted towards or against viewpoints calculation

SCDOT Feasibility and Reasonableness Worksheet

March 31 2020 Date: Project Name | I-26 Interstate Widening Noise Barrier 6 **Highway Traffic Noise Abatement Measure Feasibility** Number of Impacted Receivers | 37 Number of Benefited Receivers 64 Percentage of Impacted Receivers that would achieve a 5 dBA reduction from the proposed 97 noise abatement measure Is the proposed noise abatement measure acoustically feasible? \times Yes No NOTE:SCDOT Policy indicates that 75% of the impacted receivers must achieve at least a 5 dBA reduction for it to be acoustically feasible. Would any of the following issues limit the ability of the abatement measure to achieve the noise reduction goal? X **Topography** No Yes No Safety Drainage No X No Utilities Yes No Maintenance Yes No Access X No Yes Exposed Height of Wall If "Yes" was marked for any of the questions above, please explain below.

Reasonableness


According to 23 CFR 772.13(d)(2)(iv) the abatement measure must collectively achieve each of these criteria to be reasonable. Therefore if any of the three mandatory reasonable factors are not achieved, then the abatement measure is determined NOT to be reasonable. When completing the form it is not necessary to detail each of the criteria if one was determined not to be reasonable.

#1: Noise Reduction Design Goal									
Number of Benefited Receivers 64		Number of Benefited Receivers that achieve at least an 8 dBA reduction							
Percentage of Benefited Receivers in the first two building rows that would achieve at least a 8 dBA reduction from the proposed noise abatement measure. NOTE: SCDOT Policy indicates that 80% of the benefited receivers in the first two building rows must achieve at least a 8 dBA reduction for it to be reasonable.									
Does the proposed noise abatement measure meet the noise reduction design goal? Yes No									
If "Yes" is marked, continue to #2. If "No" is marked, then abatement is determined NOT to be reasonable.									
#2: Cost Effectiveness									
Estimated cost per square foot for noise abatement measure	35	Estimated construction cost for noise abatement measure 1,712,480							
Estimated cost per Benefited Receiver	26,757								
Based on the SCDOT policy of \$30,000 per Benefited Receiver, would the abatement measure be reasonable? NOTE: SCDOT Policy states that the preliminary noise analysis is based on \$35.00 per square foot and a more project- specific construction cost should be applied at a cost per square foot basis during the detailed noise abatement evaluation. Yes No									
If "Yes" is marked, continue to #3. If "No" is marked, then abatement is determined NOT to be reasonable.									
#3: Viewpoints of the property owners and residents of the benefitted receivers									
Number of Benefited Receivers (same as above) 64									
Number of Benefited Receivers in support of noise abatement measure	32	Percentage of Benefited Receivers in support of noise abatement measure							
Number of Benefited Receivers opposed to noise abatement measure	0	Percentage of Benefited Receivers opposed to noise abatement measure							
Number of Benefited Receivers that die respond to solicitation on noise abatem measure	02	Percentage of Benefited Receivers that did not respond to solicitation on noise abatement measure 50%							
Based on the viewpoints of the property owners and residents of the Benefited Receivers, would the abatement measure be reasonable? NOTE: SCDOT Policy indicates that the noise abatement shall be constructed unless greater than 50% of the benefited receptors are opposed to noise abatement.									
constructed unless greater than 50% of the	me benefited receptors	ure opposed to noise doutement.							
Final Determination for Noise Abatement N		are opposed to noise doddement.							
		are opposed to noise doddenient.							

ID	Barrier	Response	Name	Address	City	State	Zip	Reciever	Beneffited
1	6	Yes	Arnold	276 Glen Arbor	Irmo	South Carolina	29063	B488	Yes
2	6	Yes	Austin	293 Glen Arbor	Irmo	South Carolina	29063	B122	Yes
3	6	Yes	Biernaski	160 Arbor Springs	Irmo	South Carolina	29063	B507	Yes
4	6	Yes	Bitterwolf	336 Glen Arbor	Irmo	South Carolina	29063	_	#N/A
5	6	Yes	Blackwell	196 Arbor Springs	Irmo	South Carolina	29063	B142	Yes
6	6	Yes	Blair	6 Bent Water	Irmo	South Carolina	29063	B497	Yes
7	6	Yes	Buckley	297 Glen Arbor	Irmo	South Carolina	29063	B122	Yes
8	6	Yes	Burnette	328 Glen Arbor	Irmo	South Carolina	29063	B135	Yes
9	6	Yes	Campbell	180 Arbor Springs	Irmo	South Carolina	29063	B502	Yes
10	6	Yes	Dalick	273 Glen Arbor	Irmo	South Carolina	29063	B473	Yes
11	6	Yes	Davis	176 Arbor Springs	Irmo	South Carolina	29063	B503	Yes
12	6	Yes	Eichelberger	305 Glen Arbor	Irmo	South Carolina	29063	B125	Yes
13	6	Yes	Gunning	300 Glen Arbor	Irmo	South Carolina	29063	B131	Yes
14	6	Yes	Hansford	5 Bent Water	Irmo	South Carolina	29063	B493	Yes
15	6	Yes	Johns	184 Arbor Springs	Irmo	South Carolina	29063	B501	Yes
16	6	Yes	Jumper	321 Glen Arbor	Irmo	South Carolina	29063	B129	Yes
17	6	Yes	Lowman	322 Glen Arbor	Irmo	South Carolina	29063	B134	Yes
18	6	Yes	McCallister	277 Glen Arbor	Irmo	South Carolina	29063	B472	Yes
19	6	Yes	Middleton	312 Glen Arbor	Irmo	South Carolina	29063	B132	Yes
20	6	Yes	Naik	11 Bent Water Court	Irmo	South Carolina	29063	B495	Yes
21	6	Yes	Phillips	325 Glen Arbor	Irmo	South Carolina	29063	B130	Yes
22	6	Yes	Reed	268 Glen Arbor	Irmo	South Carolina	29063	B483	Yes
23	6	Yes	Resident	151 Arbor Springs	Irmo	South Carolina	29063	B482	Yes
24	6	Yes	Sawyer	267 Glen Arbor	Irmo	South Carolina	29063	B474	Yes
25	6	Yes	Schumpert	10940 Broad River	Irmo	South Carolina	29063	B118	No
26	6	Yes	Sloan	284 Glen Arbor	Irmo	South Carolina	29063	B489	Yes
27	6	Yes	Taylor	159 Arbor Springs	Irmo	South Carolina	29063	B485	Yes
28	6	Yes	Vess	197 Arbor Springs	Irmo	South Carolina	29063	B140	Yes
29	6	Yes	Walker	191 Arbor Springs	Irmo	South Carolina	29063	B136	Yes
30	6	Yes	Warick	192 Arbor Springs	Irmo	South Carolina	29063	B144	Yes
31		Yes	Warren	2 Bent Water	Irmo	South Carolina	29063	B498	Yes
32	6	Yes	Weissman	281 Glen Arbor	Irmo	South Carolina	29063	B471	Yes
33	6	Yes	Wilkins	316 Glen Arbor	Irmo	South Carolina	29063	B133	Yes
34	6	Yes	Wood	289 Glen Arbor	Irmo	South Carolina	29063	B121	Yes

Vote not counted towards or against viewpoints calculation

Attachment H – Design Roll Plot

Attachment I – Volume Diagrams

Figure 54 - 2040 Design Hour Volumes (Exits 82-85)

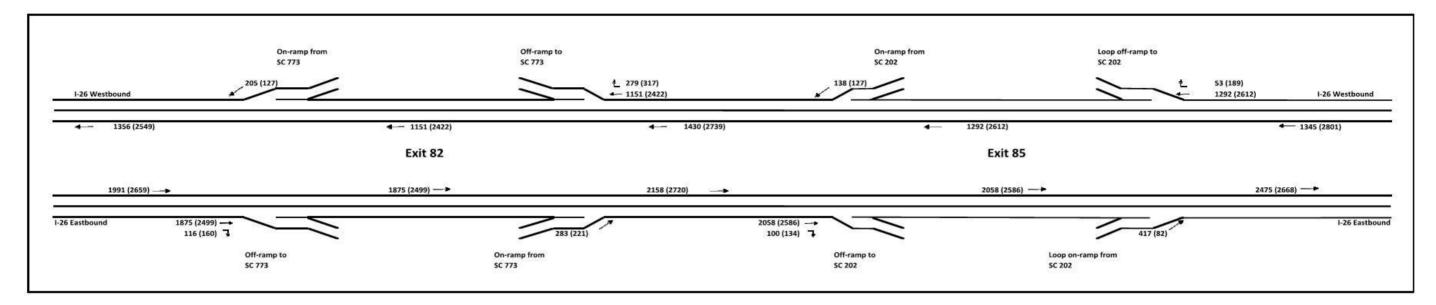
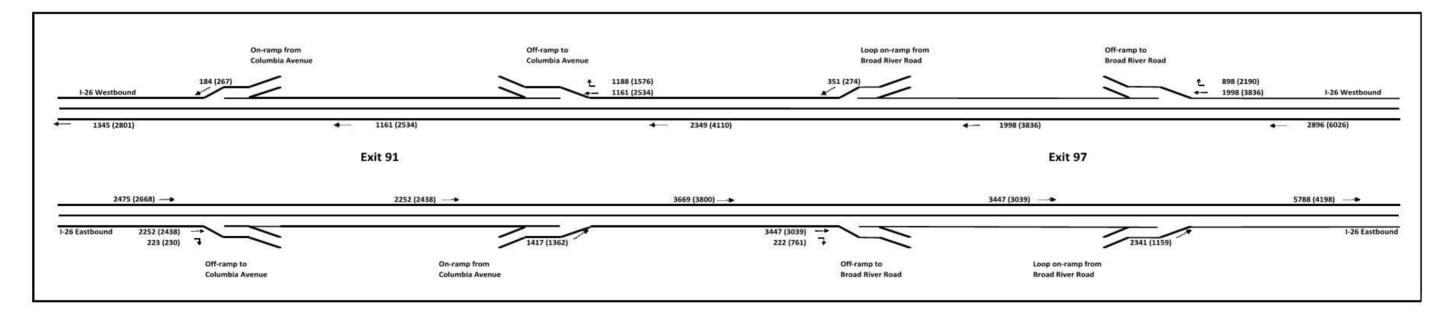
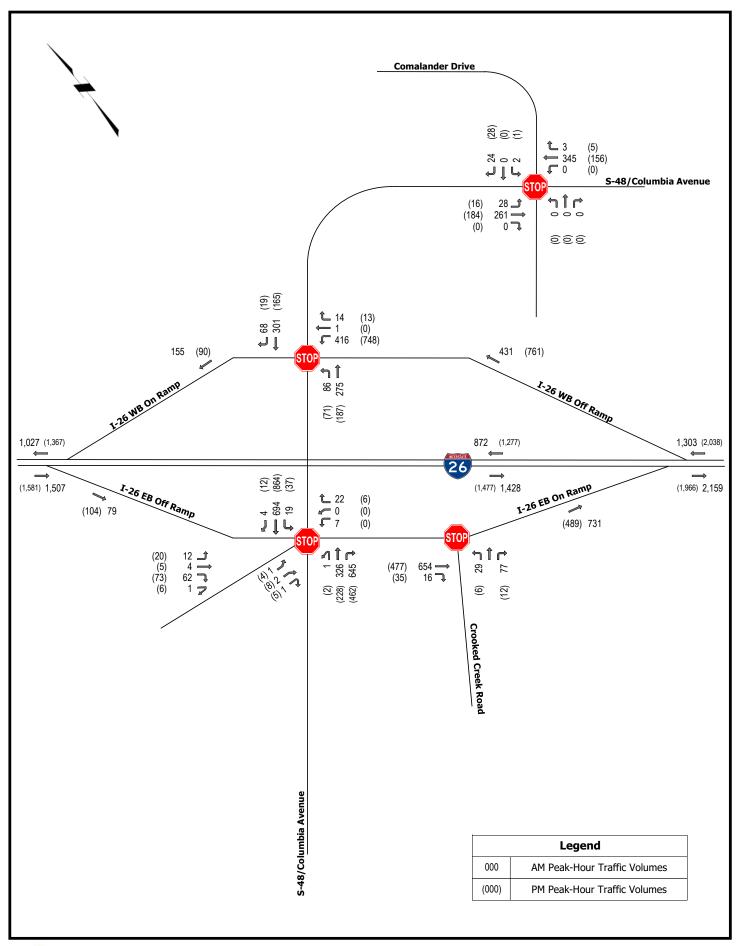
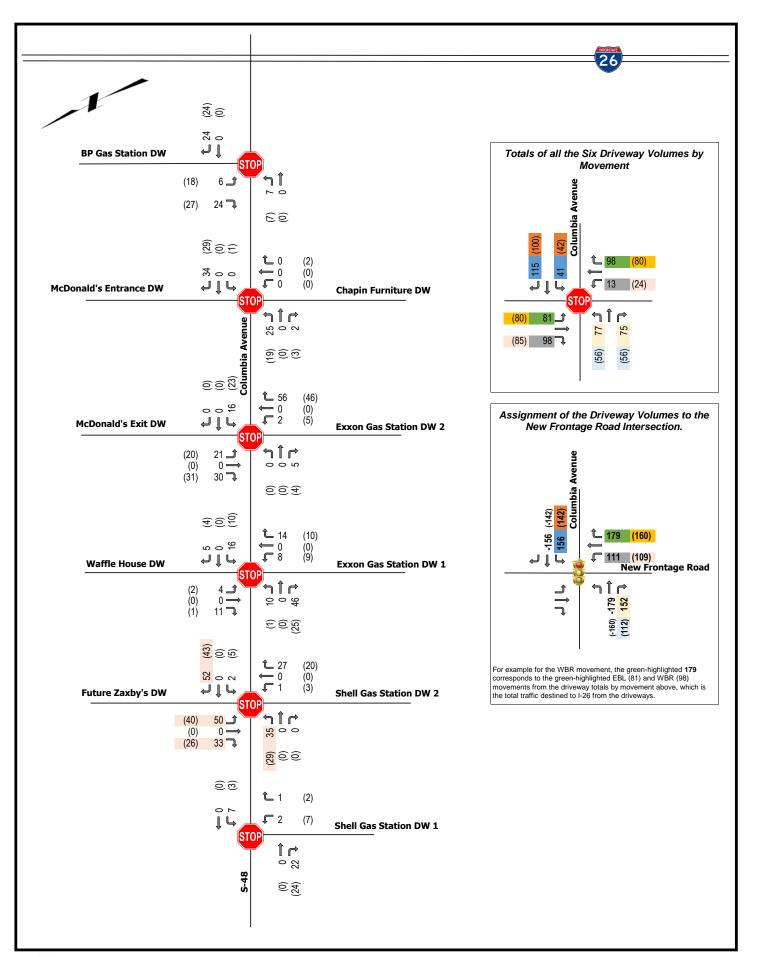
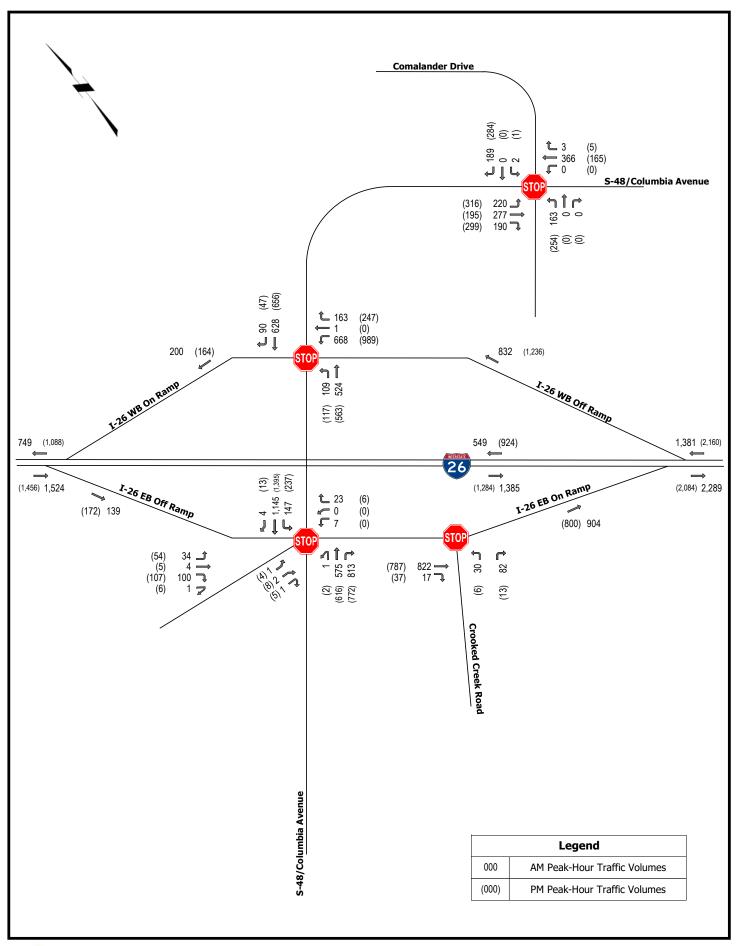
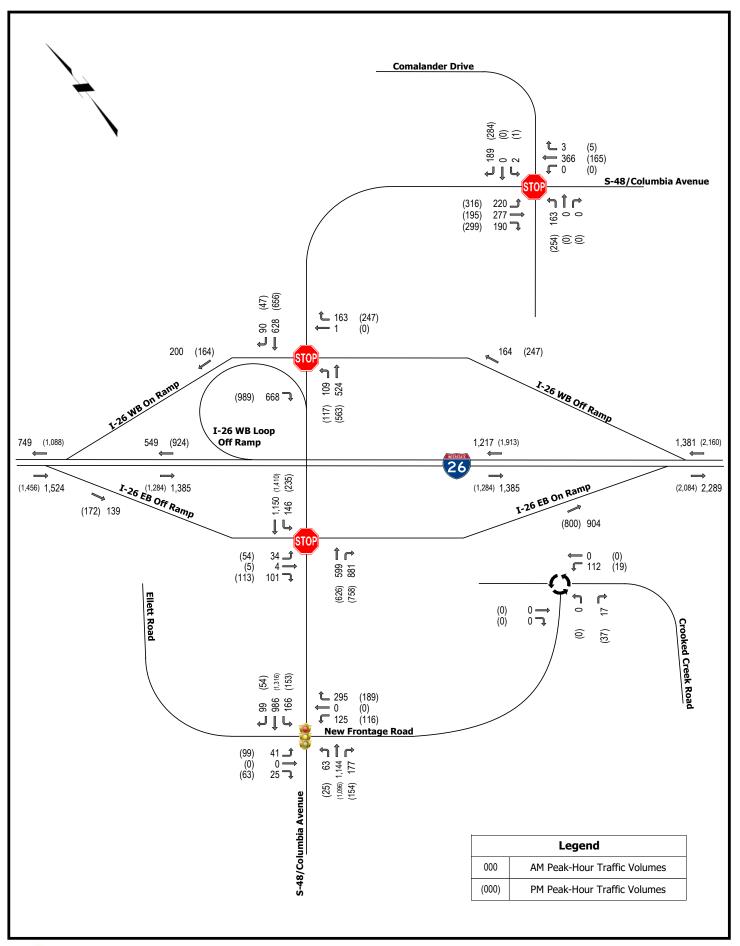
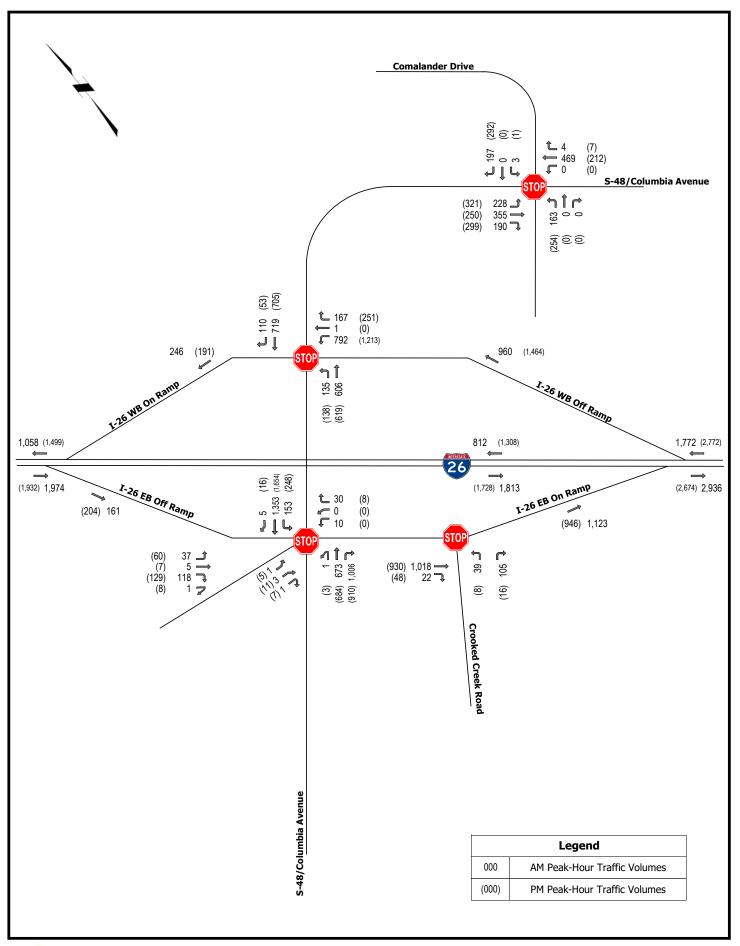
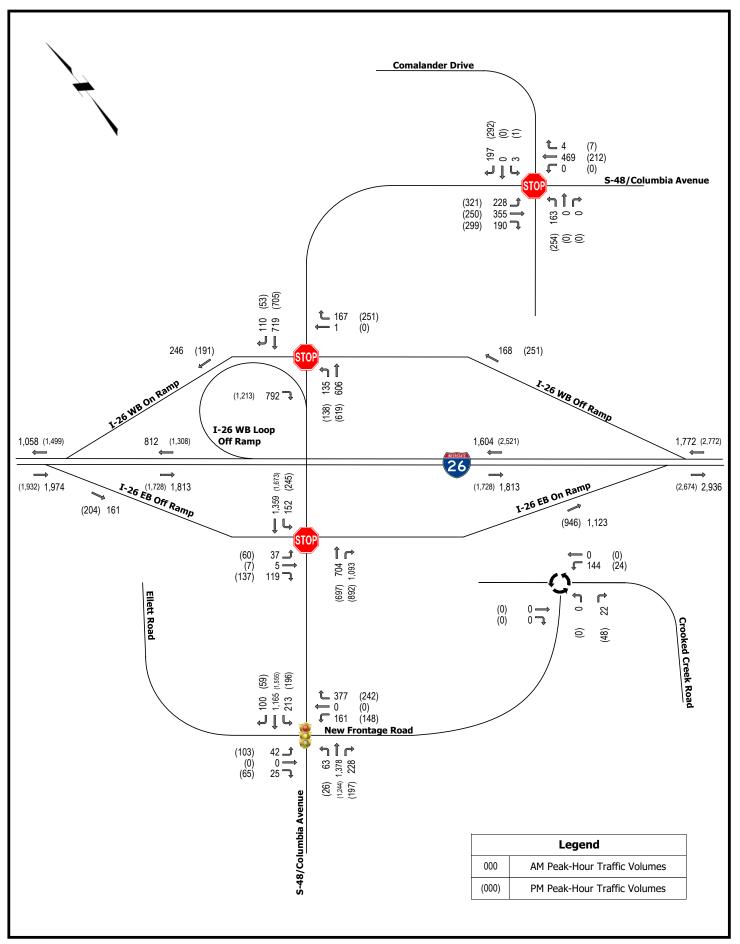





Figure 55 - 2040 Design Hour Volumes (Exits 91-97)









I-26 Widening and Interchange Improvements EA Re-evaluation Project ID P029208

ATTACHMENT F:

STAKEHOLDER MEETING SUMMARY

I-26 Widening MM 85-MM 101 Stakeholders Meeting Summary October 29, 2019

A stakeholders meeting was held to present the new proposed design at the Exit 91 interchange, and the impacts to adjacent properties.

Nine people attended. No conflicts or opposition was raised regarding the proposed design.

Attendees:

- 1. Joe Berry, attorney with Lewis Babcock, representing the Kahns, who own Rubin Family Properties (Waffle House) and Chapin Z, LLC (Zaxby's); JBB@lewisbabcock.com; 803-771-8000
- 2. David Dodd, owner of F&D Electric; fdelectricDodd@icloud.com; 803-513-2843
- 3. Wayne Shealy; landowner; <u>wanyeshealy@hotmail.com</u>; 803-397-1760
- 4. Jim Meehan, landowner; jmeehan@sc.rr.com; 803-932-0990
- 5. Dan Ward; owner; Zaxby's; danwardsr@msn.com; 864-415-5496
- 6. Alan Kahn; owner; Kahn Development Co.; owner of Warehouses, Inc, Zaxby's (Chapin Z, LLC) and Waffle House (Rubin Family Properties); alankahn@kahndevelopment.com
- 7. Keith Grimaud; President of Chapin Furniture; kgrimaud@chapinfurniture.com; 803+727-7888
- 8. Danny Shealy; resident and landowner; WD&L Enterprises II, LLC; shealydr@netscape.com; 803-422-6824
- 9. Charles Kahn; Vice President; Kahn Development Co.; Chapin Z, LLC, and Warehouses, Inc.; ckahn@mbkahn.com; 803-227-1257

ATTACHMENT G:

INTERCHANGE MODIFICATION REPORT FOR THE COLUMBIA AVENUE [S-32-48] OVER I-26
INTERCHANGE IMPROVEMENT PROJECT

INTERCHANGE MODIFICATION REPORT

for the

COLUMBIA AVENUE (S-32-48) OVER I-26 INTERCHANGE IMPROVEMENT PROJECT

Located in Lexington County, South Carolina

Prepared by Ramey Kemp & Associates, Inc.

June 2020 RKA Project #20045

INTERCHANGE MODIFICATION REPORT

for the

COLUMBIA AVENUE (S-32-48) OVER I-26 INTERCHANGE IMPROVEMENT PROJECT

Located in Lexington County, South Carolina

Prepared by
Ramey Kemp & Associates, Inc.
1411 Gervais Street, Suite 150
Columbia, South Carolina 29201

June 2020 RKA Project #20045

This document has been digitally signed and sealed by Michael A. Dennis, South Carolina Professional Engineer Number 17968, on June 5, 2020. This electronic document is 997 pages in length.

The digital signature certificate must be verified on any electronic copies of this document.

Printed copies of this document are not considered signed and sealed.

Table of Contents

EXECUTIVE SUMMARYv 1.3. Study Area & Analysis Time Periods4 1.4. Committed Improvements6 3.1.1. 3.1.2. 3.1.3. 3.2. Intersection Analyses32 3.2.1. 3.2.2. 3.3.1. 3.3.2. 3.4. Crash Analyses......53 3.5. Crash Data53 3.6. Higher Crash Rate Locations55

List of Tables

Table 7 - Freeway Facility LOS Analysis Summary (2024 No-Build PM Peak-Hour)......21 Table 8 - Freeway Facility LOS Analysis Summary (2024 Build AM Peak-Hour)......23 Table 9 - Freeway Facility LOS Analysis Summary (2024 Build PM Peak-Hour)......24 Table 11 - Freeway Facility LOS Analysis Summary (2044 No-Build PM Peak-Hour)......27 Table 13 - Freeway Facility LOS Analysis Summary (2044 Build PM Peak-Hour)......30

List of Figures

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

List of Appendices

- A) SCDOT's December 2016 Interchange Modification Report
- B) Traffic Counts
- C) Volume Development Worksheets
- D) Freeway Analysis Worksheets
- E) Intersection Analysis Worksheets
- F) Arterial Analysis Worksheets
- G) Crash Analysis Worksheets
- H) Conceptual Signing Plan

Columbia Avenue (S-48) Over I-26 Interchange - Interchange Modification Report

EXECUTIVE SUMMARY

The purpose of this report is to document an Interchange Modification Report (IMR) for the proposed improvements for the I-26 & Columbia Avenue (S-32-48) interchange in Lexington County, South Carolina in accordance with Federal Highway Administration (FHWA) and SCDOT guidelines. The proposed interchange improvements to the I-26 & Columbia Avenue interchange include relocation of the interchange approximately 0.13-mile northwest of the existing interchange. The relocated interchange includes a new bridge with two southbound (SB) thru lanes, a SB left turn lane for access to eastbound I-26, one northbound (NB) lane, bike lanes in both directions, and sidewalks on either side of the bridge. The new interchange will be a parclo design with a loop in the northwestern quadrant.

The purpose of the project is to improve operational efficiency and safety of the existing interchange and to accommodate future volumes. The current interchange design is approaching capacity as a two-lane bridge along with no turn lanes to / from Columbia Avenue (S-48) and is functionally obsolete. Operation is expected to worsen with more daily traffic volumes based on past census data indicating the population has been increasing by approximately twenty (20) percent per decade since 1990. With this anticipated growth along with the recently approved Chapin Technology Park and a planned commercial development north of the interchange, modifications to the existing diamond interchange are needed. The proposed improvements to the interchange will address the existing operational and safety deficiencies and accommodate projected future traffic volumes. This report summarizes the results of the capacity analyses, crash analyses, and responses to FHWA's two policy requirements for an Interstate System Access Change Request.

SCDOT prepared an *Interchange Modification Report* in December 2016 for the I-26 & Columbia Avenue (S-32-48) interchange improvements, which was utilized as a base for the IMR.

The analysis of the 2044 Build condition of the proposed interchange improvements indicates that the project would not have any significant negative impact on the safety and the operation of the facilities within the project area. The analysis shows that the I-26 mainline will not degrade from projected 2044 No-Build conditions and that I-26 & Columbia Avenue interchange ramp merge and diverge areas are projected to operate at LOS D or better during the 2044 AM and PM peak periods.

The results of the arterial analyses indicate that Columbia Avenue will operate at an overall LOS D or better conditions with consideration of the proposed interchange improvements for 2044 Build conditions.

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 RAMEY KEMP ASSOCIATES

Moving forward.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

A safety evaluation and crash modification factor (CMF) analysis indicate that with consideration of the proposed improvements, the number of existing crashes along Columbia Avenue between the Bojangles driveway intersection and the I-26 EB Ramps intersection will be reduced by approximately 78% (29 crashes) as compared to the No-Build scenario. The number of existing crashes at the vicinity of the Columbia Avenue & I-26 interchange will be reduced by approximately 62% (106 crashes) as compared to the No-Build scenario.

Columbia Avenue (S-48) Over I-26 Interchange - Interchange Modification Report

1. INTRODUCTION

The purpose of this report is to document an IMR for the proposed improvements for the I-26 & Columbia Avenue (S-32-48) interchange in Lexington County, South Carolina in accordance with FHWA and SCDOT guidelines. This report summarizes the results of the capacity analyses, crash analyses, and responses to FHWA's two policy requirements for an Interstate System Access Change Request.

1.1. Project Background

The I-26 & Columbia Avenue interchange is located at Exit 91 along the interstate and is currently a diamond configuration. Exit 97 (US 176/Broad River Road) is located approximately six miles to the east of Columbia Avenue and Exit 85 (SC 202/Pomaria Street) is located approximately six miles to the west of Columbia Avenue. Due to the extreme distance between the Exit 91 interchange and the two adjacent interchanges (approximately 6 miles), they would have no influence on the traffic flow at the subject interchange and are therefore not included in this report.

There is currently one exit ramp for each direction of I-26 to access Columbia Avenue. The I-26 WB exit ramp connection to Columbia Avenue occurs at a signalized intersection, which provides access to both Columbia Avenue northbound and southbound. The I-26 EB exit ramp connection to Columbia Avenue occurs at a stop-controlled intersection, which provides access to both Columbia Avenue northbound and southbound. There is currently one entrance ramp for access to each direction of I-26 which provides access to both Columbia Avenue northbound and southbound. Both entrance ramps are directional on-ramps which carry traffic from both northbound and southbound directions of Columbia Avenue. The respective righthand movement to the EB directional ramp is free-flow and the left-turn movement to the ramp yields to the free-flow Columbia Avenue traffic. At the I-26 westbound directional on-ramp, left-turn and right turn traffic movements from Columbia Avenue are controlled by the traffic signal at the ramp. The EB on-ramp is bi-directional and serves as access to Crooked Creek Road, which intersects the ramp approximately 150 feet east of Columbia Avenue.

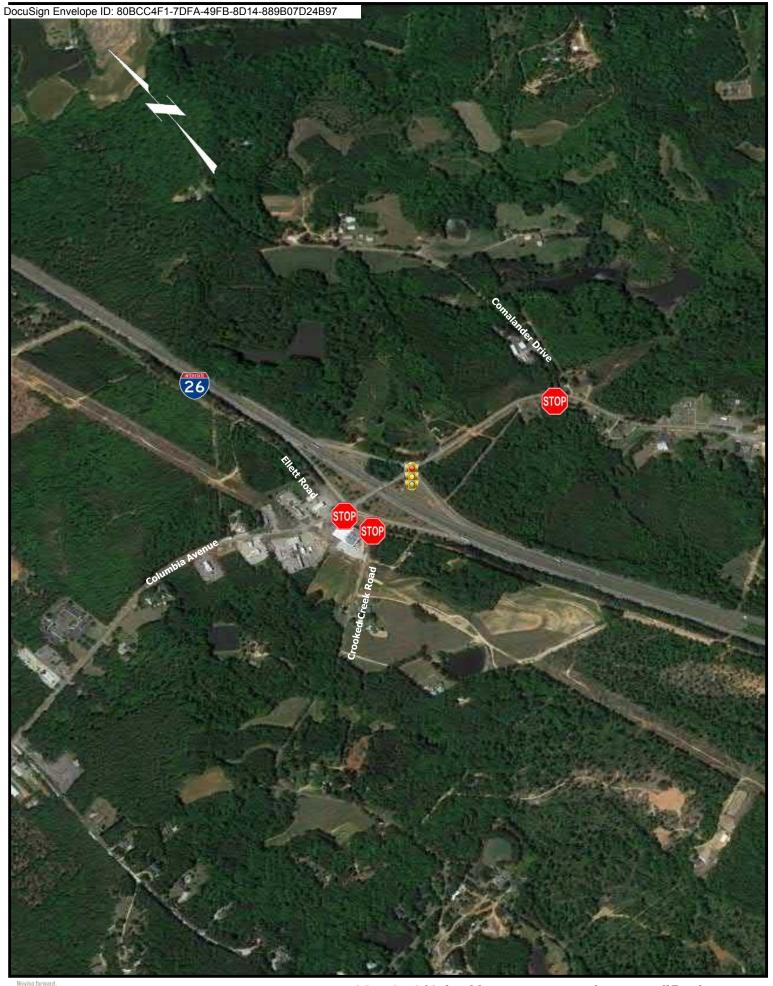

The proposed interchange improvements to the I-26 & Columbia Avenue interchange include relocation of the interchange approximately 0.13-mile northwest of the existing interchange. The relocated interchange includes a new bridge with two southbound (SB) thru lanes, a SB left turn lane for access to eastbound I-26, one northbound (NB) lane, bike lanes in both directions, and sidewalks on either side of the bridge. The new interchange will be a parclo design with a loop in the northwestern quadrant.

Figure 1 illustrates the location of the study I-26 & Columbia Avenue interchange.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

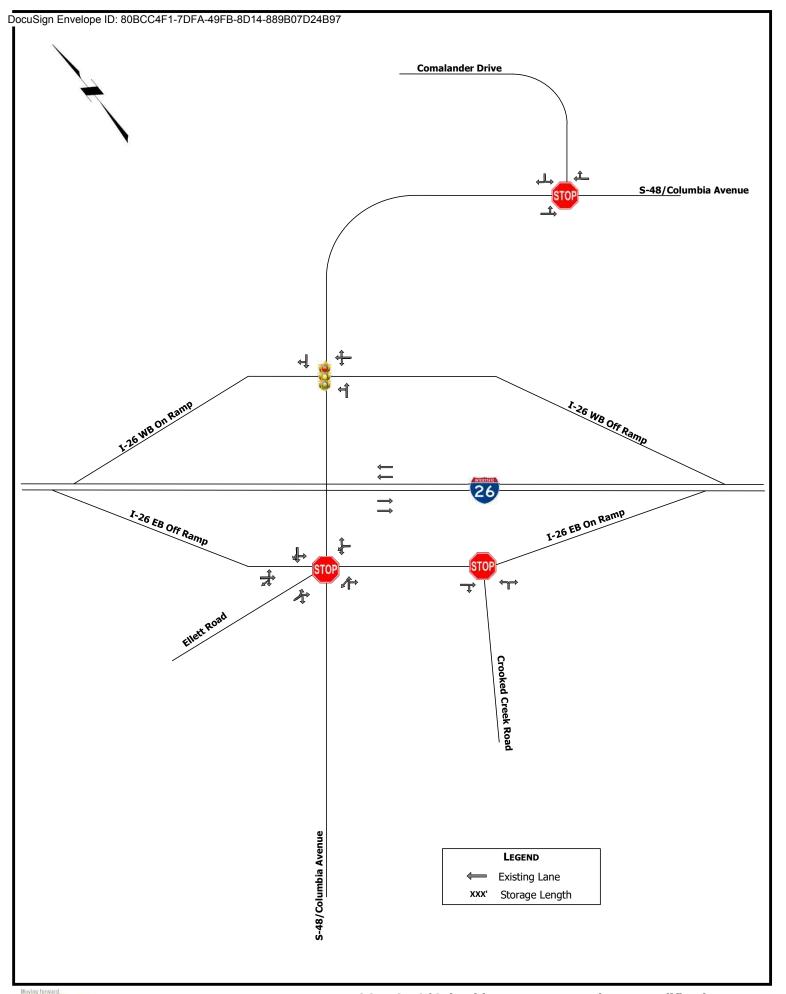
1.2. Previous Interchange Modification Report

SCDOT prepared an *Interchange Modification Report* in December 2016 for the I-26 & Columbia Avenue (S-32-48) interchange improvements, which was utilized as a base for the IMR and is provided in Appendix A. The December 2016 IMR requires an update due to design changes. The I-26 mainline volumes east of Columbia Avenue were used as a base for developing the updated I-26 volumes.

I-26 at S-48/Columbia Avenue - Interchange Modification Report
Figure 1 - Location Map
Page 3

1.3. Study Area & Analysis Time Periods

The IMR evaluates capacity analyses and crash analyses of the proposed I-26 & Columbia Avenue (S-32-48) interchange improvements at the following intersections.


- 1) New Columbia Avenue (S-32-48) & Relocated Ellett Drive/Old Columbia Avenue
- 2) Columbia Avenue (S-32-48) & I-26 Westbound Ramps
- 3) Columbia Avenue (S-32-48) & I-26 Eastbound Ramps
- 4) Columbia Avenue (S-32-48) & Chapin Commerce Village Driveways
- 5) New Columbia Avenue (S-32-48) & Relocated Comalander Drive/Old Columbia Avenue

The IMR analyses consider 2020 existing traffic conditions; projected 2024 opening-year traffic conditions; and 2044 horizon-year traffic conditions as the study years. The weekday AM peak period and PM peak period were considered as the study evaluation time periods for each of the study years.

Existing roadway conditions are summarized in Table 1 and Figure 2 illustrates the existing lane geometry, traffic control, and turn lane lengths.

Table 1 - Existing Roadway Conditions

Facility Name	SC Route #	Cross Section	Classification	Speed Limit	2018 AADT	Maintained By
Interstate 26	I-26	4-lane divided	Interstate	70 MPH	53,200	SCDOT
Columbia Avenue	S-48	2-lane undivided	Minor Arterial	35 MPH	14,900	SCDOT
Ellett Drive	S-1877	2-lane undivided	Local	35 MPH	NA	SCDOT
Comalander Drive	S-689	2-lane undivided	Local	50 MPH	NA	SCDOT
Crooked Creek Road	S-232	2-lane undivided	Local	45 MPH	NA	SCDOT

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

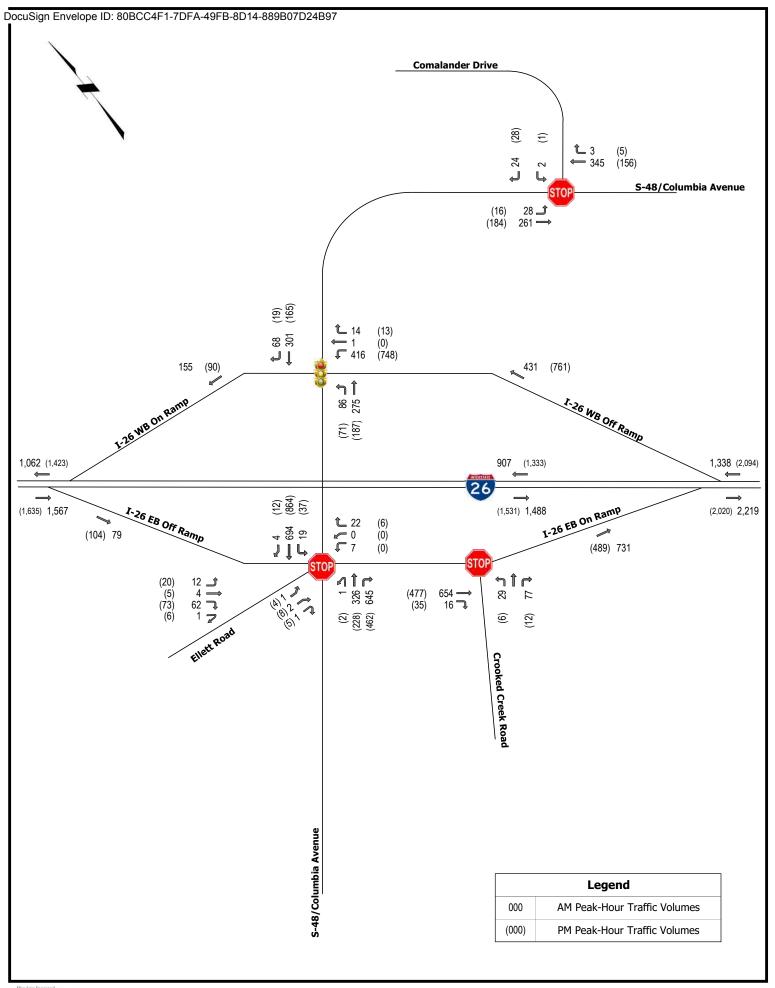
1.4. Committed Improvements

I-26 is currently under a design build contract for widening to three lanes in both directions between mile markers 85 and 101, including the interchange reconstruction of Columbia Avenue for which this IMR is being prepared. For the purposes of this analysis, this improvement was considered to be in place for 2024 opening-year and 2044 horizon-year conditions.

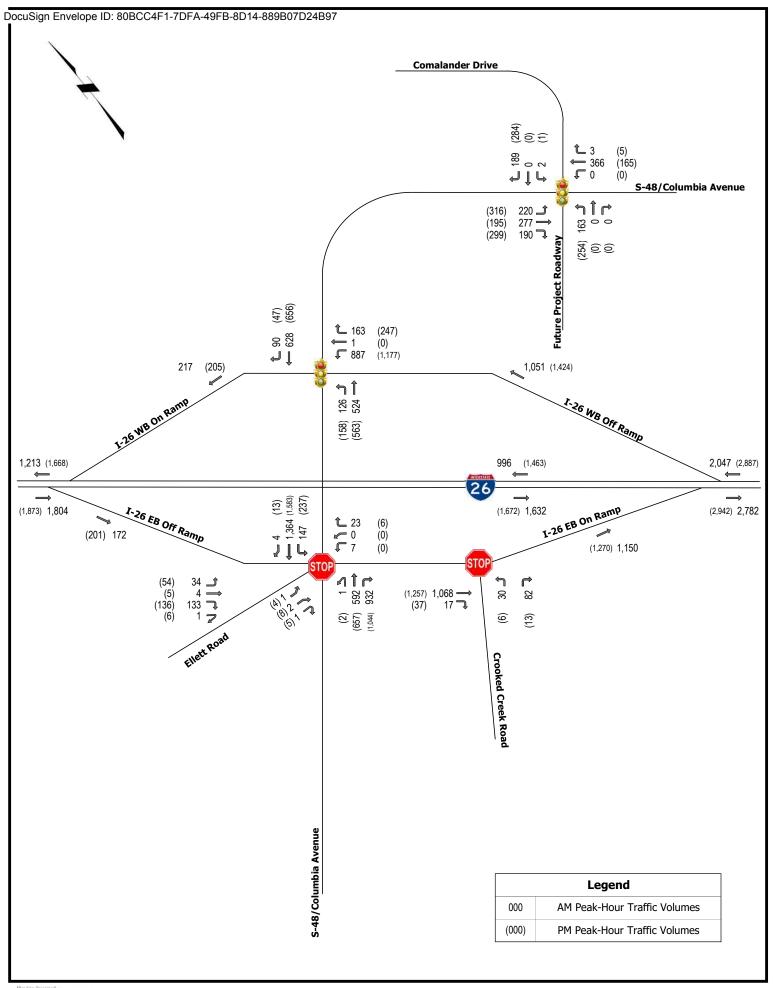
1.5. Statement of Need

The purpose of the IMR is to evaluate the traffic impacts of the proposed improvements to the I-26 & Columbia Avenue (S-32-48) interchange. Improvements to the interchange are necessary due to the operational and safety deficiencies documented in the *SCDOT* prepared *Interchange Modification Report* of December 2016 and the historical and projected growth of Lexington County around the interchange. In the December 2016 IMR, SCDOT used 1.25% growth for the Columbia Avenue corridor. When preparing this updated IMR, the SCDOT Planning Office was consulted and recommended using 1.5% annual growth for the corridor when determining the 2024 and 2044 projections. The previous IMR used 2% growth on the I-26 corridor and SCDOT determined this rate was still valid for this update. The proposed improvements to the interchange will address the existing operational and safety deficiencies and accommodate projected future traffic volumes.

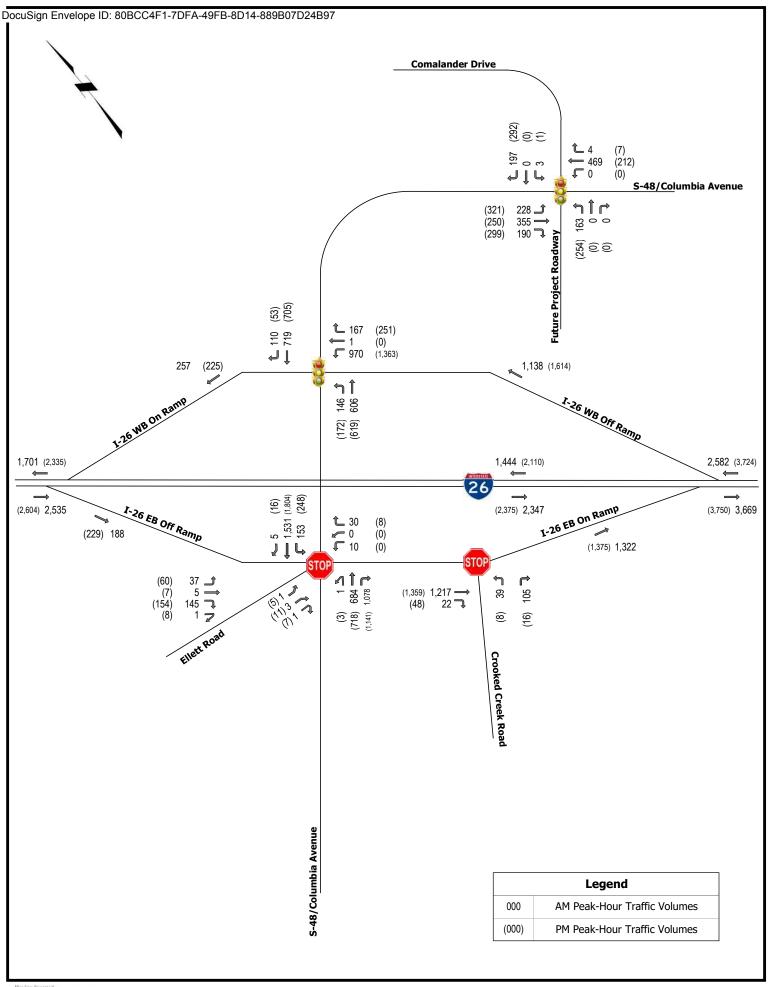
Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report


2. TRAFFIC VOLUME DEVELOPMENT

For each of the study years, existing and projected traffic volumes were developed for the weekday AM peak period and PM peak period.


2020 existing traffic volumes were obtained from traffics counts taken in January of 2020 for use in the analyses. The 2020 I-26 mainline volumes were developed from the 2014 AECOM counts and grown by an annual 2% growth rate. The 2020 traffic volumes are illustrated in Figure 3 and the raw traffic count data is provided in Appendix B.

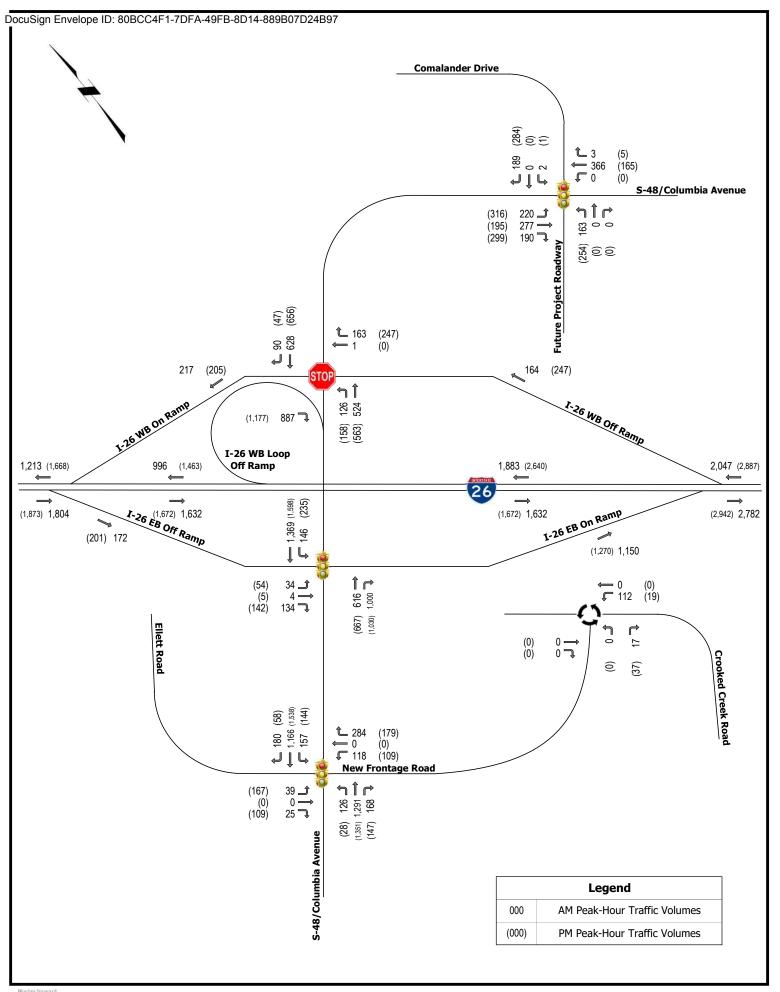
2024 opening-year traffic volumes were developed by applying the annual background growth rate of 1.5% to the 2020 existing traffic volumes along Columbia Avenue and 2.0% growth rate to the I-26 mainline. The 2024 No-Build traffic volumes are illustrated in Figure 4 and documented in Appendix C.


2044 horizon-year traffic volumes were obtained by applying the documented annual background growth rate of 1.5% to Columbia Avenue and 2.0% to I-26 for use in the analyses. 2044 No-Build traffic volumes are illustrated in Figure 5.

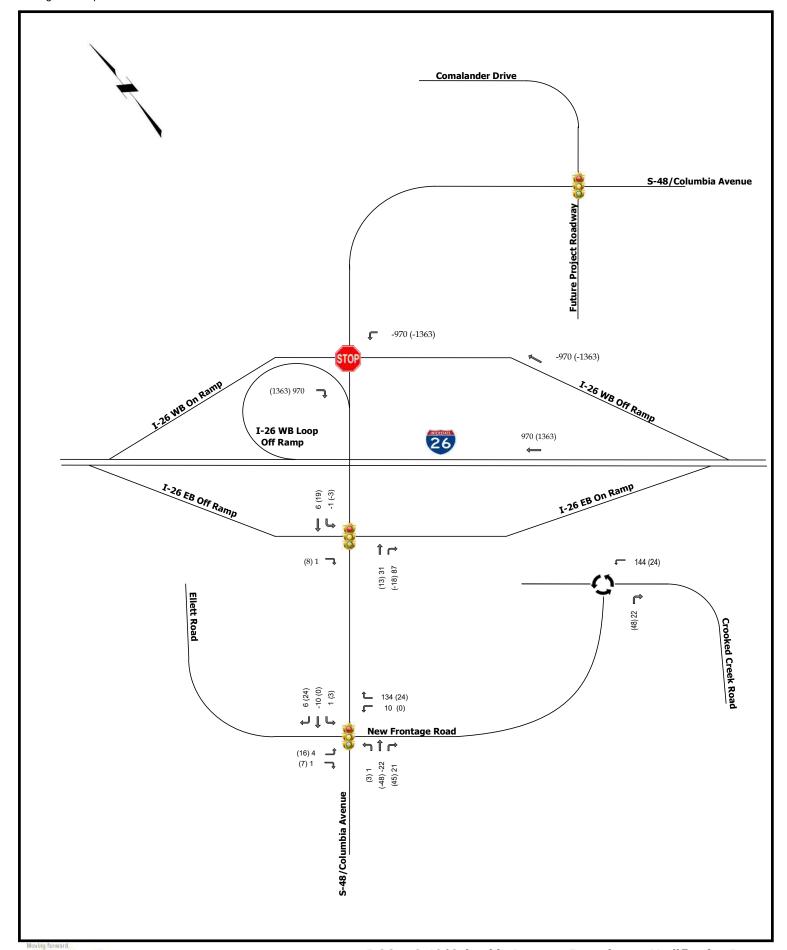
2.1. Build Traffic Diversion

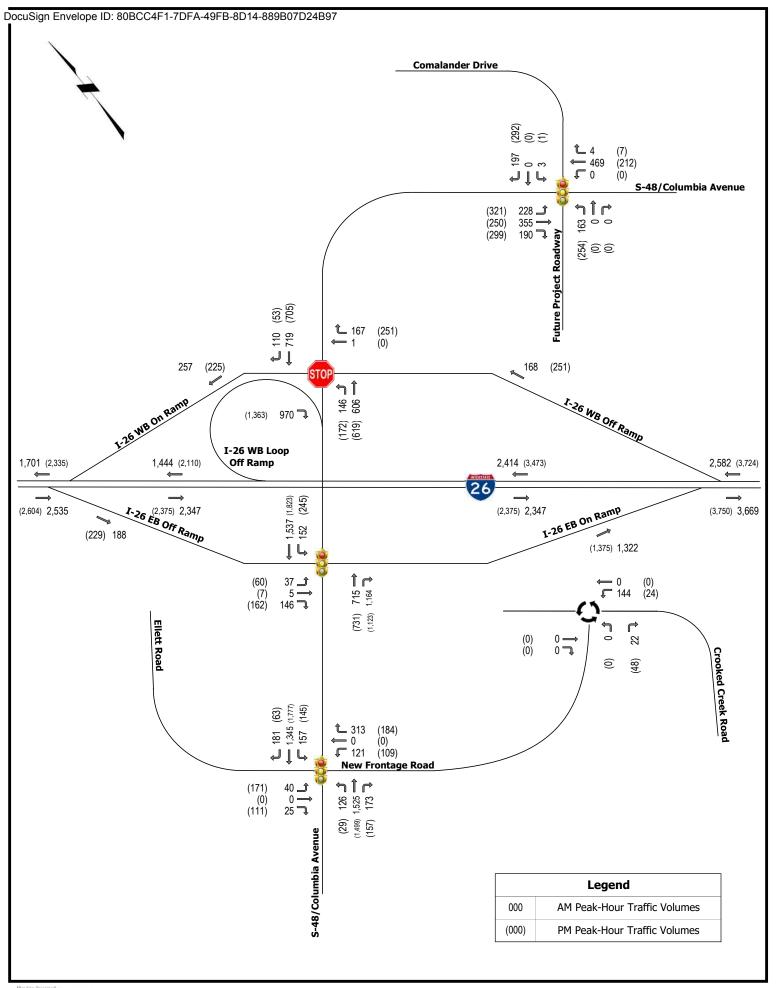

The proposed interchange improvements to the I-26 & Columbia Avenue interchange includes relocation of the interchange approximately 0.13-mile northwest of the existing interchange. The proposed improvements incorporate a westbound loop off-ramp which will divert southbound trips along Columbia Ave to the new loop on I-26. The proposed relocation of the interchange will also result in converting the existing Columbia Avenue to a frontage road removing many current conflict points from main line through movement. This will create a new intersection that requires the projected 2024 No-Build and 2044 No-Build traffic volumes to be diverted onto the new route. As a result of the New Frontage Road, the Crooked Creek Road intersection will be converted to a roundabout at the northern end of the Old Columbia Avenue/New Frontage Road. Table 2 summarizes the proposed new roadway/intersection improvements and the corresponding route for the traffic diversions.

Table 2 - Diverted Traffic Summary


Roadway Facility	Proposed Improvement	Diverted Traffic Summary
Crooked Creek Road	Relocated into new traffic circle.	All traffic to/from existing Crooked Creek Road assigned to southern piece of old Columbia Avenue and to the new Columbia Avenue/Old Columbia Avenue intersection
Comalander Drive	Relocated 200' northwest of existing intersection along Columbia Avenue	All traffic to/from existing Comalander Drive assigned to new intersection.
Ellett Road	Relocated 1000' southwest of existing intersection along Columbia Avenue.	All traffic to/from existing Ellett Road assigned to new intersection.
Driveways along Old Columbia Avenue	Remains on Old Columbia Avenue	Refer to Figure 1C in Appendix C for a detailed illustration
I-26 WB Off Ramps	Install new I-26 WB Off Loop to accommodate traffic bound to travel south on Columbia Avenue	All left-turning traffic from the exiting I-26 WB Off Ramp assigned to new Off Loop

The diverted traffic volumes and resultant build traffic volumes for 2024 opening-year conditions are illustrated in Figure 6 and Figure 7, respectively.


The diverted traffic volumes and resultant build traffic volumes for 2044 horizon-year conditions are illustrated in Figure 8 and Figure 9, respectively.



3. TRAFFIC & CRASH ANALYSES

The IMR considers the following analysis evaluations for determining the impact of the proposed I-26 & Columbia Avenue interchange improvements.

- 1) Freeway facility analyses were conducted for the I-26 mainline; the on-ramp merges to I-26 from Columbia Avenue; and the off-ramp diverges from I-26 to Columbia Avenue using the McTrans *Highway Capacity Software*, Version 7.8.
- 2) Intersection analyses for the signalized and unsignalized intersections along Columbia Avenue were conducted using the Transportation Research Board's *Highway Capacity Manual 6th edition* methodologies of the *Synchro*, Version 10 software.
- 3) Intersection analyses for the new Frontage Road & Crooked Creek Road roundabout was conducted using *SIDRA*, version 7.0, roundabout analysis software.
- 4) The Columbia Avenue arterial crash analysis was conducted using *HSM* Crash Modification Factors (CMFs).

3.1. Freeway Facility Analyses

Using projected 2024 opening-year and 2044 horizon-year peak-hour traffic volumes, freeway facility analyses were conducted for the I-26 & Columbia Avenue interchange.

Level of service (LOS) grades range from LOS A to LOS F, which are directly related to traffic density of freeway facilities. LOS A operations typically represent ideal, free-flow conditions where vehicles experience low densities and LOS F operations typically represent poor, forced-flow (bumper-to-bumper) conditions with high densities and are generally considered undesirable. Table 3 summarizes the HCM 2010 density thresholds associated with each LOS grade for freeway facilities.

Table 3 - HCM 2010 LOS Criteria for Freeway Facilities

	Density (Passenger Cars/Mile/Lane)											
LOS	Ramp Merge & Diverge Areas	Freeway Segments										
A	≤10	≤11										
В	> 10 and ≤ 20	> 11 and ≤ 18										
С	> 20 and ≤ 28	> 18 and ≤ 26										
D	> 28 and ≤ 35	> 26 and ≤ 35										
E	> 35	> 35 and ≤ 45										
F	Demand Exceeds Capacity	> 45										

As part of the freeway facility analysis, a peak hour facto (PHF) of 0.95 was assumed for all scenarios. The existing SCDOT heavy vehicle percentage of 20% was utilized for the mainline in

all scenarios and the existing heavy vehicle percentages on the ramps were utilized in all scenarios, with a minimum percentage of 2% considered.

3.1.1. Freeway Facilities – 2020 Existing-Year Conditions

The results of the freeway facility analyses for the 2020 Existing conditions are summarized in Table 4 for the AM peak-hour and Table 5 for the PM peak-hour and illustrated in Figure 10. The results of the 2020 Existing freeway facility analyses indicate that the study I-26 freeway facilities are projected to operate with acceptable LOS conditions.

Table 4 - Freeway Facility LOS Analysis Summary (2020 Existing AM Peak-Hour)

		Ea	stbound			Accl./			Westbou	ınd	
I-26 Section	Ramp Volume (veh/hr)	Mainline Volume (veh/hr)	Density (pc/mi/ln)	Type	LOS	Decl. Lane Length (ft)	LOS	Type	Density (pc/mi/ln)	Mainline Volume (veh/hr)	Ramp Volume (veh/hr)
Between Exits 85 & 91		1,567	16.1	FS	В		A	FS	10.9	1,062	
EB Off Ramp	79	1,488	14.3	D	В	979					
South of Columbia Avea		1,488	18.6	FS	С						
EB On Ramp	731	1,488	19.1	M	В	1,500					
WB On Ramp						1,227	A	M	9.6	907	155
North of Columbia Ave ^b							В	FS	11.3	907	
WB Off Ramp						1,176	A	D	5.2	907	431
Between Exits 91 & 97		2,219	24.2	FS	С		В	FS	13.8	1,338	

^a This section represents the eastbound freeway segment between the I-26 EB Off Ramp and the I-26 EB On Ramp.

^b This section represents the westbound freeway segment between the I-26 WB Off Ramp and the I-26 WB On Ramp.

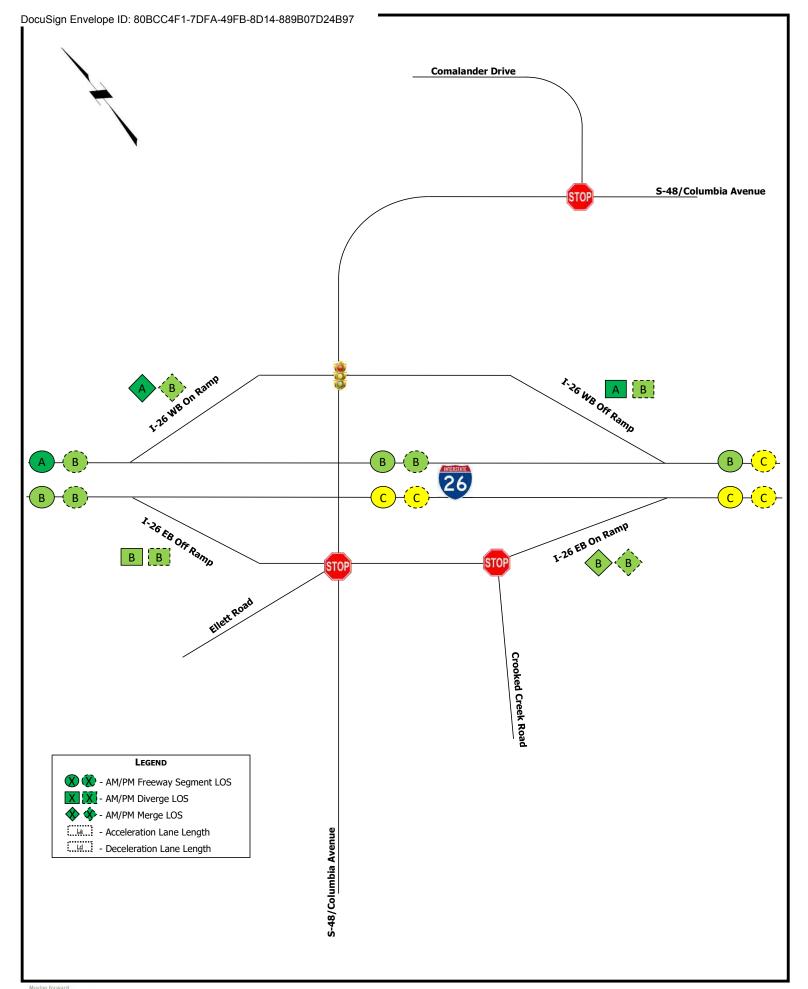

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

Table 5 - Freeway Facility LOS Analysis Summary (2020 Existing PM Peak-Hour)

		Eas	stbound			Accl./			Westbou	nd	
I-26 Section	Ramp Volume (veh/hr)	Mainline Volume (veh/hr)	Density (pc/mi/ln)	Type	LOS	Decl. Lane Length (ft)	LOS	Type	Density (pc/mi/ln)	Mainline Volume (veh/hr)	Ramp Volume (veh/hr)
Between Exits 85 & 91		1,635	16.9	FS	В		В	FS	14.6	1,423	
EB Off Ramp	104	1,531	14.9	D	В	979					
South of Columbia Avea		1,531	19.1	FS	С						
EB On Ramp	489	1,531	17.7	M	В	1,500					
WB On Ramp						1,227	В	M	13.9	1,333	90
North of Columbia Ave ^b							В	FS	16.6	1,333	
WB Off Ramp						1,176	В	D	10.6	1,333	761
Between Exits 91 & 97		2,020	21.4	FS	С		С	FS	22.5	2,094	

^a This section represents the eastbound freeway segment between the I-26 EB Off Ramp and the I-26 EB On Ramp.

^b This section represents the westbound freeway segment between the I-26 WB Off Ramp and the I-26 WB On Ramp.

3.1.2. Freeway Facilities – 2024 Opening-Year Conditions

The results of the freeway facility analyses for the 2024 No-Build conditions are summarized in Table 6 for the AM peak-hour and Table 7 for the PM peak-hour and illustrated in Figure 11. The 2024 No-Build conditions assume the existing two lanes along I-26 in both directions. The results of the 2024 No-Build freeway facility analyses indicate that the study I-26 freeway facilities are projected to operate with acceptable LOS conditions with two exceptions. Both eastbound and westbound directions of the freeway segments between Exit 91 and Exit 97 during the PM Peak-Hour are projected to operate with unacceptable LOS conditions.

Table 6 - Freeway Facility LOS Analysis Summary (2024 No-Build AM Peak-Hour)

		Eas	stbound			Accl./			Westbou	nd	
I-26 Section	Ramp Volume (veh/hr)	Mainline Volume (veh/hr)	Density (pc/mi/ln)	Type	LOS	Decl. Lane Length (ft)	LOS	Type	Density (pc/mi/ln)	Mainline Volume (veh/hr)	Ramp Volume (veh/hr)
Between Exits 85 & 91		1,804	18.8	FS	С		В	FS	12.5	1,213	
EB Off Ramp	172	1,632	16.1	D	В	979					
South of Columbia Ave ^a		1,632	20.4	FS	С						
EB On Ramp	1,150	1,632	24.1	M	С	1,500					
WB On Ramp						1,227	В	M	11.1	996	217
North of Columbia Ave ^b							В	FS	12.4	996	
WB Off Ramp						1,176	A	D	6.3	996	1,051
Between Exits 91 & 97		2,782	34.5	FS	D		С	FS	21.8	2,047	

^a This section represents the eastbound freeway segment between the I-26 EB Off Ramp and the I-26 EB On Ramp.

^b This section represents the westbound freeway segment between the I-26 WB Off Ramp and the I-26 WB On Ramp.

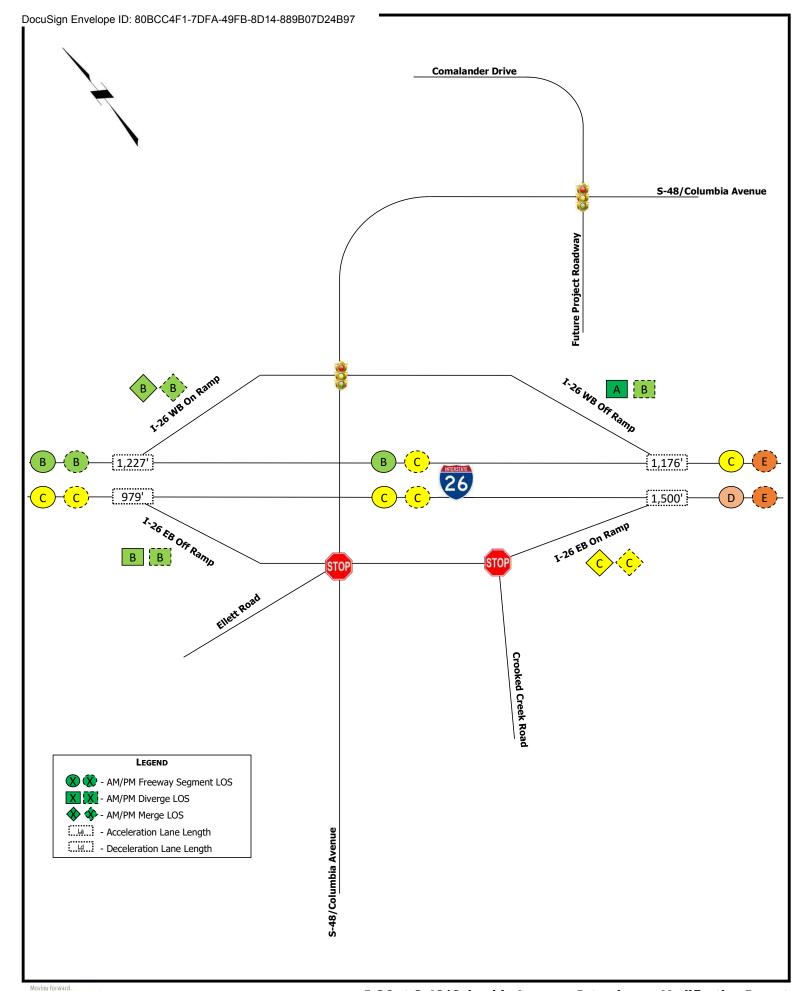

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

Table 7 - Freeway Facility LOS Analysis Summary (2024 No-Build PM Peak-Hour)

		Eas	tbound			Accl./		Westbound					
I-26 Section	Ramp Volume (veh/hr)	Mainline Volume (veh/hr)	Density (pc/mi/ln)	Type	LOS	Decl. Lane Length (ft)	LOS	Type	Density (pc/mi/ln)	Mainline Volume (veh/hr)	Ramp Volume (veh/hr)		
Between Exits 85 & 91		1,873	19.6	FS	С		В	FS	17.2	1,668			
EB Off Ramp	201	1,672	16.6	D	В	979							
South of Columbia Avea		1,672	20.9	FS	С								
EB On Ramp	1,270	1,672	25.6	M	С	1,500							
WB On Ramp						1,227	В	M	16.4	1,463	205		
North of Columbia Ave ^b							С	FS	18.3	1,463			
WB Off Ramp						1,176	В	D	12.2	1,463	1,424		
Between Exits 91 & 97		2,942	38.5	FS	Е		Е	FS	37.1	2,887			

^a This section represents the eastbound freeway segment between the I-26 EB Off Ramp and the I-26 EB On Ramp.

^b This section represents the westbound freeway segment between the I-26 WB Off Ramp and the I-26 WB On Ramp.

The results of the freeway facility analyses for the 2024 Build conditions are summarized in Table 8 for the AM peak-hour and Table 9 for the PM peak-hour and illustrated in Figure 12. The 2024 Build conditions assume widening of I-26 to three lanes for both eastbound and westbound. The results of the 2024 Build freeway facility analyses indicate that the study I-26 freeway facilities are projected to operate with acceptable LOS conditions.

Table 8 - Freeway Facility LOS Analysis Summary (2024 Build AM Peak-Hour)

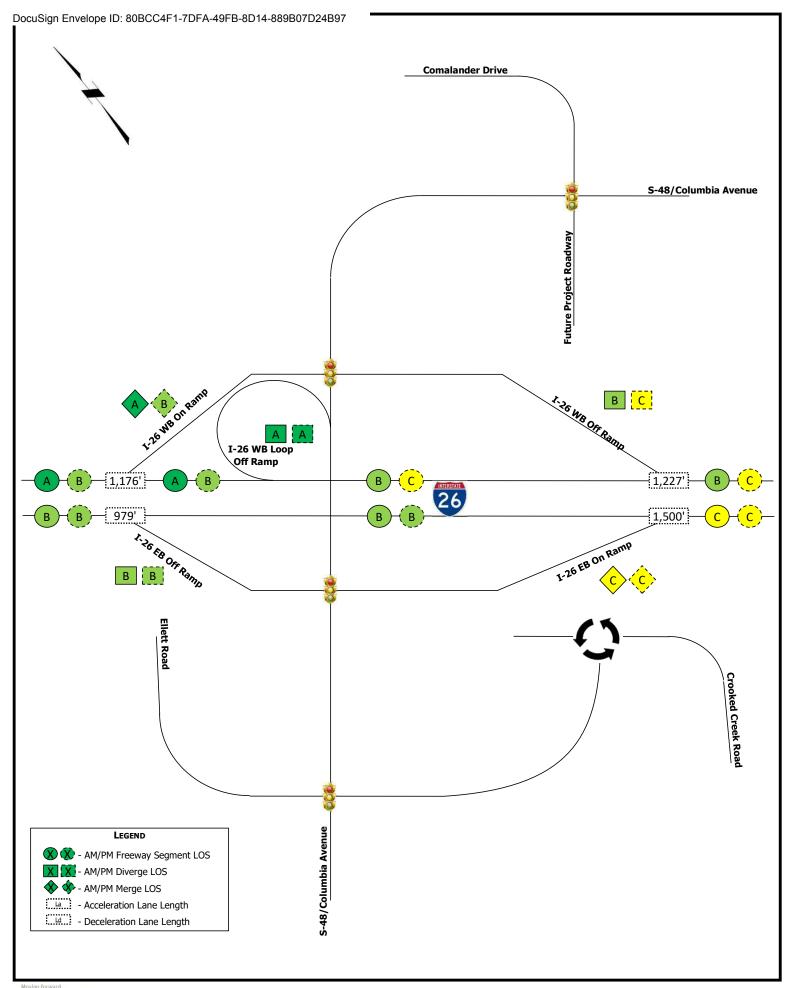
		Eas	stbound			Accl./			Westbou	nd	
I-26 Section	Ramp Volume (veh/hr)	Mainline Volume (veh/hr)	Density (pc/mi/ln)	Type	LOS	Decl. Lane Length (ft)	LOS	Type	Density (pc/mi/ln)	Mainline Volume (veh/hr)	Ramp Volume (veh/hr)
Between Exits 85 & 91		1,804	12.4	FS	В		A	FS	8.3	1,213	
EB Off Ramp	172	1,632	10.9	D	В	910					
South of Columbia Avea		1,632	12.0	FS	В						
EB On Ramp	1,150	1,632	20.6	M	С	873					
WB On Ramp						1,102	A	M	7.4	996	217
North of Columbia Ave ^b Loop							A	FS	8.3	996	
WB Loop Ramp						1,500	A	D	2.1	996	887
North of Columbia Ave ^c							В	FS	15.7	1,883	
WB Off Ramp						217	В	D	19.3	1,883	164
Between Exits 91 & 97		2,782	19.4	FS	С		В	FS	14.1	2,047	

^a This section represents the eastbound freeway segment between the I-26 EB Off Ramp and the I-26 EB On Ramp.

^b This section represents the westbound freeway segment between the I-26 WB Loop Ramp and the I-26 WB On Ramp.

^c This section represents the westbound freeway segment between the I-26 WB Off Ramp and the I-26 WB Loop Ramp.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report


Table 9 - Freeway Facility LOS Analysis Summary (2024 Build PM Peak-Hour)

		East	stbound			Accl/ Westbound						
I-26 Section	Ramp Volume (veh/hr)	Mainline Volume (veh/hr)	Density (pc/mi/ln)	Туре	LOS	Decl. Lane Length (ft)	LOS	Туре	Density (pc/mi/ln)	Mainline Volume (veh/hr)	Ramp Volume (veh/hr)	
Between Exits 85 & 91		1,873	12.8	FS	В		В	FS	11.4	1,668		
EB Off Ramp	201	1,672	11.3	D	В	910						
South of Columbia Avea		1,672	12.3	FS	В							
EB On Ramp	1,270	1,672	21.9	M	С	873						
WB On Ramp						1,102	В	M	10.5	1,463	205	
North of Columbia Ave ^b Loop							В	FS	12.2	1,463		
WB Loop Ramp						1,500	A	D	6.7	1,463	1,177	
North of Columbia Ave ^c							С	FS	22.0	2,640		
WB Off Ramp						217	С	D	26.3	2,640	247	
Between Exits 91 & 97		2,942	20.7	FS	С		С	FS	20.3	2,887		

^a This section represents the eastbound freeway segment between the I-26 EB Off Ramp and the I-26 EB On Ramp.

^b This section represents the westbound freeway segment between the I-26 WB Loop Ramp and the I-26 WB On Ramp.

^c This section represents the westbound freeway segment between the I-26 WB Off Ramp and the I-26 WB Loop Ramp.

3.1.3. Freeway Facilities – 2044 Horizon-Year Conditions

The results of the freeway facility analyses for the 2044 No-Build conditions are summarized in Table 10 for the AM peak-hour and Table 11 for the PM peak-hour and illustrated in Figure 13. The 2044 No-Build conditions assume the existing two lanes along I-26 in both directions. The results of the 2044 No-Build freeway facility analyses indicate that the study I-26 freeway facilities are projected to operate with acceptable LOS conditions with three exceptions. The I-26 eastbound on ramp merge condition during the AM and PM peak-hour, the I-26 eastbound freeway segment between exit 91 (S-48) and exit 97 (US 176) in the AM and PM peak-hour, and the I-26 west-bound freeway segment between exit 91 (S-48) and exit 97 (US 176) in the PM peak-hour are projected to operate at LOS F conditions for 2044 No-Build conditions.

Table 10 - Freeway Facility LOS Analysis Summary (2044 No-Build AM Peak-Hour)

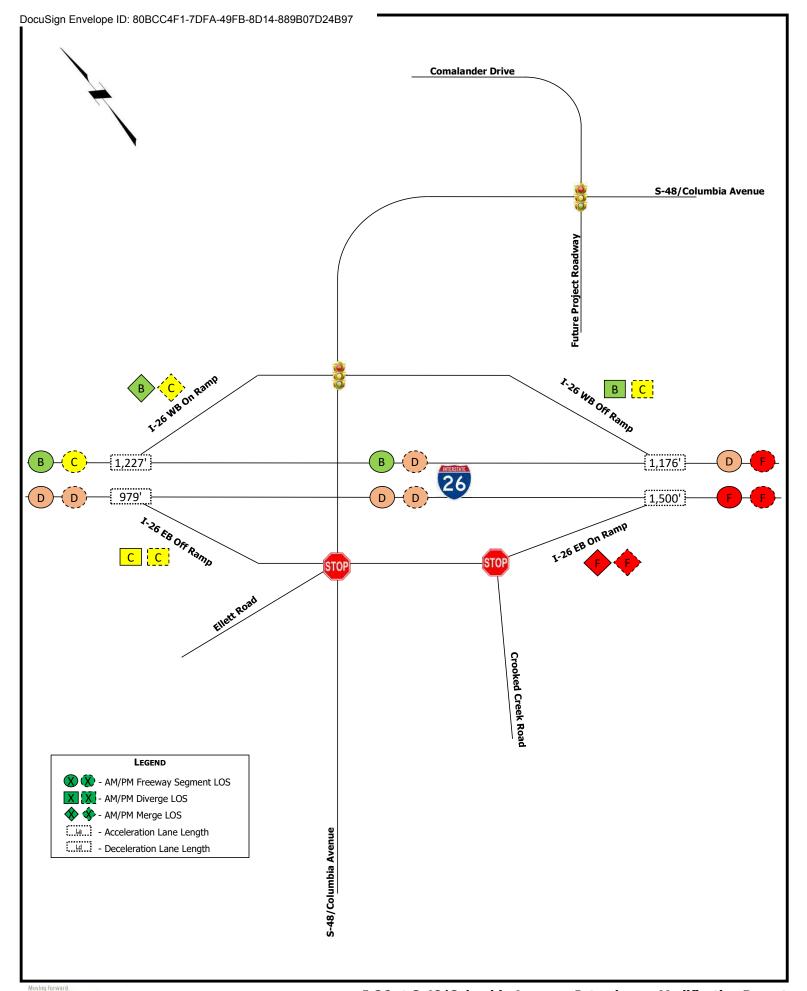
		Ea	stbound			Accl./			Westbou	ınd	
I-26 Section	Ramp Volume (veh/hr)	Mainline Volume (veh/hr)	Density (pc/mi/ln)	Type	LOS	Decl. Lane Length (ft)	LOS	Type	Density (pc/mi/ln)	Mainline Volume (veh/hr)	Ramp Volume (veh/hr)
Between Exits 85 & 91		2,535	29.4	FS	D		В	FS	17.6	1,701	
EB Off Ramp	188	2,347	25.2	D	С	979					
South of Columbia Ave ^a		2,347	29.7	FS	D						
EB On Ramp	1,322	2,347	33.8	M	F	1,500					
WB On Ramp						1,227	В	M	16.6	1,444	257
North of Columbia Ave ^b							В	FS	18.0	1,444	
WB Off Ramp						1,176	В	D	12.0	1,444	1,138
Between Exits 91 & 97		3,669	+	FS	F		D	FS	30.4	2,582	

^a This section represents the eastbound freeway segment between the I-26 EB Off Ramp and the I-26 EB On Ramp.

 $^{^{\}mathrm{b}}$ This section represents the westbound freeway segment between the I-26 WB Off Ramp and the I-26 WB On Ramp.

⁺ This result indicates the HCS 7 results were in excess of 45.0 pc/mi/ln

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report


Table 11 - Freeway Facility LOS Analysis Summary (2044 No-Build PM Peak-Hour)

		Ea	stbound			Accl./			Westbou	nd	
I-26 Section	Ramp Volume (veh/hr)	Mainline Volume (veh/hr)	Density (pc/mi/ln)	Type	LOS	Decl. Lane Length (ft)	LOS	Type	Density (pc/mi/ln)	Mainline Volume (veh/hr)	Ramp Volume (veh/hr)
Between Exits 85 & 91		2,604	30.8	FS	D		С	FS	26.0	2,335	
EB Off Ramp	229	2,375	25.5	D	С	979					
South of Columbia Avea		2,375	30.2	FS	D						
EB On Ramp	1,375	2,375	34.5	M	F	1,500					
WB On Ramp						1,227	С	M	24.0	2,110	225
North of Columbia Ave ^b							D	FS	26.4	2,110	
WB Off Ramp						1,176	С	D	20.4	2,110	1,614
Between Exits 91 & 97		3,750	+	FS	F		F	FS	+	3,724	

^a This section represents the eastbound freeway segment between the I-26 EB Off Ramp and the I-26 EB On Ramp.

^b This section represents the westbound freeway segment between the I-26 WB Off Ramp and the I-26 WB On Ramp.

⁺ This result indicates the HCS 7 results were in excess of 45.0 pc/mi/ln

The results of the freeway facility analyses for the 2044 Build conditions are summarized in Table 12 for the AM peak-hour and Table 13 for the PM peak-hour and illustrated in Figure 14. The 2044 Build conditions assume widening of I-26 to three lanes for both eastbound and westbound. The results of the 2044 Build freeway facility analyses indicate that the study I-26 freeway facilities are projected to operate with acceptable LOS conditions.

Worksheets documenting the freeway facility analyses are provided in Appendix D.

Table 12 - Freeway Facility LOS Analysis Summary (2044 Build AM Peak-Hour)

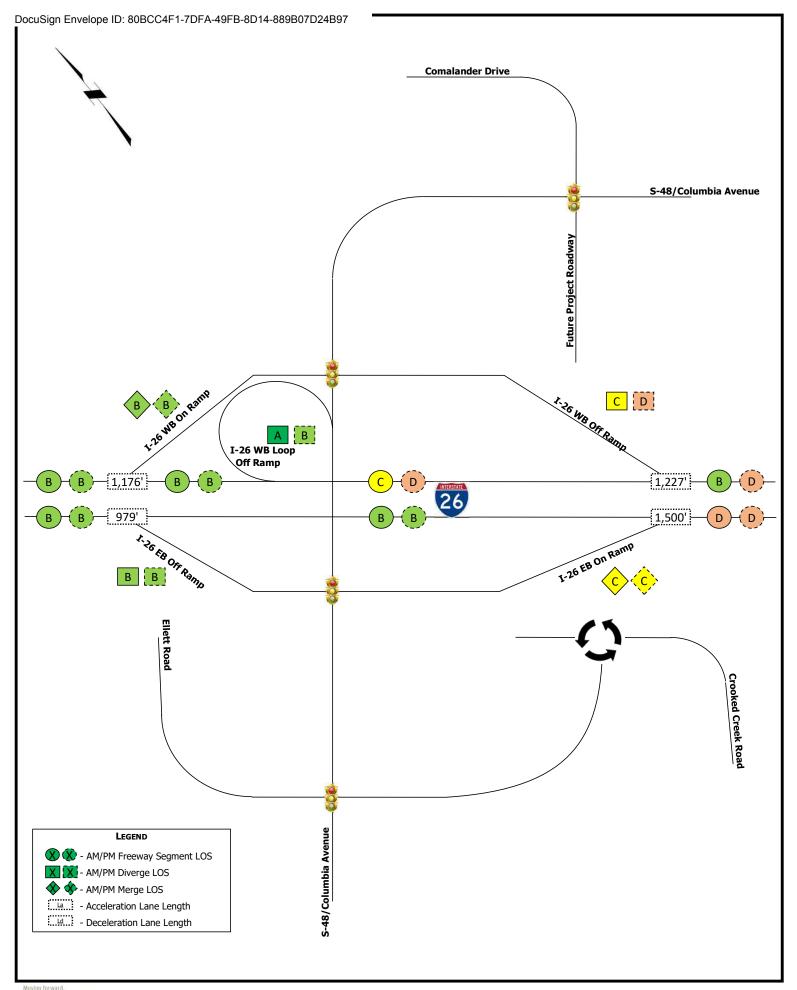
		Eas	stbound			Accl./			Westbou	nd	
I-26 Section	Ramp Volume (veh/hr)	Mainline Volume (veh/hr)	Density (pc/mi/ln)	Type	LOS	Decl. Lane Length (ft)	LOS	Type	Density (pc/mi/ln)	Mainline Volume (veh/hr)	Ramp Volume (veh/hr)
Between Exits 85 & 91		2,535	17.5	FS	В		В	FS	11.7	1,701	
EB Off Ramp	188	2,347	16.5	D	В	910					
South of Columbia Ave ^a		2,347	17.3	FS	В						
EB On Ramp	1,322	2,347	26.9	M	С	873					
WB On Ramp						1,102	В	M	10.9	1,444	257
North of Columbia Ave ^b Loop							В	FS	12.0	1,444	
WB Loop Ramp						1,500	A	D	6.1	1,444	970
North of Columbia Ave ^c							С	FS	20.1	2,414	
WB Off Ramp						217	С	D	23.9	2,414	168
Between Exits 91 & 97		3,669	27.9	FS	D		В	FS	17.8	2,582	

^a This section represents the eastbound freeway segment between the I-26 EB Off Ramp and the I-26 EB On Ramp.

^b This section represents the westbound freeway segment between the I-26 WB Loop Ramp and the I-26 WB On Ramp.

^c This section represents the westbound freeway segment between the I-26 WB Off Ramp and the I-26 WB Loop Ramp.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report


Table 13 - Freeway Facility LOS Analysis Summary (2044 Build PM Peak-Hour)

		Ea	stbound			Accl./			Westbou	nd	
I-26 Section	Ramp Volume (veh/hr)	Mainline Volume (veh/hr)	Density (pc/mi/ln)	Type	LOS	Decl. Lane Length (ft)	LOS	Type	Density (pc/mi/ln)	Mainline Volume (veh/hr)	Ramp Volume (veh/hr)
Between Exits 85 & 91		2,604	18.0	FS	В		В	FS	16.0	2,335	
EB Off Ramp	229	2,375	16.7	D	В	910					
South of Columbia Avea		2,375	17.5	FS	В						
EB On Ramp	1,375	2,375	27.6	M	С	873					
WB On Ramp						1,102	В	M	15.2	2,110	225
North of Columbia Ave ^b Loop							В	FS	17.6	2,110	
WB Loop Ramp						1,500	В	D	12.1	2,110	1,363
North of Columbia Ave ^c							D	FS	29.2	3,473	
WB Off Ramp						217	D	D	33.6	3,473	251
Between Exits 91 & 97		3,750	28.8	FS	D		D	FS	28.5	3,724	

^a This section represents the eastbound freeway segment between the I-26 EB Off Ramp and the I-26 EB On Ramp.

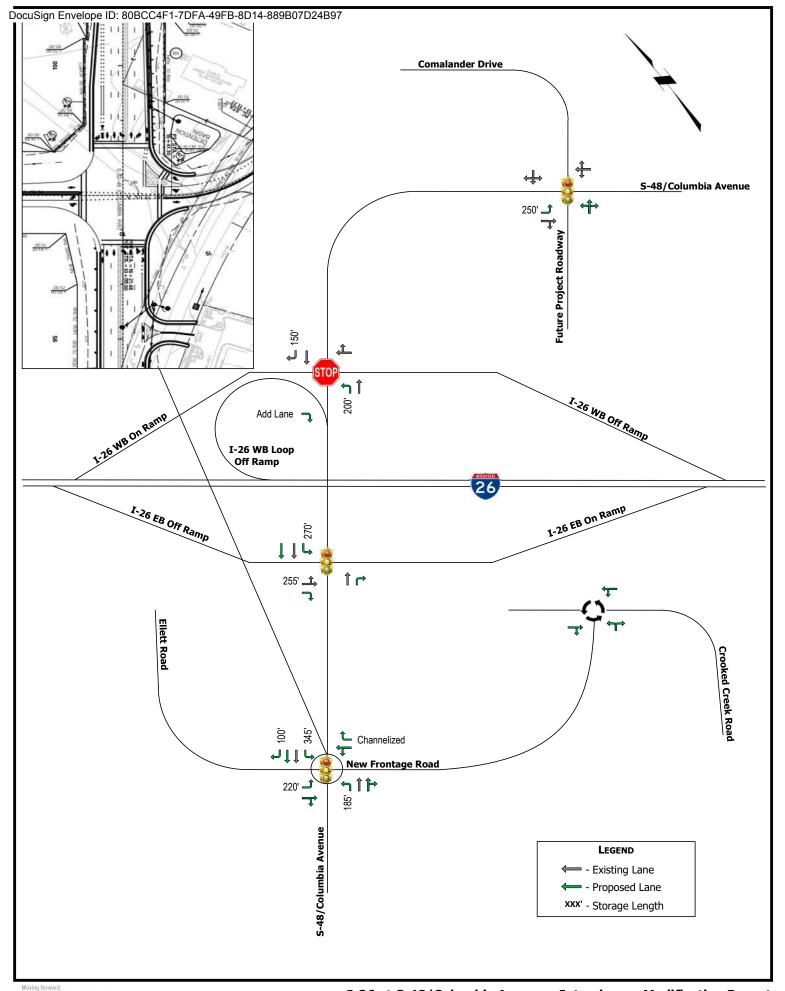
^b This section represents the westbound freeway segment between the I-26 WB Loop Ramp and the I-26 WB On Ramp.

^c This section represents the westbound freeway segment between the I-26 WB Off Ramp and the I-26 WB Loop Ramp.

3.2. Intersection Analyses

Using the existing 2020, projected 2024 opening-year and 2044 horizon-year peak-hour traffic volumes, intersection analyses were conducted for the signalized and unsignalized intersections along Columbia Avenue in the project study area.

Intersection level of service (LOS) grades range from LOS A to LOS F, which are directly related to the level of control delay at the intersection and characterize the operational conditions of the intersection traffic flow. LOS A operations typically represent ideal, free-flow conditions where vehicles experience little to no delays, and LOS F operations typically represent poor, forced-flow (bumper-to-bumper) conditions with high vehicular delays, and are generally considered undesirable. Table 14 summarizes the *HCM* 6th edition control delay thresholds associated with each LOS grade for unsignalized and signalized intersections.


Table 14 - HCM 6th Edition LOS Criteria for Unsignalized & Signalized Intersections

Unsignalized Intersections								
LOS	Control Delay per Vehicle (seconds)							
A	≤10							
В	> 10 and ≤ 15							
С	> 15 and ≤ 25							
D	> 25 and ≤ 35							
Е	> 35 and ≤ 50							
F	> 50							

Signalized Intersections							
LOS	Control Delay per Vehicle (seconds)						
A	≤10						
В	> 10 and ≤ 20						
С	> 20 and ≤ 35						
D	> 35 and ≤ 55						
E	> 55 and ≤ 80						
F	> 80						

As part of the intersection analysis, SCDOT's default *Synchro* parameters were utilized. A PHF of 0.90 was assumed for the future-year 2024 and 2044 scenarios. Existing heavy vehicle percentages were utilized for the future-year 2024 and 2044 scenarios, with a minimum percentage of 2% considered.

The proposed lane geometry for the build conditions along Columbia Avenue is illustrated in Figure 15.

3.2.1. Intersections – 2024 Opening-Year Conditions

The results of the 2020 intersection analyses are included for comparison to the 2024 intersection analyses summarized in Table 15 for LOS and Table 16 for the queue results. Table 17 provide the results for the unsignalized intersections. The results of the intersection analyses are illustrated in Figure 16 for the existing 2020 conditions, Figure 17 for 2024 No-Build conditions, and Figure 18 for 2024 Build conditions.

Table 15 - 2024 Signalized Intersection Analysis Results

				LOS/Delay	(seconds)			
Intersection	Approach		xisting	2024 No		2024		
	FF	Cond	itions	Cond	itions	Conditions		
		AM	PM	AM	PM	AM	PM	
	EB	-	-	-	-	D/38.9	D/38.1	
Columbia Avenue & Ellet Road/Crooked Creek Road	WB	-	-	-	-	D/45.5	D/46.9	
	NB		-	-	-	B/16.8	C/22.3	
	SB	1	-	-	-	B/11.5	B/16.9	
	Overall	-	-	-	-	B/15.9	C/21.7	
Columbia Avenue & I-26	EB					D/48.3	D/47.7	
	NB	Unsign	nalized	Unsign	nalized	B/10.9	B/13.2	
Eastbound	SB	Inters	ection	Inters	ection	A/6.2	A/7.8	
Ramps	Overall					B/10.6	B/12.1	
Columbia	WB	F/1201.8	D/42.3	F/3327.4	F/566.2			
Avenue & I-26	NB	C/25.6	C/21.9	F/649.1	F/761.6	Unsign	nalized	
Westbound	SB	B/17.5	B/19.6	C/34.4	D/36.8	Inters	ection	
Ramps	Overall	F/459.4	C/34.4	F/1635.1	F/485.3			
	EB			C/32.8	F/118.0	A/8.9	B/16.1	
Columbia	WB	I Im at an	alizad	A/7.3	B/13.1	B/17.6	C/27.7	
Avenue & Comalander	NB	Unsign	nalized	D/51.4	E/79.2	C/21.3	C/21.0	
Drive	SB	miters	ection	D/37.0	C/33.5	C/20.3	B/16.3	
	Overall			C/28.8	F/83.9	B/14.1	B/18.3	

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

Table 16 - 2024 Signalized Intersection Analysis Queue Results

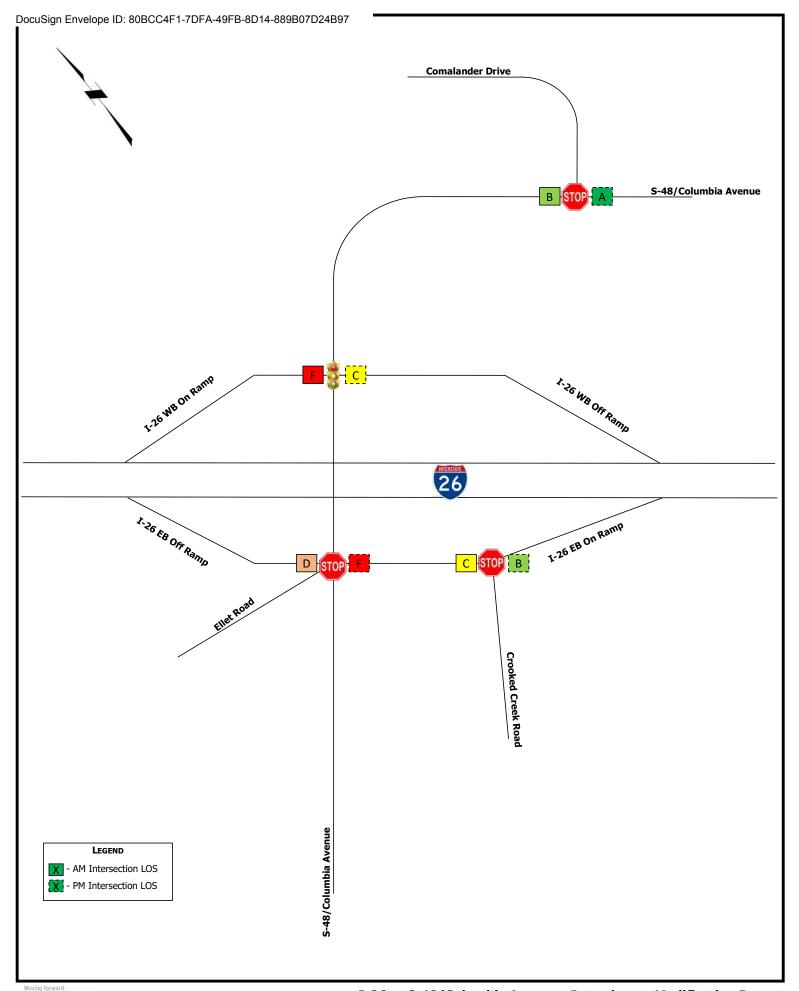
				Queue Le	ngth (Feet)		
Intersection	Lane(s)		xisting itions		o-Build itions	2024 Build Conditions	
		AM	PM	AM	PM	AM	PM
	EBL	-	-	-	-	57	#234
Columbia Avenue	WBR	-	-	-	-	239	140
& Ellet	NBL	-	-	-	-	41	13
Road/Crooked Creek Road	SBL	-	-	-	-	#152	m#139
	SBR	-	-	-	-	11	m0
Columbia Avenue	EBR	Unsignalized Intersection		Unsignalized Intersection		88	96
& I-26 Eastbound	NBT					m264	m434
Ramps	SBL	miers	ection	inters	ection	45	74
Columbia Avenue	WB	350	#649	#1,921	#2,633	Lingian	and and
& I-26 Westbound	NB	254	189	#1,077	#1,289	Ü	nalized ection
Ramps	SB	212	126	786	767	miers	ection
	EBL			#696	#1,050	121	226
Columbia Avenue	WB	Unsign	nalized	149	108	322	178
& Comalander Drive	NB	Inters	ection	#253	#406	166	#261
Direc	SB			60	62	51	50

The "m" footnote indicates that volume for the queue is metered by an upstream signal

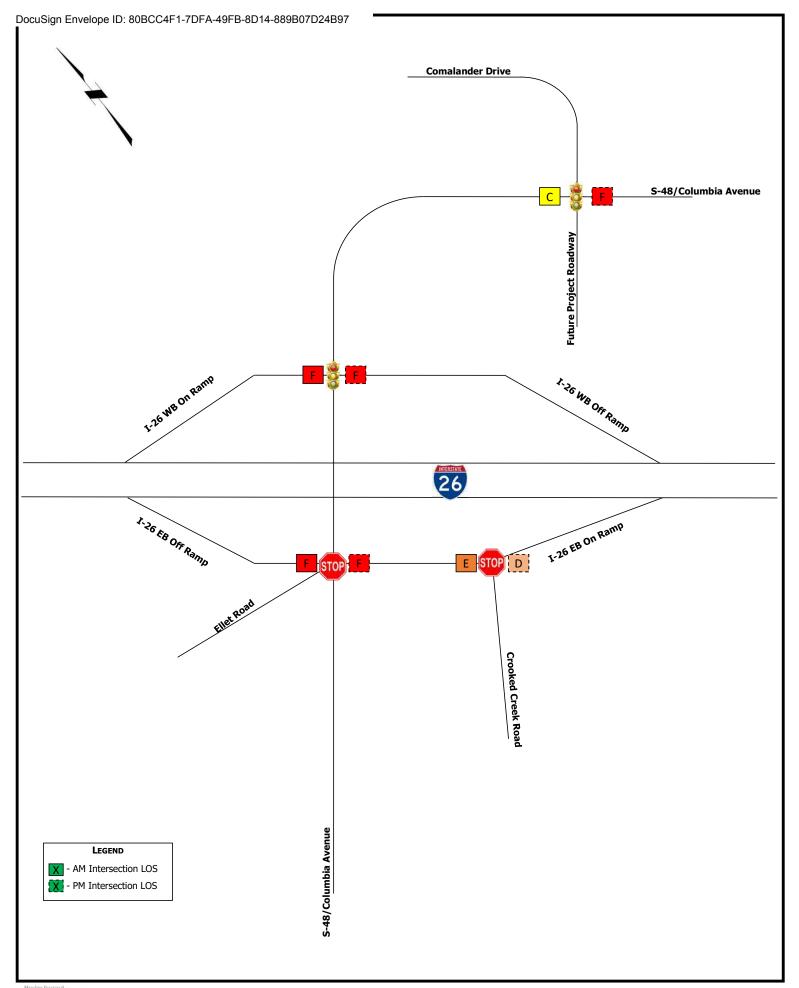
The results of the signalized intersection analysis indicate that all the study signalized intersections are projected to operate with acceptable LOS conditions with construction of the project.

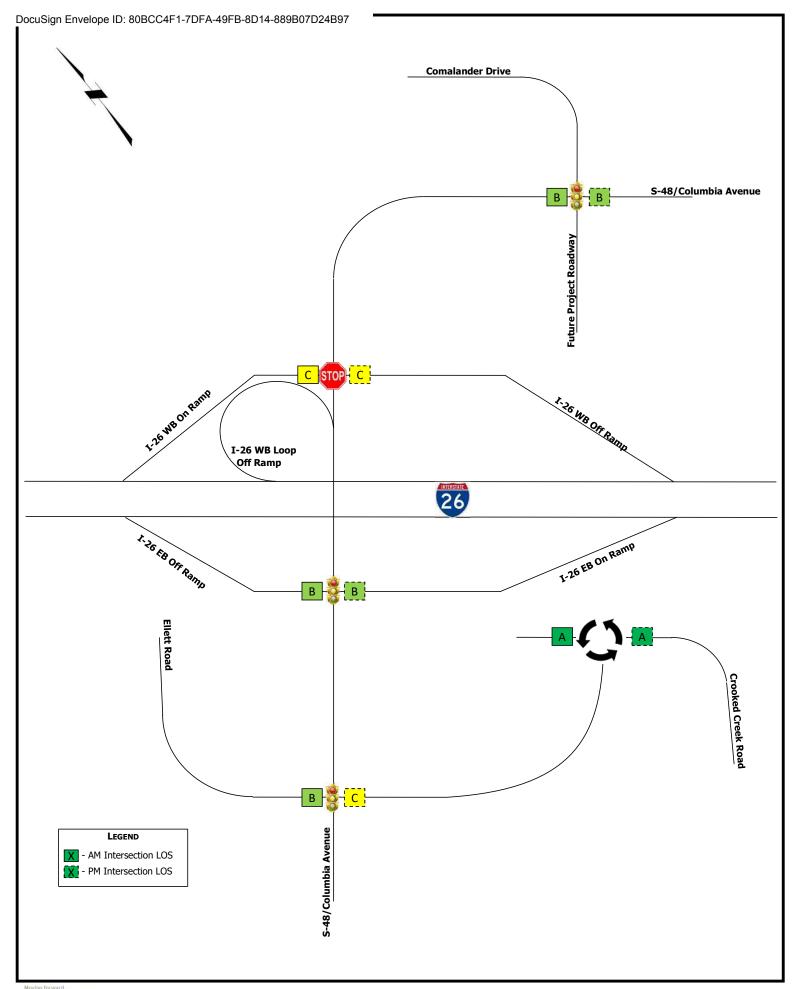
The "#" footnote indicated that volume for the cycle exceeds capacity

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report


Table 17 – 2024 Unsignalized Intersection Analysis Results

				LOS/Delay	(seconds)		
Intersection	Approach	2020 E	xisting	2024 N	o-Build	2024	Build
	1.1	Cond	itions	Cond	itions	Conditions	
		AM	PM	AM	PM	AM	PM
	EB					Signalized Intersection	
Columbia Avenue & I-26 Eastbound Ramps/Ellet Road ^a	WB						
	NB	D	F	F	F		
	NEB						
	SB						
	WB	Signalized Intersection		Signalized Intersection		C/16.6	C/21.7
Columbia Avenue & I-26 Westbound Ramps	NB					A/2.0	A/2.3
Westbound Kamps	SB			inters	ection	A/0.0	A/0.0
	EB	A/0.8	A/0.6	G.	1. 1		
Columbia Avenue & Comalander Drive	WB	A/0.0	A/0.0	_	llized ection	_	llized ection
Comarancer Drive	SB	B/12.4	A/9.9	inters	ection	inters	ection
Crooked Creek Road & I-	EB	A/0.0	A/0.0	A/0.0	A/0.0		
26 EB On-Ramp	NB	C/17.8	B/12.1	E/41.8	D/29.4	•	-
	EB					A/3.0	A/2.7
New Frontage Road &	WB					A/3.4	A/2.8
Crooked Creek Roadb	NB		-	-		A/2.8	A/2.9
	Overall					A/3.3	A/2.9


^aICU results were used due to intersection geometrics limit on HCM 6th Edition


The results of the unsignalized intersection analysis indicate that all the study unsignalized intersections are projected to operate with acceptable LOS conditions with construction of the project.

 $^{^{\}mathrm{b}}$ Roundabout Intersection analysis was conducted using SIDRA

3.2.2. Intersections – 2044 Horizon-Year Conditions

The results of the 2044 intersection analyses are summarized in Table 18 and Table 19 for the signalized intersections and Table 20 for the unsignalized intersections. The results of the intersection analyses are illustrated in Figure 19 for 2044 No-Build conditions and Figure 20 for 2044 Build conditions.

Table 18 - 2044 Signalized Intersection Analysis Results

				LOS/Delay	(seconds)		
Intersection	Approach		xisting	2044 N		2044 Build	
		Cond	itions	Cond	itions	Conditions	
		AM	PM	AM	PM	AM	PM
	EB	-	1	-	-	D/38.6	D/40.5
Columbia Avenue	WB	-	-	-	-	D/45.2	D/53.8
& Ellet Road/Crooked	NB	-	1	-	=	C/24.1	C/24.1
Creek Road	SB	-	-	-	-	B/14.0	B/18.9
	Overall	-	-	-	-	C/20.4	C/23.5
Columbia Avenue	EB					D/47.4	D/48.7
	NB	Unsign	nalized	Unsign	nalized	B/12.5	B/15.4
& I-26 Eastbound Ramps	SB	Intersection		Inters	ection	A/7.7	B/10.8
Таттро	Overall					B/11.9	B/14.8
	WB	F/1201.8	D/42.3	F/3539.3	F/629.0		
Columbia Avenue & I-26 Westbound	NB	C/25.6	C/21.9	F/5437.7	F/2343.2	Unsign	nalized
Ramps	SB	B/17.5	B/19.6	E/62.0	D/51.6	Inters	ection
rumps	Overall	F/459.4	C/34.4	F/3019.6	F/918.8		
	EB			F/130.6	F/140.3	B/10.7	B/18.6
Columbia Avenue	WB	Unaian	nalizad	B/10.7	B/10.3	B/19.9	C/30.3
& Comalander	NB	Unsign	ianzea ection	E/57.9	F/113.8	C/27.2	C/23.7
Drive	SB	inters	ection	D/43.0	C/33.0	C/24.5	B/17.7
	Overall			E/77.1	F/99.5	B/16.8	C/20.8

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

Table 19 - 2044 Signalized Intersection Analysis Queue Results

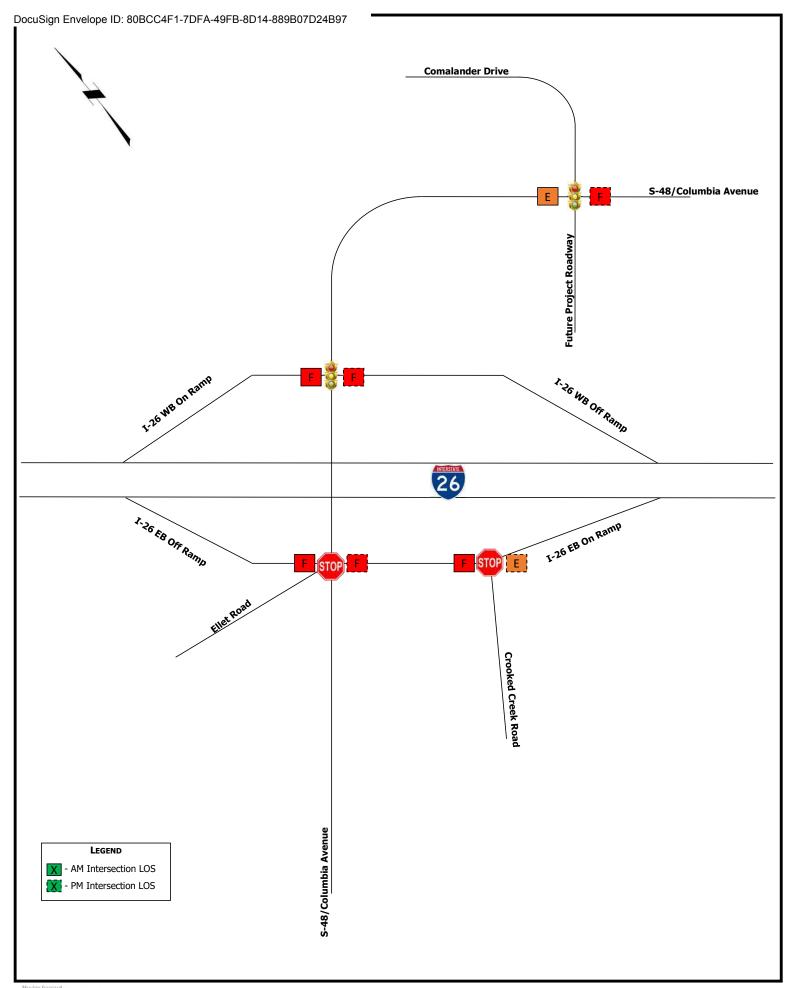
				Queue Le	ngth (Feet)		
Intersection	Lane(s)	2020 Existing Conditions			o-Build itions	2044 Build Conditions	
		AM	PM	AM	PM	AM	PM
	EBL	-	-	-	-	56	#256
Columbia Avenue	WBR	-	-	-	-	264	150
& Ellet Road/Crooked	NBL	-	-	-	-	73	13
Creek Road	SBL	-	-	-	-	m#155	m105
	SBR	-	-	-	-	9	m1
Columbia Avenue	EBR	Unaian	aaliaad	Llasion	alizad	99	112
& I-26 Eastbound	NBT	Unsignalized Intersection		Unsignalized Intersection		m354	m431
Ramps	SBL	inters	ection	inters	ection	47	146
Columbia Avenue	WB	350	#649	#2,160	#3,065	Lingian	alizad
& I-26 Westbound	NB	254	189	#1,704	#1,761	Ü	nalized ection
Ramps	SB	212	126	#1,125	#994	miers	ection
	EBL			#1140	#986	137	225
Columbia Avenue	WB	Unsig	nalized	287	110	460	227
& Comalander Drive	NB	Inters	ection	#280	#387	210	#285
21110	SB			65	63	59	51

The "m" footnote indicates that volume for the queue is metered by an upstream signal

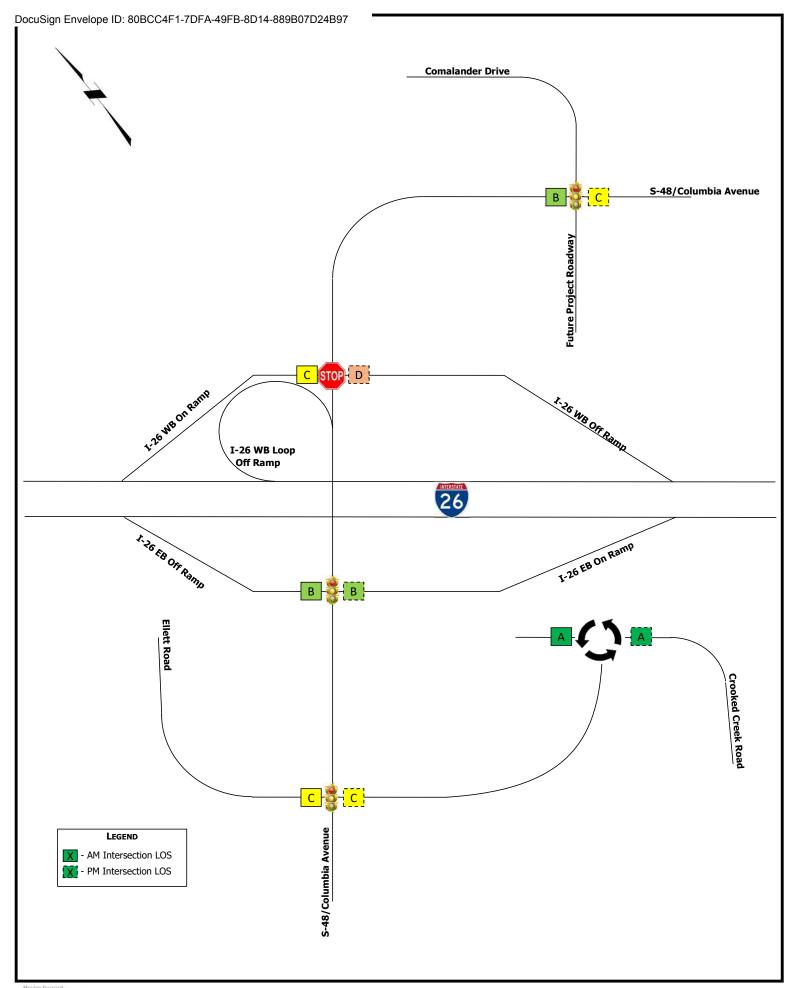
The results of the signalized intersection analysis indicate that all the study signalized intersections are projected to operate with acceptable LOS conditions with construction of the project.

The "#" footnote indicated that volume for the cycle exceeds capacit

Table 20 - 2044 Unsignalized Intersection Analysis Results


				LOS/Delay	y (seconds)		
Intersection	Approach	2020 E	xisting	2044 N	o-Build	2044 Build	
	FF	Cond	itions	Cond	itions	Conditions	
		AM	PM	AM	PM	AM	PM
	EB					Signalized Intersection	
Columbia Avenue & I-26 Eastbound Ramps/Ellet Road ^a	WB						
	NB	D	F	F	F		
	NEB						
	SB						
Columbia Avenue & I-	WB	Signalized Intersection				C/19.4	D/25.6
	NB			Signalized Intersection		A/2.2	A/2.4
26 Westbound Ramps	SB			Inters	ection	A/0.0	A/0.0
	EB	A/0.8	A/0.6	G.	1. 1	G: 1: 1	
Columbia Avenue & Comalander Drive	WB	A/0.0	A/0.0		ılized ection		llized ection
Comanander Drive	SB	B/12.4	A/9.9	inters	ection	inters	ection
Crooked Creek Road	EB	A/0.0	A/0.0	A/0.0	A/0.0		
& I-26 EB On-Ramp ^a	NB	C/17.8	B/12.1	F/128.1	E/37.9	•	
	EB					A/3.1	A/2.7
New Frontage Road &	WB					A/3.6	A/2.8
Crooked Creek Roadb	NB		-		-	A/2.8	A/3.0
	Overall					A/3.5	A/2.9

 $^{^{\}mathrm{a}}$ ICU results were used due to intersection geometrics limit on HCM 6^{th} Edition


The results of the unsignalized intersection analysis indicate that all the study unsignalized intersections are projected to operate with acceptable LOS conditions with construction of the project.

Worksheets documenting the intersection analyses are provided in Appendix E.

^bRoundabout Intersection analysis was conducted using SIDRA

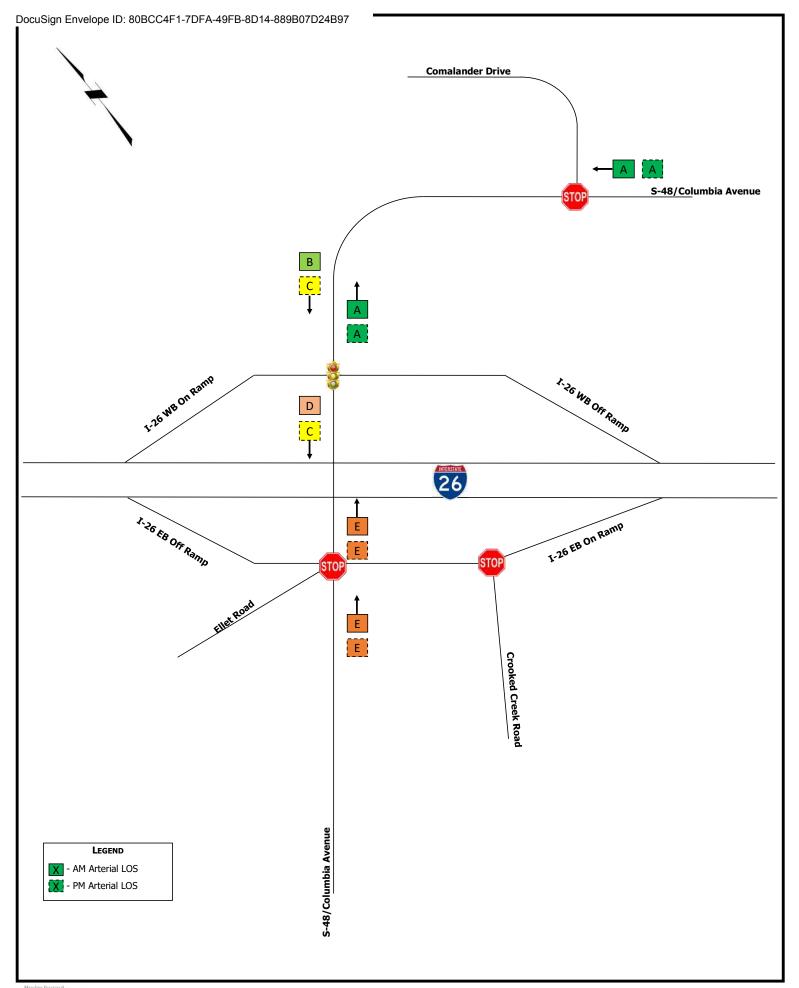
3.3. Arterial Analyses

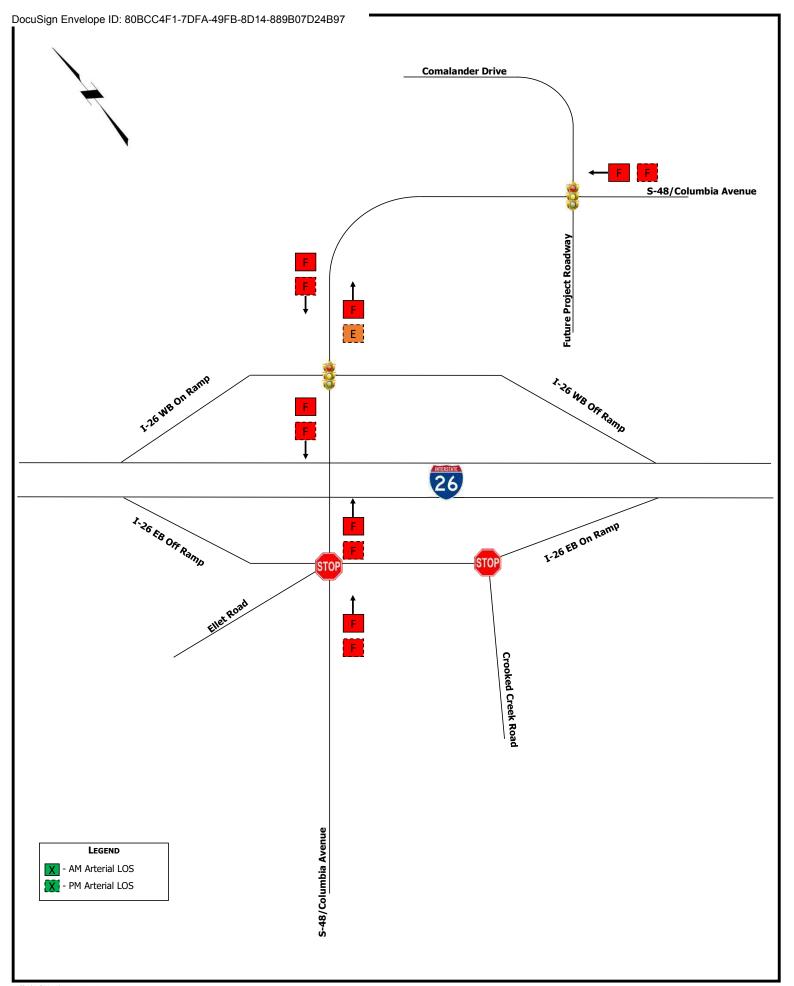
Using the existing and projected traffic volumes, arterial analyses were conducted for the E Butler Road corridor considering 2020 existing conditions, 2024 opening-year conditions, and 2044 horizon-year conditions. This analysis was conducted using the Transportation Research Boards *Highway Capacity Manual* 6th Edition (HCM 6th Edition) methodologies of the SimTraffic, version 9 software.

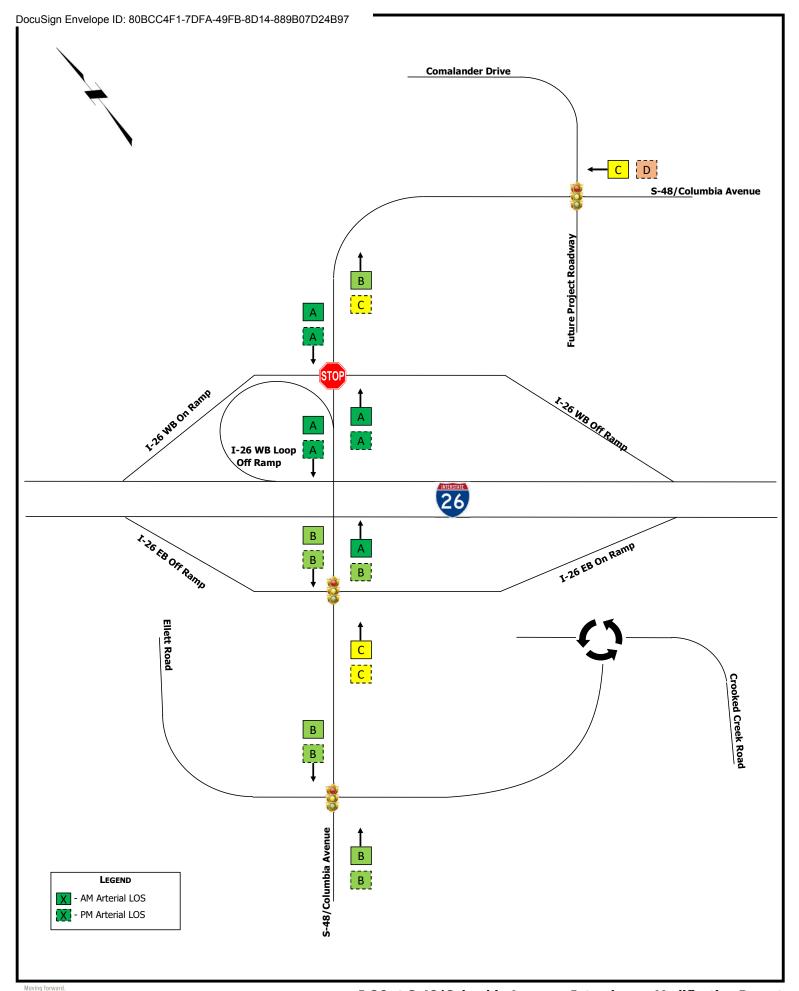
Arterial level of service (LOS) grades range from LOS A to LOS F, which are directly related to the through-vehicle travel speed for a given direction of travel along a street facility and characterize the operational conditions of the segment traffic flow. LOS A operations typically represent ideal, free-flow conditions where vehicles experience little to no decrease in free-flow speeds, and LOS F operations typically represent poor, forced-flow (bumper-to-bumper) conditions with a significant decrease in free-flow speeds, and are generally considered undesirable. Table 21 summarizes the *HCM* 6th Edition travel speed thresholds associated with each LOS grade for base free-flow speeds of 35 Miles Per Hour (MPH).

Table 21 - HCM 6th Edition LOS Criteria for Travel Speeds

35 MPH							
LOS	Travel Speeds (MPH)						
A	> 28						
В	> 23						
С	> 18						
D	> 14						
Е	> 11						
F	≤11						


3.3.1. Arterial – 2024 Opening-Year Conditions


The results of the 2020 Existing arterial analyses are included for comparison to the 2024 No-Build and 2024 Build conditions summarized in Table 22. The results of the arterial analyses are illustrated in Figure 21 for 2020 Existing conditions, Figure 22 for 2024 No-Build conditions and Figure 23 for 2024 Build conditions


Table 22 – 2024 Arterial Analysis Results

	LOS/Speed (mph)							
Columbia Avenue Arterial Segment	2020 E	xisting	2024 N	o-Build	2024	2024 Build		
	Conditions		Cond	itions	Conditions			
	AM	PM	AM	PM	AM	PM		
Eastbound								
Approaching Ellet Road/New Frontage Road					B/24	B/24		
Ellet Road/New Frontage Road to I-26 EB Ramps					C/23	C/20		
I-26 EB Ramps to I-26 WB Off Loop	E/13	E /11 E /2	E /2	E /7	A/30	B/28		
I-26 WB Off Loop to I-26 WB Ramps	E/ 13	E/11	F/3	F/7	A/33	A/32		
I-26 WB Ramps to Comalander Drive	A/31	A/31	F/3	E/12	B/26	C/22		
Total Speed	C/21	C/20	F/3	F/9	B/25	C/23		
	Westbound	1						
Approaching Comalander Drive	A/35	A/35	F/0	F/0	C/20	D/16		
Comalander Drive to I-26 WB Ramps	B/24	C/25	F/0	F/0	A/31	A/31		
I-26 WB Ramps to I-26 WB Off Loop	D/14	C/20	F/0	E /1	A/33	A/31		
I-26 WB Off Loop to I-26 EB Ramps	D/14 C/	C/ 20	Γ/0	F/1	B/27	B/25		
I-26 EB Ramps to Ellet Road/New Frontage Road					B/24	B/24		
Total Speed	C/21	C/23	F/0	F/0	B/26	C/23		

In comparison to the No-Build conditions, the Build LOS of the arterial are improved. The results of the arterial analyses indicate that Columbia Avenue will operate at an overall LOS C or better conditions with consideration of the proposed interchange improvements for 2024 Build conditions.

3.3.2. Arterial – 2044 Horizon-Year Conditions

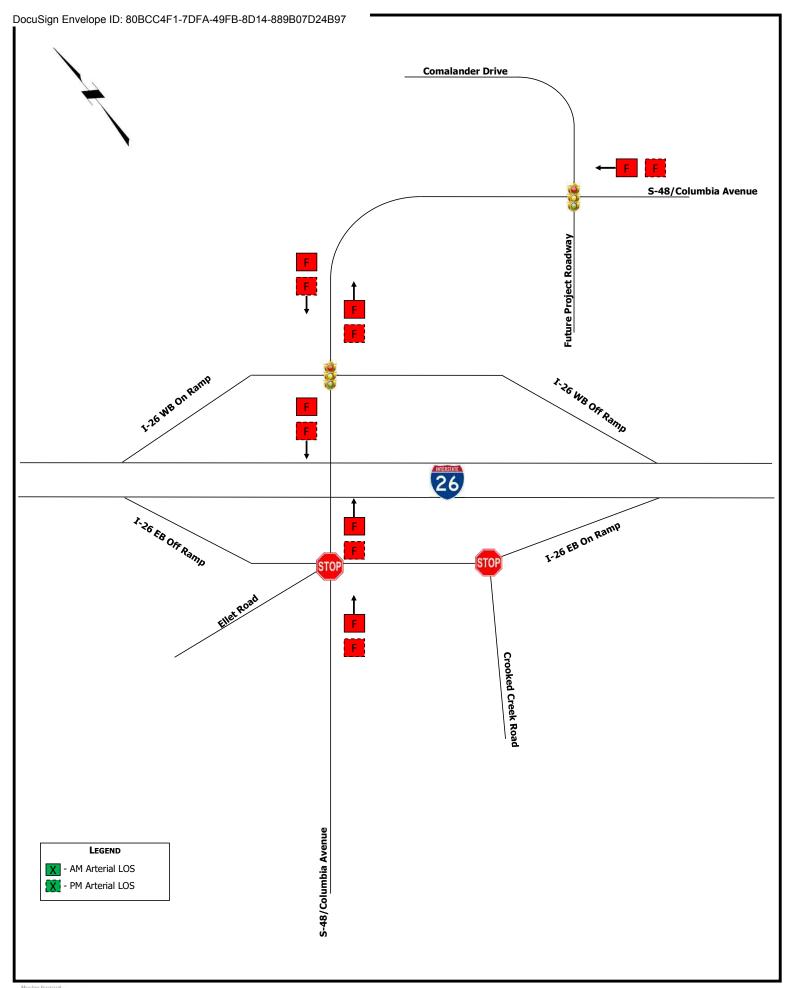
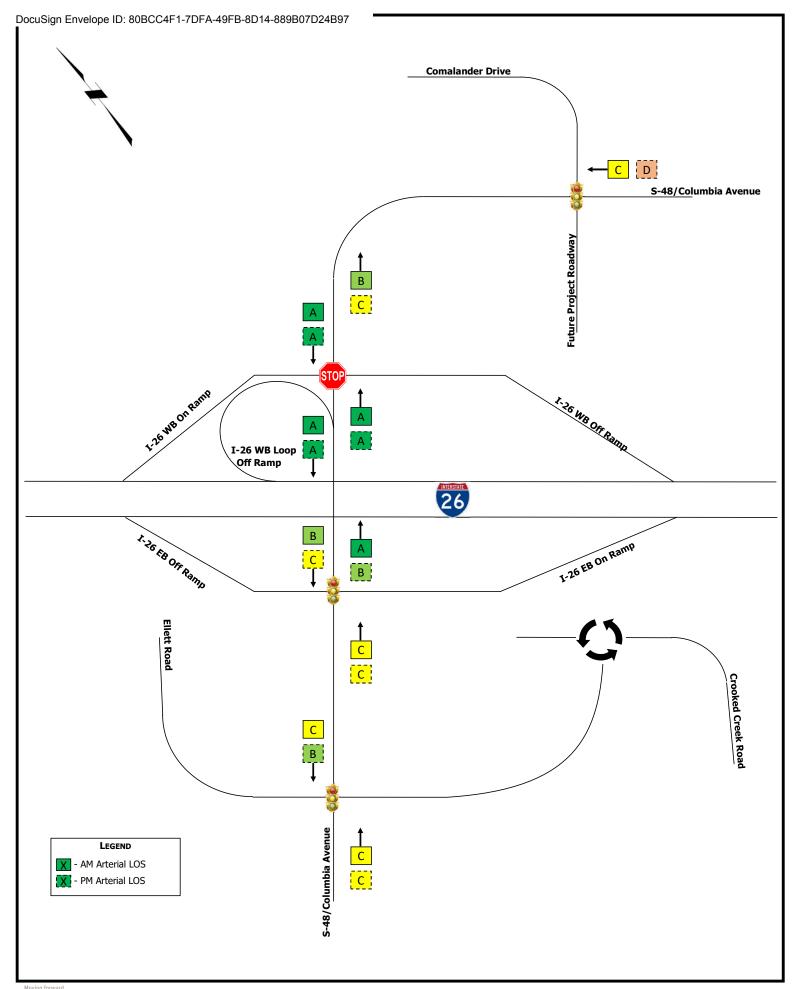

The results of the arterial analyses for 2044 No-Build and 2044 Build conditions are summarized in Table 23, which correspond with the arterial analysis results. The results of the arterial analyses are illustrated in Figure 24 for 2044 No-Build conditions and Figure 25 for 2044 Build conditions.

Table 23 – 2044 Arterial Analysis Results


	LOS/Speed (mph)							
Columbia Avenue Arterial Segment	2020 Existing		2044 No-Build		2044 Build			
	Cond	itions	Cond	itions	Conditions			
	AM	PM	AM	PM	AM	PM		
Eastbound								
Approaching Ellet Road/New Frontage Road					C/21	C/22		
Ellet Road/New Frontage Road to I-26 EB Ramps					C/21	C/20		
I-26 EB Ramps to I-26 WB Off Loop	E /12	E/11	F/2	F/5	A/29	B/28		
I-26 WB Off Loop to I-26 WB Ramps	E/13				A/32	A/32		
I-26 WB Ramps to Comalander Drive	A/31	A/31	F/10	F/6	B/25	C/22		
Total Speed	C/21	C/20	F/5	F/5	C/23	C/23		
Westbound								
Approaching Comalander Drive	A/35	A/35	F/2	F/0	C/19	D/18		
Comalander Drive to I-26 WB Ramps	B/24	C/25	F/2	F/0	A/30	A/31		
I-26 WB Ramps to I-26 WB Off Loop	D /14	C/20	F/7	F/1	A/32	A/31		
I-26 WB Off Loop to I-26 EB Ramps	D/14				B/25	C/23		
I-26 EB Ramps to Ellet Road/New Frontage Road					C/23	B/24		
Total Speed	C/21	C/23	F/3	F/0	B/24	C/23		

In comparison to the No-Build conditions, the Build LOS C of the arterial are improved. The results of the arterial analyses indicate that Columbia Avenue will operate at an overall LOS C or better conditions with consideration of the proposed interchange improvements for 2044 Build conditions.

Worksheets documenting the arterial analyses are provided in Appendix F.

3.4. Crash Analyses

Crash analyses were conducted for the I-26 & Columbia Avenue interchange and the Columbia Avenue arterial in the project study area. The interchange crash analyses consider the Columbia Avenue & I-26 interchange ramps as well as the adjacent I-26 segments. The arterial crash analyses consider the study intersections along Columbia Avenue, including ramp terminals of the interchange.

Crash data and collision diagrams were prepared using crash reports for I-26 and Columbia Avenue provided by the SCDOT Traffic Safety office covering a 5-year period from October 2014 through September 2019. Several crash "hot-spot" locations were identified while analyzing the crash data. These hot spots and the respective mitigations included in the proposed I-26 & Columbia Avenue interchange improvements are summarized in Table 24.

Location # Crashes Mitigation Diverge at I-26 Add exit loop from WB I-26 to SB Columbia Avenue and 1500' decel 31 crashes Westbound Off-Ramp lane to split exiting traffic into NB and SB movements 0.2 mi North/South of Columbia 43 crashes Extending on and off ramps to handle exiting traffic and add exit loop Avenue/ (31 Rear-end) on WB I-26 to divide heavy exiting traffic into NB and SB movements. I-26 Intersection

Table 24 - Hot Spot Mitigation Summary

3.5. Crash Data

Five years of crash data and collision diagrams were provided by SCDOT for use in the analysis. Table 25 and Table 26 summarize the crash data categorized by the type of crash for both I-26 and Columbia Avenue (S-32-48).

Intersection	Fatality Crashes	Injury Crashes	PDO Crashes	Total Crashes
1 mile west of the Interchange	0	13	47	60
West of Columbia Avenue	0	1	23	24
Between I26 EB off Ramp and I26-WB Off Ramp	0	3	16	19
East of Columbia Avenue	0	5	26	31
6/10 miles East of the Interchange	4	6	28	38
Total	4	28	140	172

Table 25 - Crashes by Type - I-26

Table 26 - Crashes by Type - Columbia Avenue

Intersection	Fatality Crashes	Injury Crashes	PDO Crashes	Total Crashes
Columbia Avenue & Farm Boy's BBQ driveway (DW)	0	1	2	3
Columbia Avenue & Lexington Medical Center DW	0	1	6	7
Columbia Avenue & Bojangles DW	0	1	7	8
Columbia Avenue & Shell Intersection	0	1	8	9
Columbia Avenue& Chapin Furniture DW	0	2	7	9
Columbia Avenue & I-26 EB off Ramp	0	0	11	11
Columbia Avenue & I-26 WB off Ramp	0	5	9	14
Columbia Avenue & Comalander Drive	0	3	3	6
Total	0	14	53	67

The results of the crash data analysis by type of crash indicate that there were 140 Property Damage (PDO) crashes and 28 injury crashes on the section of I-26 studied. There were 4 fatal crashes recorded on I-26 in the past five years. There were 53 PDO crashes and 14 injury crashes along the section of Columbia Avenue studied. There were no fatal crashes recorded on Columbia Avenue in the past five years.

Crashes within approximately 1,500 feet either side of the westbound exit ramp account for approximately 38% of all the crashes that occurred along the section of I-26 that was studied. Likewise, over 65% of all crashes on Columbia Avenue happen between the I-26 ramps and within 0.1 of a mile on either side.

Table 27 and Table 28 illustrate the crash data categorized by the manner of collision.

Table 27 - Crashes by Manner of Collision - I-26

Intersection	Rear End	Head On	Angle	Side Swipe	No Collision	Total
1/2 mile west of the Interchange	29	0	3	9	19	60
Ramps West of Columbia Avenue	8	0	2	7	7	24
B/W I-26 EB off Ramp and I-26-WB Off Ramp	11	0	2	0	6	19
Ramps East of Columbia Avenue	12	1	5	1	12	31
0.3 miles East of the Interchange	10	1	4	9	14	38
Total	70	2	16	26	58	172

Head No Rear Side Intersection Angle Total On Collision End Swipe Columbia Avenue & Farm Boy's BBQ DW Columbia Avenue & Lexington medical center DW Columbia Avenue & Bojangles DW Columbia Avenue & Shell Intersection Columbia Avenue& Chapin Furniture DW Columbia Avenue & I-26 EB off Ramp Columbia Avenue & I-26 WB off Ramp Columbia Avenue & Comalander Drive Total

Table 28 - Crashes by Manner of Collision - Columbia Avenue

Rear End crashes account for approximately 40% of the total number of crashes, and No Collisions (Median Barrier swipes, Animal, Fixed Object, Run-off Road) crashes account for approximately 34% of the total number of crashes of the crashes on I-26. Rear end crashes account for over 75% of all crashes on Columbia Avenue.

Crashes within approximately 1,500 feet either side of the westbound exit ramp account for approximately 37% of all the Rear End crashes and approximately 40% of all of the No Collision crashes that occurred along the section of I-26 that was studied. Likewise, over 52% of all Rear End crashes on Columbia Avenue happen between the I-26 ramps and within 0.1 of a mile on either side.

Worksheet documenting the crash data are provided in Appendix G.

3.6. Higher Crash Rate Locations

Based upon the crash data, two areas were noted as having a higher number of crashes in the interchange study area. The crash data at the two areas is reviewed in the following paragraphs.

Of all the crashes that were recorded on I-26, 38% occurred within the 1500 feet of the I-26 Westbound Exit Ramp. Fifty-three PDO crashes and eleven injury crashes and one fatality crash occurred over the past five years. Of the crashes in this area, approximately 37% were Rear-End crashes and 40% were No-Collision wrecks.

On Columbia Avenue, over 37% of all the crashes occurred within 500′ north and south of the I-26 EB/Columbia Avenue ramp intersection. There have been 20 PDO crashes and five injury crashes over the past five years. The majority of the manner of collision are rear-end crashes (18) which can be attributed to the excessive volume on the corridor and the number of driveways present near and adjacent to this location.

3.7. Crash Modification Factors (CMF)

As part of crash analysis, CMFs were applied to the observed crashes along Columbia Avenue. CMF is a multiplicative factor used to predict the number of crashes after implementing a countermeasure at a specific area or intersection. The CMFs used in the arterial crash analysis were obtained from the *Crash Modification Factors Clearinghouse* website (http://www.cmfclearinghouse.org/). Table 29 summarizes the proposed counter measures along S-48/Columbia Avenue and the associated CMFs.

CMF ID Countermeasure **CMF** Change driveway density from 11 to 1 (67.5/mile to 6.13/mile) 2248 0.24 Convert 2 lane roadway to 4 lane divided roadway (Columbia Avenue) 7569 0.712 Signalize the I-26 Eastbound Ramps intersection 325 0.56 479 0.77 Provide Cloverleaf (Loop) ramp instead of Long ramp 477 0.62 Provide Long ramps instead of Short ramps Install Left-Turn Lanes along Columbia Avenue 7997 0.924

Table 29 - Counter Measures & CMFs

The results of the CMF analyses indicate the following.

- Changing the driveway density along Columbia Avenue on the segment spanning from Shell Gas Station to just before the I-26 EB Ramps intersection is expected to reduce the number of crashes on this segment by approximately 76%. There were 18 crashes spanning between the Shell gas station intersection and the Chapin Furniture Driveway intersection; the number of crashes for this segment of Columbia Avenue is predicted to be reduced by approximately 13 crashes during a similar time period with the proposed improvements.
- Converting Columbia Avenue from a 2-lane roadway to a 4-lane divided roadway is
 expected to reduce crashes on the widened segment by approximately 29%. There were 37
 crashes spanning from the Bojangles driveway intersection to the I-26 EB Ramps
 intersection; the number of crashes for this segment of Columbia Avenue is predicted to be
 reduced by approximately 11 crashes during a similar time period with the proposed
 improvement.
- Signalizing the Columbia Avenue & I-26 EB Ramps intersection is expected to reduce crashes at the intersection by approximately 44%. There were 11 crashes at the intersection; the number of crashes is predicted to be reduced by approximately 5 crashes during a similar time period with the proposed improvement.
- Providing a Cloverleaf (Loop) off ramp from I-26 WB for traffic bound to travel south on Columbia Avenue is expected to reduce crashes at the close vicinity of the interchange by approximately 23%. There were 74 crashes at the close vicinity of the interchange; the

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 RAMEY KEMP ASSOCIATES

Moving forward.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

number of crashes is predicted to be reduced by approximately 17 crashes during a similar time period with the proposed improvements.

- Providing long On and Off ramps at the Columbia Avenue and I-26 interchange is expected
 to reduce crashes at the vicinity of the interchange by approximately 38%. There were 172
 crashes at the vicinity of the interchange; the number of crashes is predicted to be reduced
 by approximately 65 crashes during a similar time period with the proposed
 improvements.
- Installing left-turn lanes along Columbia Avenue at the I-26 EB Ramps and I-26 WB Ramps intersections is expected to reduce crashes at each of the I-26 Ramps intersections by approximately 7%. There were 172 crashes at the vicinity of the interchange; the number of crashes is predicted to be reduced by approximately 24 crashes at during a similar time period with the proposed improvements

Overall, the results of the CMF analyses indicate that with consideration of the proposed improvements, the number of existing crashes along Columbia Avenue between the Bojangles driveway intersection and the I-26 EB Ramps intersection will be reduced by approximately 78% (29 crashes) as compared to the No-Build scenario.

Overall, the results of the CMF analyses indicate that with consideration of the proposed improvements, the number of existing crashes at the vicinity of the Columbia Avenue & I-26 interchange will be reduced by approximately 62% (106 crashes) as compared to the No-Build scenario.

The output reports from the *Crash Modification Factors Clearinghouse* website are included in Appendix G.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

4. INTERCHANGE JUSTIFICATION

FHWA policy requires that all requests for new or revised access should address two policy requirements and the appropriate issues and provide the information necessary to allow the FHWA to make an informed decision considering the potential consequences of a change in access. The two policy requirements (in bold) and responses specific to the proposed I-26 and Columbia Avenue Interchange Improvement Project are provided herein.

1. An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access. The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network. Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network. Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative.

Policy Point 1 requires detailed operational and safety analysis of the relevant interstate segments including a comparison of the no-build and build conditions that are anticipated to occur through the design year of the project. The proposed interchange improvements to the I-26 & Columbia Avenue interchange include relocation of the interchange approximately 0.13-mile northwest of the existing interchange. The relocated interchange includes a new bridge with two southbound (SB) thru lanes, a SB left turn lane for access to eastbound I-26, one northbound (NB) lane, bike lanes in both directions, and sidewalks on either side of the bridge. The new interchange will be a parclo design with a loop in the northwestern quadrant.

The analysis considers the I-26 mainline east and west of exit 91, the Columbia Avenue interchange, and was conducted using methodologies and procedures outlined in the Transportation Research Board's *Highway Capacity Manual* and used the *HCS 7* software for freeway facilities; *Synchro*, Version 10 software for intersections; *Synchro SimTraffic* software for the arterial analysis; and the *HSM* CMFs for crash analyses.

The analysis of the 2044 Build condition of the proposed interchange improvements indicates that the project would not have any significant negative impact on the safety and the operation of the

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 RAMEY KEMP ASSOCIATES

Moving forward.

Columbia Avenue (S-48) Over I-26 Interchange - Interchange Modification Report

facilities within the project area. The analysis shows that the I-26 mainline will not degrade from projected 2044 No-Build conditions and that I-26 & Columbia Avenue interchange ramp merge and diverge areas are projected to operate at LOS D or better during the 2044 AM and PM peak periods.

The results of the 2044 No-Build freeway facility analyses indicate that several segments are projected to operate under LOS F conditions. The results of the 2044 Build freeway facility analyses show that the proposed modifications will return the level of service to acceptable conditions during the peak hour.

The analysis results indicate that the signalized intersections along Columbia Avenue are projected to operate at LOS C or better with consideration of the proposed improvements for 2044 Build conditions.

Overall, the results of the CMF analyses indicate that with consideration of the proposed improvements, the number of existing crashes along Columbia Avenue between the Bojangles driveway intersection and the I-26 EB Ramps intersection will be reduced by approximately 78% (29 crashes) as compared to the No-Build scenario.

The safety evaluation and CMF analysis indicate that with consideration of the proposed improvements, the number of existing crashes along Columbia Avenue between the Bojangles driveway intersection and the I-26 EB Ramps intersection will be reduced by approximately 78% (29 crashes) as compared to the No-Build scenario. The number of existing crashes at the vicinity of the Columbia Avenue & I-26 interchange will be reduced by approximately 62% (106 crashes) as compared to the No-Build scenario.

A conceptual signing plan is included in Appendix H.

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 RAMEY KEMP ASSOCIATES

Moving forward.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

2. The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards for Federal-aid projects on the Interstate System." In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial-interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

Policy Point 2 requires implementation of an interchange design for the new or modified access that allows for all relevant movements for traffic.

The I-26 & Columbia Avenue interchange is located at Exit 91 along the interstate and is currently a diamond configuration and currently provides for all movements between the interstate and Columbia Avenue. The proposed interchange improvements to the I-26 & Columbia Avenue interchange include relocation of the interchange approximately 0.13-mile northwest of the existing interchange. The relocated interchange includes a new bridge with two southbound (SB) thru lanes, a SB left turn lane for access to eastbound I-26, one northbound (NB) lane, bike lanes in both directions, and sidewalks on either side of the bridge. The new interchange will be a parclo design with a loop in the northwestern quadrant. The addition of the proposed I-26 westbound loop to Columbia Avenue eastbound will separate the I-26 westbound traffic flows accessing Columbia Avenue. These improvements will continue to provide full access for all traffic movements at the interchange.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

APPENDIX A

SCDOT's December 2016 Interchange Modification Report

INTERCHANGE MODIFICATION REPORT

I-26 AT S-48 (COLUMBIA AVENUE)
INTERCHANGE IMPROVEMENTS
LEXINGTON COUNTY, SOUTH CAROLINA
PROJECT NO. R4035500-121734.01
PROJECT ID P042383

DECEMBER 2016

PREPARED FOR:
SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION
&
LEXINGTON COUNTY

INTERCHANGE MODIFICATION REPORT

I-26 AT S-48 (COLUMBIA AVENUE)
INTERCHANGE IMPROVEMENTS
LEXINGTON COUNTY, SOUTH CAROLINA
PROJECT NO. R4035500-121734.01
PROJECT ID P042383

DECEMBER 2016

PREPARED FOR:
SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

LEXINGTON COUNTY

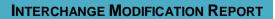


TABLE OF CONTENTS

				<u>Page</u>			
1.0	EXE	CUTIVE	SUMMARY	5			
2.0	INTR	ODUCT	ION	7			
	2.1	BACK	GROUND	7			
	2.2	SCOP	'E	7			
	2.3	STUD	Y AREA	8			
	2.4	PURP	OSE AND NEED STATEMENT	9			
	2.5	EXIST	ING CONDITIONS FOR STUDY AREA	10			
3.0	OPE	OPERATIONAL ANALYSIS					
	3.1	ANAL'	YSIS METHODOLOGY	13			
	3.2	TRAF	FIC VOLUMES	16			
	3.3	CRASH ANALYSIS					
	3.4	EXIST	ING 2014 TRAFFIC ANALYSIS	25			
	3.5	NO-BUILD 2020 TRAFFIC ANALYSIS2					
	3.6	NO-BUILD 2040 TRAFFIC ANALYSIS					
	3.7	BUILD 2020 TRAFFIC ANALYSIS3					
	3.8	BUILD	2040 TRAFFIC ANALYSIS	38			
4.0	VISS	IM ANA	LYSIS	42			
	4.1	MODE	EL DEVELOPMENT	42			
		4.1.1	Geometric Data	42			
		4.1.2	Traffic Control Data	42			
		4.1.3	Speed Data	43			
		4.1.4	Traffic Input	44			
		4.1.5	Driving behavior Parameters	45			
	4.2	BASE	YEAR MODEL CALIBRATION AND VISUAL VALIDATION	46			
		4.2.1	Calibration Criteria	47			
		4.2.2	Simulation Setting and Random Seed Variation	48			
		4.2.3	Visual Validation	48			
		4.2.4	Calibration Results	50			
	4.3	4.3 MEASURES OF EFFECTIVENESS					
		4.3.1	95 th Percentile (Worst Case) Methodology	52			
		4.3.2	Delay Reporting for Stop and Signal Controlled Intersections	s53			

TABLE OF CONTENTS

				<u>Page</u>
		4.3.3	2014 Existing Condition AM and PM Peak Hour MOEs	53
		4.3.4	2020 No-Build AM and PM Peak Hour MOEs	53
		4.3.5	2020 Build (DDI) AM and PM Peak Hour MOEs	55
		4.3.6	2040 No-Build AM and PM Peak Hour MOEs	56
		4.3.7	2040 Build (DDI) AM and PM Peak Hour MOEs	57
5.0	SUMM	MARY O	F FINDINGS	58
	5.1	FINDII	NGS	58
	5.2	CONC	CLUSION AND RECOMMENDATION	59
6.0	FEDE	RAL HI	GHWAY ADMINISTRATION (FHWA) POLICY	60

TABLES

TABLE 1:	LOS THRESHOLDS FOR UNSIGNALIZED INTERSECTIONS	14
TABLE 2:	LOS THRESHOLDS FOR SIGNALIZED INTERSECTIONS	14
TABLE 3:	LOS THRESHOLDS FOR FREEWAY SEGMENTS	15
TABLE 4:	LOS THRESHOLDS FOR MERGE / DIVERGE AREAS	16
TABLE 5:	EXISTING 2014 INTERSECTION LOS AND DELAY	25
TABLE 6:	EXISTING 2014 FREEWAY / MERGE / DIVERGE LOS AND DENSITY	26
TABLE 7:	NO-BUILD 2020 INTERSECTION LOS AND DELAY	28
TABLE 8:	NO-BUILD 2020 FREEWAY / MERGE / DIVERGE LOS AND DENSITY	29
TABLE 9:	NO-BUILD 2040 INTERSECTION LOS AND DELAY	31
TABLE 10:	NO-BUILD 2040 FREEWAY / MERGE / DIVERGE LOS AND DENSITY	32
TABLE 11:	BUILD 2020 INTERSECTION LOS AND DELAY	34
TABLE 12:	BUILD 2020 FREEWAY / MERGE / DIVERGE LOS AND DENSITY	35
TABLE 13:	BUILD 2040 INTERSECTION LOS AND DELAY	38
TABLE 14:	BUILD 2040 FREEWAY / MERGE / DIVERGE LOS AND DENSITY	39
TABLE 15:	SPEED DISTRIBUTION	44
TABLE 16:	2014 AM PEAK HOUR CALIBRATION RESULTS	50
TABLE 17:	2015 PM PEAK HOUR CALIBRATION RESULTS	51
TABLE 18:	TRAVEL TIME CALIBRATION RESULTS	51
TABLE 19:	95 TH PERCENTILE CALCULATION METHOD	52
TABLE 20:	2014 EXISTING AM / PM PEAK HOUR LOS AND DELAY (VISSIM)	53
TABLE 21:	2020 NO-BUILD AM / PM PEAK HOUR LOS AND DELAY (VISSIM)	54
TABLE 22:	2020 BUILD AM / PM PEAK HOUR LOS AND DELAY (VISSIM)	55
TABLE 23:	2040 NO-BUILD AM / PM PEAK HOUR LOS AND DELAY (VISSIM)	56
TABLE 24.	2040 BUILD AM / PM PEAK HOUR LOS AND DELAY (VISSIM)	57

FIGUI	RES
-------	-----

FIGURE 1A: PROJECT LOCATION	8
FIGURE 1B: INTERCHANGE STUDY AREA	9
FIGURE 2: EXISTING LANEAGE AND TRAFFIC CONTROL	12
FIGURE 3: 2014 EXISTING PEAK HOUR TRAFFIC VOLUMES	18
FIGURE 4: 2020 NO-BUILD PEAK HOUR TRAFFIC VOLUMES	19
FIGURE 5: 2040 NO-BUILD PEAK HOUR TRAFFIC VOLUMES	20
FIGURE 6: 2020 BUILD ALTERNATIVE 1 PEAK HOUR TRAFFIC VOLUMES	21
FIGURE 7: 2020 BUILD ALTERNATIVE 2 PEAK HOUR TRAFFIC VOLUMES	22
FIGURE 8: 2040 BUILD ALTERNATIVE 1 PEAK HOUR TRAFFIC VOLUMES	23
FIGURE 9: 2040 BUILD ALTERNATIVE 2 PEAK HOUR TRAFFIC VOLUMES	24
FIGURE 10: 2014 EXISTING LOS AND LANEAGE	27
FIGURE 11: 2020 NO-BUILD LOS AND LANEAGE	30
FIGURE 12: 2040 NO-BUILD LOS AND LANEAGE	33
FIGURE 13: 2020 BUILD ALTERNATIVE 1 LOS AND LANEAGE	36
FIGURE 14: 2020 BUILD ALTERNATIVE 2 LOS AND LANEAGE	37
FIGURE 15: 2040 BUILD ALTERNATIVE 1 LOS AND LANEAGE	
FIGURE 16: 2040 BUILD ALTERNATIVE 2 LOS AND LANEAGE	41

APPENDICES

APPENDIX A – S-48 TRAFFIC PROJECTIONS MEMO

APPENDIX B - TRAFFIC COUNTS

APPENDIX C – CRASH DATA

APPENDIX D - EXISTING 2014 SYNCHRO AND SIM TRAFFIC REPORTS

APPENDIX E – EXISTING 2014 HCS REPORTS

APPENDIX F - NO-BUILD 2020 SYNCHRO AND SIM TRAFFIC REPORTS

APPENDIX G - NO-BUILD 2020 HCS REPORTS

APPENDIX H - NO-BUILD 2040 SYNCHRO AND SIM TRAFFIC REPORTS

APPENDIX I – NO-BUILD 2040 HCS REPORTS

APPENDIX J - BUILD AL T 1 2020 SYNCHRO AND SIM TRAFFIC REPORTS

APPENDIX K - BUILD ALT 2 2020 SYNCHRO AND SIM TRAFFIC REPORTS

APPENDIX L – BUILD ALT 1 2040 SYNCHRO AND SIM TRAFFIC REPORTS

APPENDIX M - BUILD ALT 2 2040 SYNCHRO AND SIM TRAFFIC REPORTS

APPENDIX N – BUILD ALT 3 2020 AND 2040 SIDRA REPORTS

APPENDIX O – ALTERNATIVE 1, 2, AND 3 CONCEPTUAL DESIGNS

1.0 EXECUTIVE SUMMARY

To obtain approval from the Federal Highway Administration (FHWA), the following Interstate 26 at S-48 (Columbia Avenue) Interchange Modification Report (IMR) was developed for the South Carolina Department of Transportation (SCDOT). The I-26 at S-48 (Columbia Avenue) diamond interchange is located at Exit 91 in Lexington County, South Carolina. The S-48 (Columbia Avenue) portion of the interchange is just within the Town of Chapin limits, which is located approximately 20 miles northwest of Columbia, SC.

The purpose of the project is to improve operational efficiency and safety of the existing interchange and to accommodate future volumes. The current interchange design is approaching capacity as a two-lane bridge along with no turn lanes to / from S-48 and is functionally obsolete. Operation is expected to worsen with more daily traffic volumes based on past census data indicating the population has been increasing by approximately twenty (20) percent per decade since 1990. With this anticipated growth along with the recently approved Chapin Technology Park and a planned commercial development north of the interchange, modifications to the existing diamond interchange are needed.

The traffic analysis included the evaluation of Existing year 2014, Future year 2020, and Future year 2040 traffic volumes during the AM and PM peak hours. The future year analyses included a No-Build Alternative with the existing interchange / intersection layout and three Build Alternatives:

- 1. Diverging Diamond Interchange
- 2. Partial Clover Leaf
- 3. Dual Roundabout

Geometric design improvements to the adjacent intersections to the interchange are also addressed in this Interchange Modification Report (IMR). Plans to realign Crooked Creek Road (S-232), currently intersecting with the I-26 Eastbound On Ramp, and Ellett Road (less than 50 feet from the I-26 Westbound Ramps) are expected to be realigned directly with S-48 approximately 1000 feet to the south under signal control. This report focuses on the interchange; however, plans are being conducted along S-48 (Columbia Avenue) to widen the existing two-lane highway to five-lanes. Traffic volumes used in this IMR were referenced from the S-48 (Columbia Avenue) Corridor Improvement Project Traffic Study dated October 17, 2016.

Adjacent interchanges Exit 85 (SC 202) and Exit 97 (US 176) were also studied even though both interchanges are more than 5 miles from the study interchange. As expected, Exit 97 (14 miles from Columbia and more developed) carries more traffic than the Exit 85, which is rural and 12 additional miles further away from Columbia. It should be noted, that there an I-26 widening project underway that extends from Exit 85 to Exit 101 which also includes some interchange improvements.

Analysis using Synchro 9.1 indicated that interchange alternatives 1 and 2 operated at an acceptable level-of-service (LOS) C; however, the diverging diamond interchange was selected based its minimal right-of-way acquisition and impact to future development as opposed to other study alternatives. The preferred alternative was also modeled using the microsimulation software VISSIM 7.0. Alternative 3 (dual roundabouts) did not provide an acceptable level-of-service (see **Appendix N**); therefore, it should be not be considered as a viable alternative.

Operation at Exit 97 (US 176 east of the study interchange) is expected to fail by 2040 with no improvements to the interchange. Consideration for widening of I-26 and a review of the interchange is recommended to accommodate projected traffic volumes. Operation at Exit 85 (SC 202 west of the study interchange) is expected to operate an acceptable level-of-service during the year 2040 with its existing design. **Figure 15** summarizes the Level-of-Service and delay for the projected 2040 preferred alternative.

This study recommends the best alternative to meet current and future surrounding area needs for Lexington County, South Carolina. SCDOT will submit this report for a validation of engineering and operational feasibility. Final approval of the IMR will be requested once all National Environmental Policy Act (NEPA) requirements have been met.

2.0 INTRODUCTION

2.1 BACKGROUND

Interstate 26 is a rolling four-lane East-West highway that is divided by a grassy median. The study area for the proposed project begins at Exit 85 (SC 202) and ends at Exit 97 (US 176). The interchange of emphasis in this report is Exit 91, which provides access to S-48 (Columbia Avenue) in Chapin, South Carolina. S-48 is a two lane minor arterial with future widening plans to accommodate future growth as part of this project. The approved Chapin Technology Park (a phased 2019 and 2024 Build-out) is approximately 1 mile south of the interchange and the planned commercial development just north of the interchange (northwest quadrant) was included in the traffic projections. The existing interchange at S-48 currently has minor queuing issues at the signalized I-26 westbound ramp and is expected to be over capacity based on the projected annual growth in the area and the added traffic volumes from the two large developments. The preferred alternative is to replace the existing diamond interchange design with a diverging diamond interchange (DDI) and to realign Crooked Creek Road and Ellett Road 1000 feet south of interchange under signal control improving the access management of S-48.

2.2 SCOPE

This report focuses on traffic analysis of existing and future conditions and provides recommendations for mitigating Level-of Service (LOS) and queuing. AECOM was tasked with studying traffic conditions in the vicinity of the proposed project during the weekday AM and PM peak hours for three scenarios:

- 2014 Existing: An analysis of existing conditions in the year 2014.
- 2020/2040 No-Build: An analysis of conditions in the years 2020 and 2040 with no changes to the interchange.
- 2020/2040 Project Build-Out: An analysis of conditions in the years 2020 and 2040 if a an interchange is modified, S-48 is widened to 5 lanes to the south, and Crooked Creek Road and Ellett Road are realigned 1000 feet to the south.

This study includes an analysis of the existing adjacent interchanges to the east and west of the proposed interchange modification of Exit 91. To the east is Exit 97 and to the west is Exit 85.

The scope of this interchange modification study included the following tasks:

- 1. Field visits to the study area were performed to collect data on the existing conditions such as lane configurations/geometry and current traffic control measures. Traffic counts and signal timing information at the interchanges were obtained from SCDOT.
- 2. Existing conditions of the interchanges were studied by utilizing the existing traffic volumes. Levels of service of the intersections at each interchange were determined using Synchro 9.1. I-26 freeway and interchange on / off ramps (segments, merges, and diverges, and off-ramps) were analyzed High Capacity Software 2010. VISSIM 7.0 was also used to model the entire network.

- 3. Two future design years were examined in this report. Build and No-Build scenarios were analyzed for the years 2020 and 2040. The No-Build scenario analyzed the conditions in both design years in which no modifications were made to the interchange or adjacent freeway and interchanges. The Build scenario analyzed the future conditions in both build years if the interchange modification and widening of S-48 (Columbia Avenue) were constructed. Adjacent merge and diverge areas (freeway segments, on-ramps, and off-ramps) were analyzed under the future design year (2020/2040) conditions of the study area.
- 4. The future design year conditions were analyzed for three (3) different interchange alternative scenarios. Adjacent merge and diverge areas (freeway segments, on-ramps, and off-ramps) were analyzed under the future design year (2020/2040) conditions of the study area. Only the preferred alternative was also modeled using VISSIM 7.0.

2.3 STUDY AREA

The study area is located in Lexington County, South Carolina. Specifically, the S-48 (Columbia Avenue) Widening project is located in the Town of Chapin, South Carolina. The study area of the IMR begins to the west of S-48 at Exit 85 of I-26 and ends to the east at Exit 97. The interchange of I-26 at S-48 is Exit 91. I-26 is an east-west four (4) lane freeway with two (2) travel lanes in each direction. The location of the project is shown in **Figure 1A** and **Figure1B**.

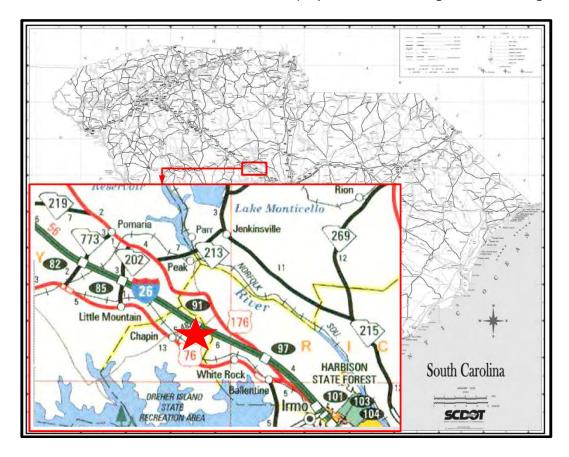


Figure 1A – Project Location

Figure 1B – Interchange Study Area

2.4 PURPOSE AND NEED STATEMENT

The purpose of this IMR is to study the impact of the modification of the interchange at Exit 91 on I-26 near Chapin, South Carolina. Chapin is located in Lexington County, northwest of Columbia. The population of Lexington County has been steadily increasing. In the 1990 Census, the population of Lexington County was 167,611. This grew to 216,014 (28.9% increase) in the 2000 Census and then reached 262,391 (21.5% increase) in 2010. Due to continual and anticipated growth in the area, improvements to the existing roadway network should be reviewed. This report is aimed at the potential improvements to the interchange from I-26 to Columbia Avenue in Chapin. The existing interchange is currently over capacity and the Frontage Road connection with S-48 and Crooked Creek Road connection with the I-26 EB On Ramp should be realigned for safety to meet SCDOT's latest criteria for access management. With new developments and construction in Chapin, such as the S-48 (Columbia Avenue) widening, there is a need for to modify the interchange to be able to accommodate this growth in terms of both capacity and safety.

2.5 EXISTING CONDITIONS FOR STUDY AREA

Currently S-48 is a 2-lane undivided minor arterial roadway with a 35 mile per hour (mph) posted speed limit that runs from US 76 at its intersection with S-51 (Amick Ferry Road) to the I-26 interchange. In the study area, I-26 is a 4-lane divided freeway with a 70 mph posted speed limit running in the east-west direction.

The AM peak hour studied was from 7:30-8:30 AM and the PM peak hour was from 4:45-5:45 PM based on the peak hour turning movement traffic counts. Heavy truck percentage for the peak hours varied; however, 4% was used for I-26 and 2% was used on the other studied roadways. It should be noted that SCDOT records indicate the daily heavy truck percentage on S-48 is 7% while I-26 is approximately 15%. Descriptions of the interchanges and a complete list of the study area are described below and shown in **Figure 2**:

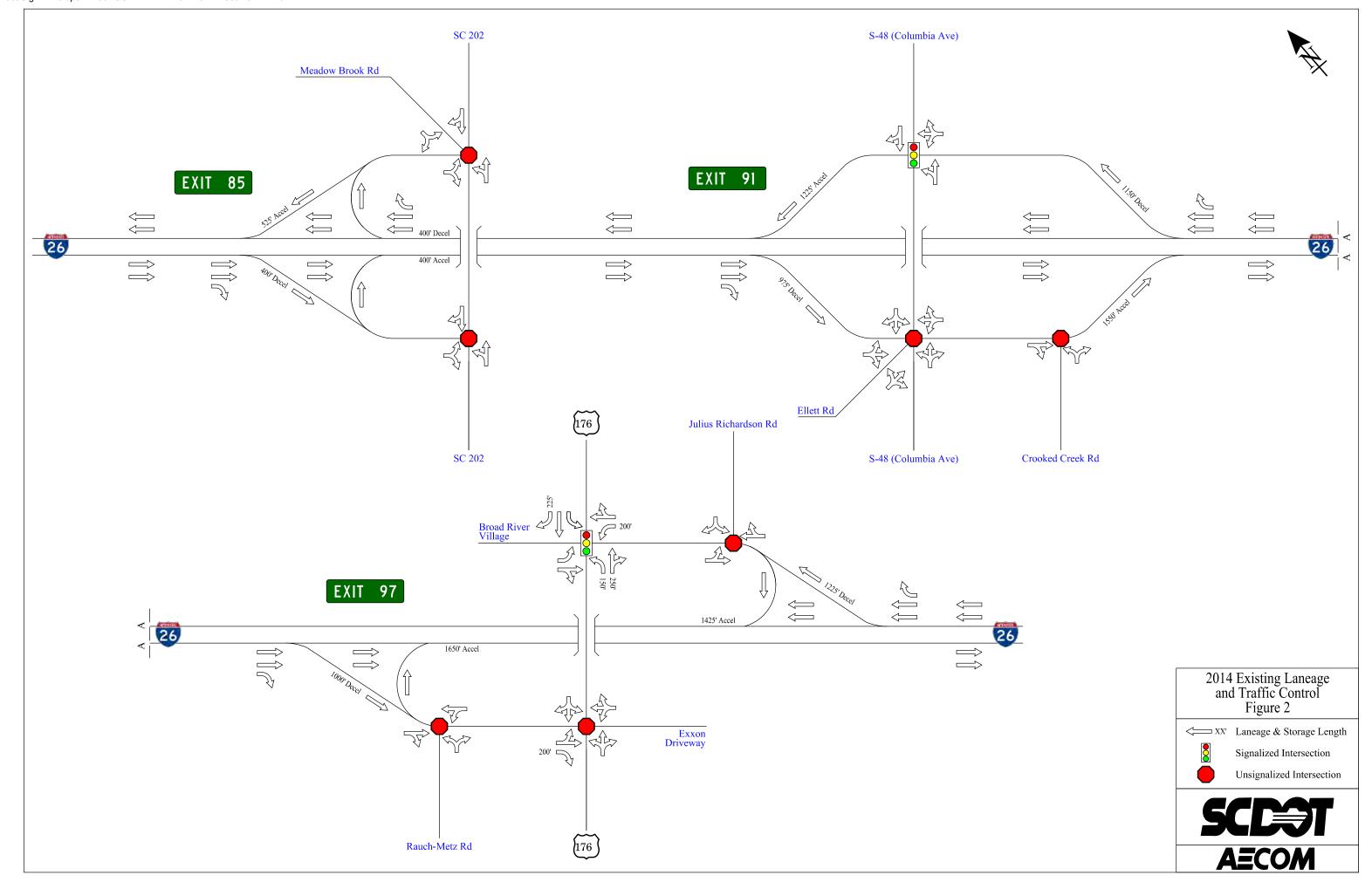
- 1. I-26 Eastbound Ramps at S-48
- 2. I-26 Westbound Ramps at S-48
- 3. I-26 Eastbound Ramps at SC 202
- 4. I-26 Westbound Ramps at SC 202
- 5. I-26 Eastbound Ramps/ Exxon Driveway at US 176
- 6. I-26 Westbound Ramps at US 176

Exit 85

Approximately 6 miles to the west of Exit 91 on I-26 is Exit 85, a folded diamond/partial cloverleaf interchange. This interchange provides access to SC 202, a north-south 2-lane undivided roadway with a bridge over I-26. The eastbound off-ramp from I-26 is a stop controlled intersection where vehicles have the ability to turn left or right on to SC 202. The westbound off-ramp also has a stop controlled left turn onto SC 202 while the right turn from the ramp is yield controlled. A frontage road (Meadow Brook Road), less than 100 feet north of the I-26 westbound ramps, runs parallel to I-26 westbound, which is accessible from SC 202.

Exit 91

The interchange that intersects with S-48 is Exit 91 as a diamond interchange. This interchange provides access to S-48, which leads directly into Chapin. The eastbound off-ramp provides stop controlled access to S-48. The westbound off-ramp is signalized at the intersection with S-48. A frontage road (Ellett Road) intersects with S-48 approximately 50 feet to the southwest of the eastbound off-ramp. This road runs parallel to I-26 eastbound to the west of S-48. The eastbound on-ramp has access to Crooked Creek Road located on the ramp. There are multiple fast food restaurants and gas stations located west of the interchange on S-48.


Exit 97

Approximately 6 miles to the east of Exit 91 on I-26 is Exit 97. This interchange is a partial cloverleaf design for I-26 westbound and eastbound on ramp movements. The interchange

provides access to US 176, which has access to many residential developments near the interstate. The eastbound off-ramp leads to an intersection with US 176 that is stop controlled coming off the ramp. In addition to the intersection with US 176, the ramp intersects with Rauch Metz Road about half the distance between I-26 and US 176. Traffic traveling from Rauch Metz Road has the option to turn left to access the on-ramp to I-26 eastbound or turn right and head toward the intersection with US 176. The I-26 eastbound loop on-ramp also provides for vehicles to turn left onto Rauch Metz Road.

The I-26 westbound off-ramp intersects with US 176 at a signalized intersection. Through and left turn lane traffic approach the signal while the right turning traffic approaches a yield before continuing onto US 176. There is a driveway leading to a shopping center (Broad River Village) across from the off/on ramps at the signalized intersection.

3.0 OPERATIONAL ANALYSIS

3.1 ANALYSIS METHODOLOGY

The highway capacity analyses performed are based on methodologies from the Highway Capacity Manual (HCM 2010). Traffic modeling software used in the capacity analyses were Synchro 9.1 and SimTraffic 9.0, (Build 908, Rev 56), and VISSIM 7.0 for intersection analyses.

The traffic carrying ability of a roadway is described by levels of service (LOS) that range from LOS A to LOS F. LOS A represents unrestricted maneuverability and operating speeds. LOS B represents reduced maneuverability and operating speeds. LOS C represents restricted maneuverability and operating speeds closer to the speed limit. LOS D represents severely restricted maneuverability and unstable, low operating speeds. LOS E represents operating conditions at or near the capacity level. LOS F represents breakdown conditions characterized by stop and go travel. A visual representation of each LOS is shown below.

The Highway Capacity Manual (HCM) 2010 defines LOS at an unsignalized intersection by average control delay per vehicle, which includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Several factors affect the controlled delay for unsignalized intersections, such as availability and distribution of gaps in the conflicting traffic stream, critical gaps, and follow-up time for a vehicle in the queue. The Highway Capacity Manual explains that drivers perceive that a signalized intersection is designed to carry higher traffic volumes and therefore expect to experience greater delays at signalized intersections. Unsignalized intersections are assigned a LOS for each minor movement. Typically, LOS C is

considered the minimum acceptable level of service at an intersection for a suburban area. **Table 1** presents LOS thresholds for unsignalized intersections.

Table 1: LOS Thresholds for Unsignalized Intersections

Level of Service	Average Control Delay (sec/veh)
A B C D E F	≤ 10.0 > 10.0 and ≤ 15.0 > 15.0 and ≤ 25.0 > 25.0 and ≤ 35.0 > 35.0 and ≤ 50.0 > 50.0

LOS for a signalized intersection is defined in terms of average control delay per vehicle, which is composed of initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. A single LOS describes a signalized intersection. **Table 2** presents LOS thresholds for signalized intersections.

Table 2: LOS Thresholds Signalized Intersections

Level of Service	Average Control Delay (sec/veh)
A	≤ 10.0
B	> 10.0 and ≤ 20.0
C	> 20.0 and ≤ 35.0
D	> 35.0 and ≤ 55.0
E	> 55.0 and ≤ 80.0
F	> 80.0

A basic freeway segment can be characterized by three performance measures: density in terms of passenger cars per mile per lane, speed in terms of mean passenger-car speed, and volume to capacity (v/c) ratio. Each of these measures is an indication of how well traffic flow is being accommodated by the freeway. The measure used to provide an estimate of level of service is density. **Table 3** defines the traffic density conditions at each level of service.

Traffic flow within a basic freeway segment can vary greatly depending on the conditions constricting flow at upstream and downstream bottleneck locations. Bottlenecks can be created by ramp merges or weaving segments, lane drops, maintenance and construction activities, accidents, and objects in the roadway.

Level of Service	Density Range (pc/mi/ln
A B C D E F	\leq 11.0 > 11.0 and \leq 18.0 > 18.0 and \leq 26.0 > 26.0 and \leq 35.0 > 35.0 and \leq 45.0 > 45.0

Table 3: LOS Thresholds for Freeway Segments

A ramp is a length of roadway providing an exclusive connection between two highway facilities. On freeways, all entering and exiting maneuvers take place on ramps that are designed to facilitate smooth merging of on-ramp vehicles into the freeway traffic stream and smooth diverging of off-ramp vehicles from the freeway traffic stream onto the ramp.

A ramp consists of three geometric elements of interest: the ramp-freeway junction, the ramp roadway, and the ramp street junction. The ramp freeway junction is typically designed to permit high-speed merging and diverging with varying acceleration and deceleration lanes. Ramp roadways can vary between locations in terms of number of lanes, design speeds, grades, and horizontal curvature. The design of ramp roadways is seldom a source of operational difficulty unless a traffic incident causes disruption along the length of the ramp. Ramp-street terminal problems can cause queuing along the length of ramp, but this is generally not related to the design of the ramp roadway. **Table 4** defines the traffic density conditions at each level of service.

Level of Service	Density Range (pc/mi/ln
A B C D E F	≤ 10.0 > 10.0 and ≤ 20.0 > 20.0 and ≤ 28.0 > 28.0 and ≤ 35.0 > 35.0 Demand Exceeds Capacity

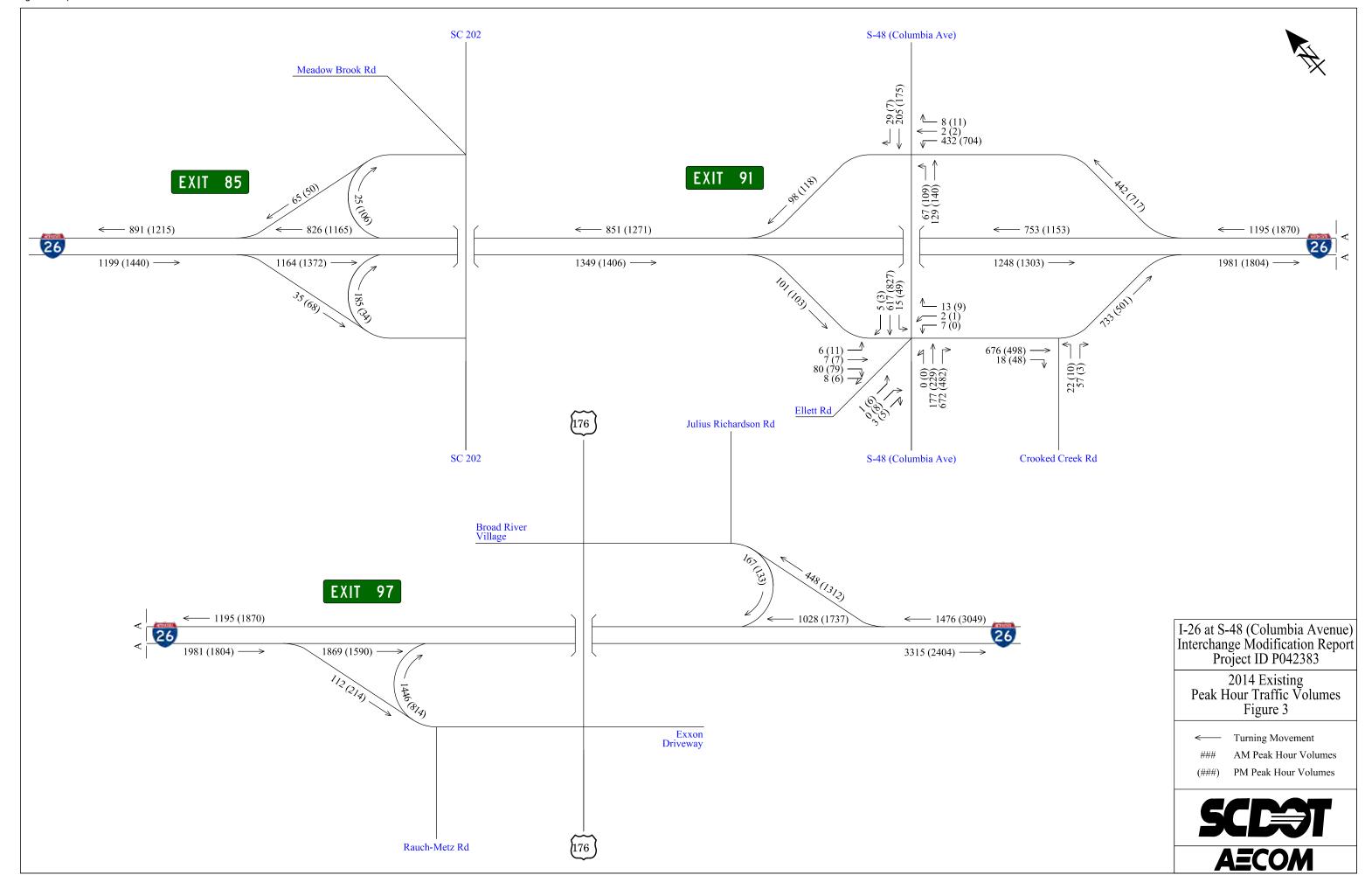
Table 4: LOS Thresholds for Merge / Diverge Areas

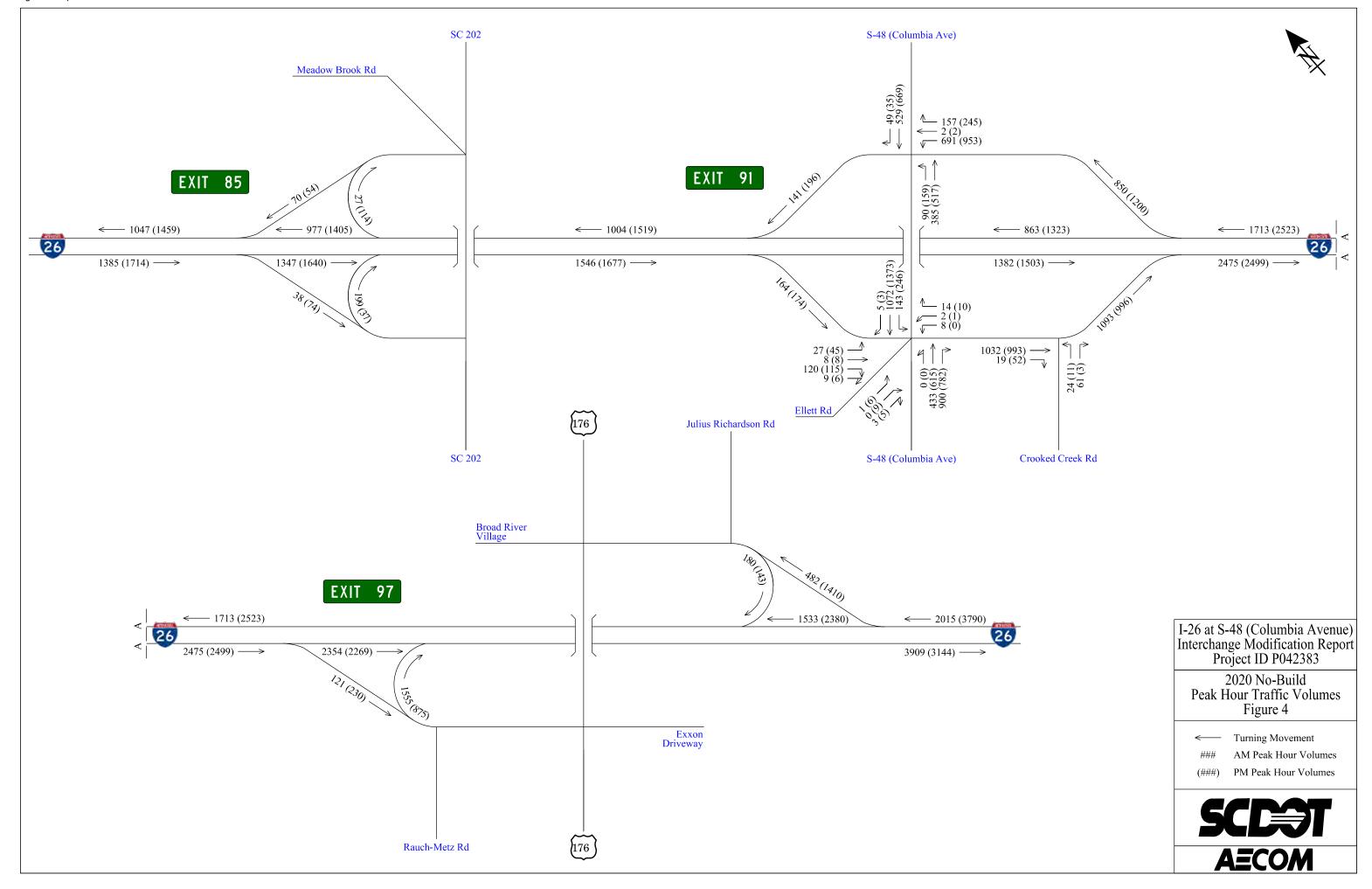
3.2 TRAFFIC VOLUMES

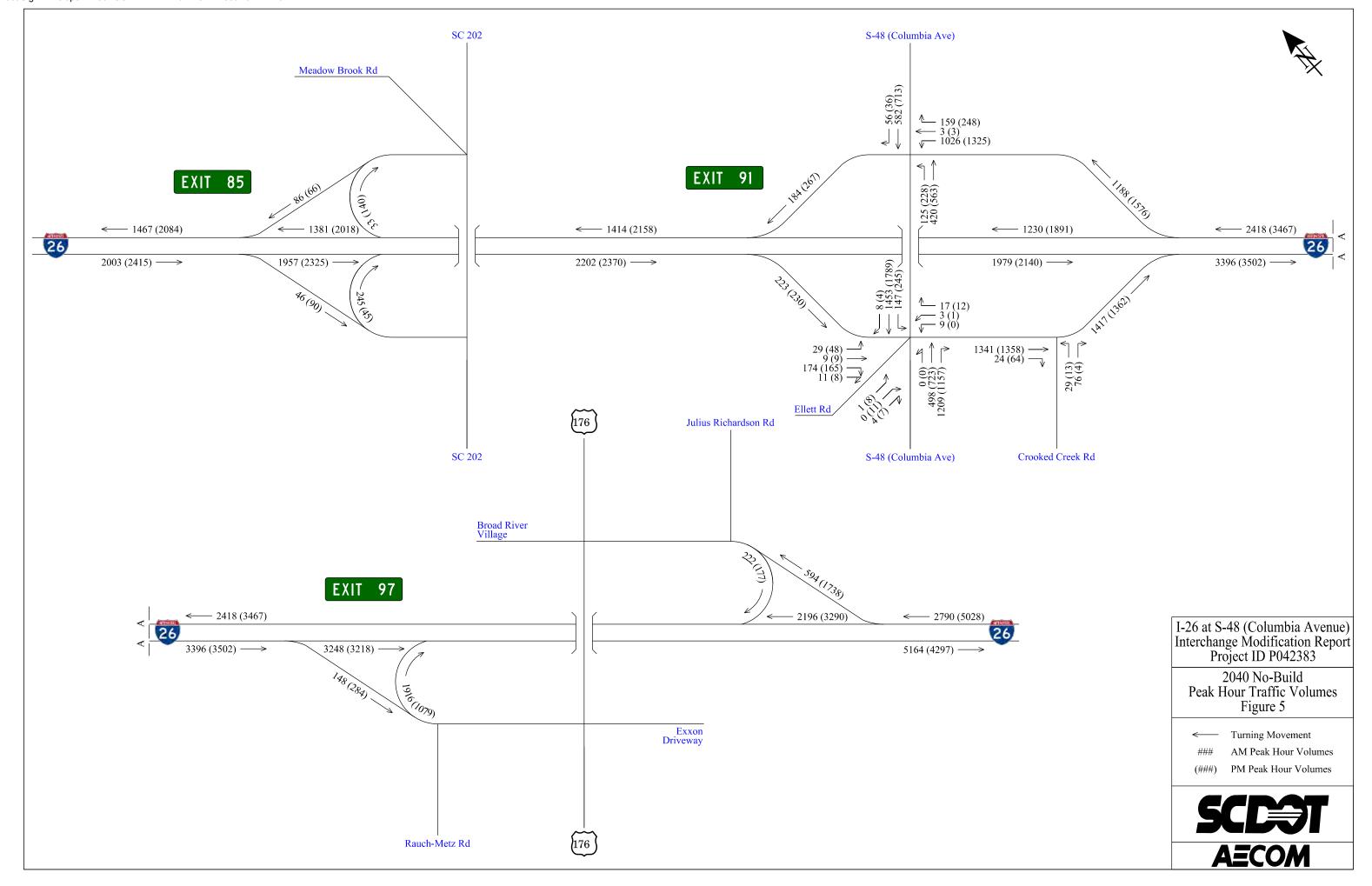
Traffic volumes were for this IMR were referenced from the S-48 (Columbia Avenue) Corridor Improvement Project Traffic Study dated 10-17-16. In summary, the 2014 existing traffic volumes were grown at a linear rate of 1.25% to obtain the base Opening Year (2020) and Design Year (2040) traffic projections. After these projections were complete, a traffic study for the Chapin Technology Park and Chapin Commerce Village Development became available. These two developments are significant in size and impact the S-48 corridor and interchange. At the direction of Lexington County and SCDOT, additional traffic volumes were added to the base volumes to be conservative and to better estimate the turning movement volumes to / from S-48. Additional volumes were generated using:

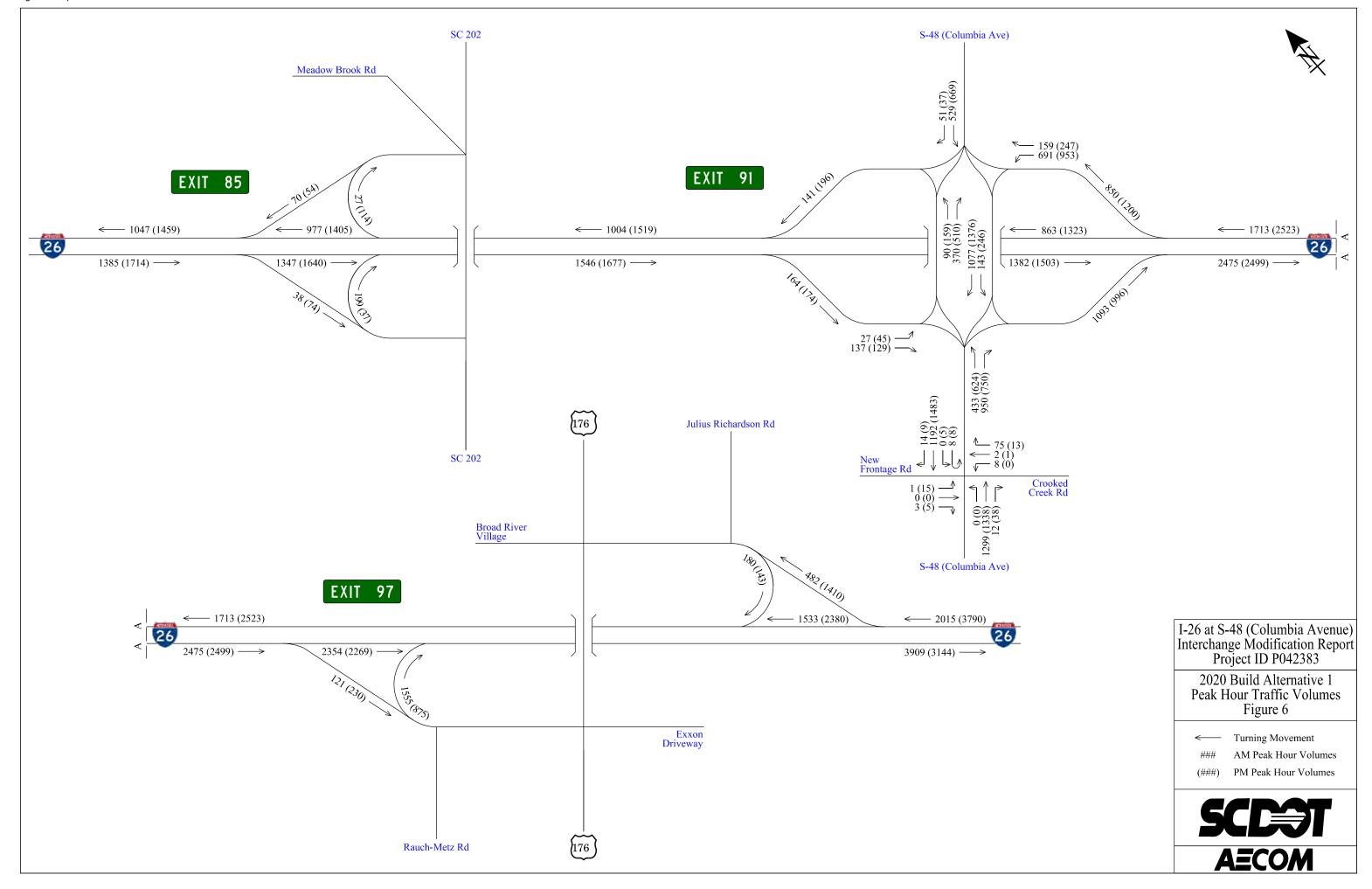
- Chapin Technology Park (120 acre industrial park, 450 single family houses, and 350,000 SF of commercial). Based on the final traffic study submitted and approved by SCDOT on October 13, 2015 for the Chapin Technology Park, the opening year is 2019. These new trips were added to the Opening Year (2020). The Chapin Technology Park is not expected to be complete until 2024 as these trips at full build-out were added to the Design Year (2040). The Technology Park is located north of Columbia Avenue near Woodthrush Road.
- Chapin Commerce Village (132,000 SF Specialty Retail, 8,350 SF Quality Restaurant, 8,350 SF General Office, 4,500 SF Fast Food Restaurant with Drive-Through, 8,350 High Turn-Over (Sit-Down) Restaurant, 4,050 SF Fast Food Restaurant with Drive-Through, 4,950 SF Convenience Market with Gasoline Pumps, 8,350 SF Quality Restaurant, 120 Room Hotel, 8,350 Quality Restaurant, and 4,050 SF General Office Building). This development has not had a traffic study and is only in the early planning stages. It is located just east of I-26 along S-48 (Columbia Avenue).

A complete memo describing the methodology with traffic figures can be referenced in **Appendix A**.

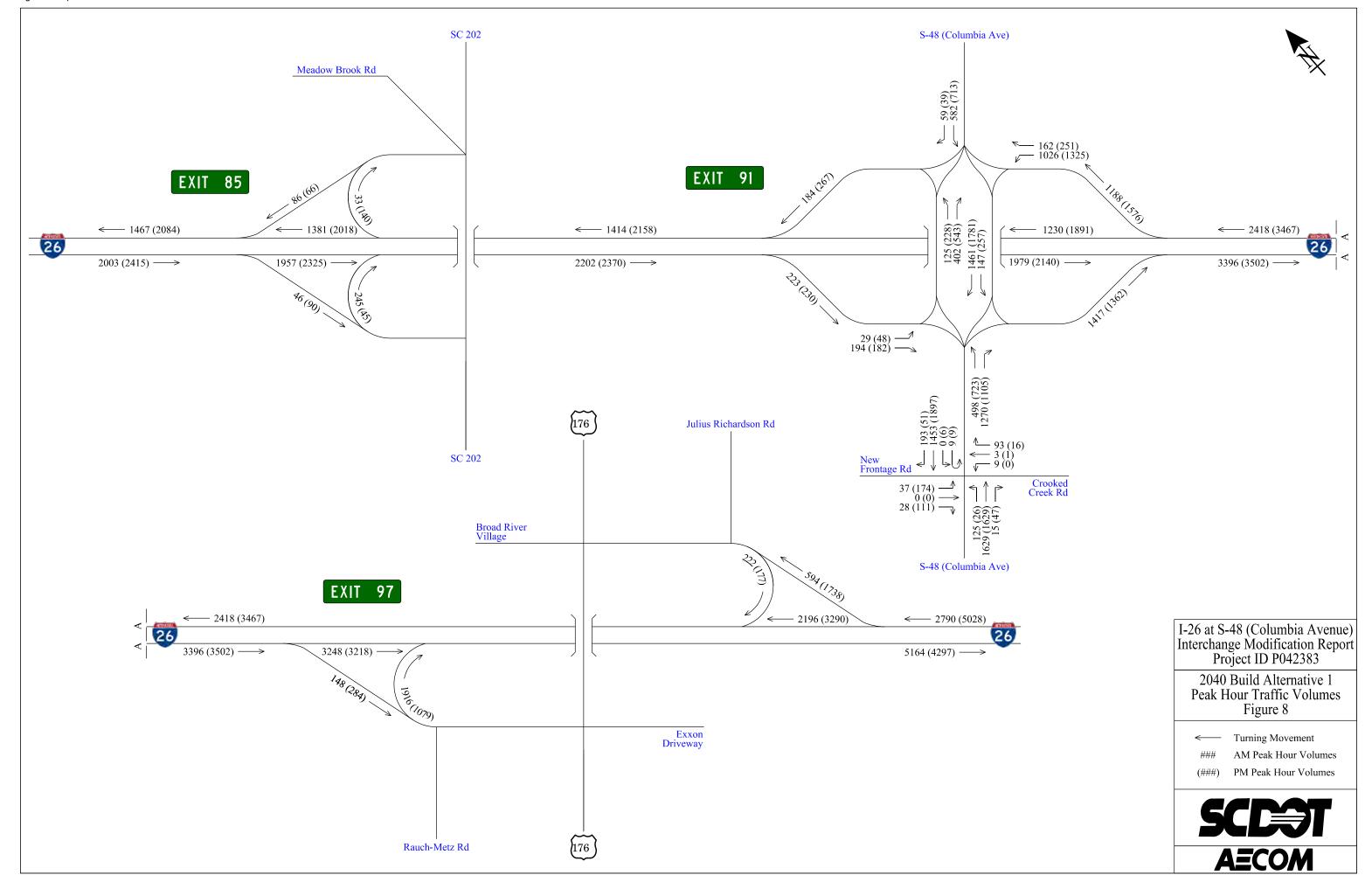


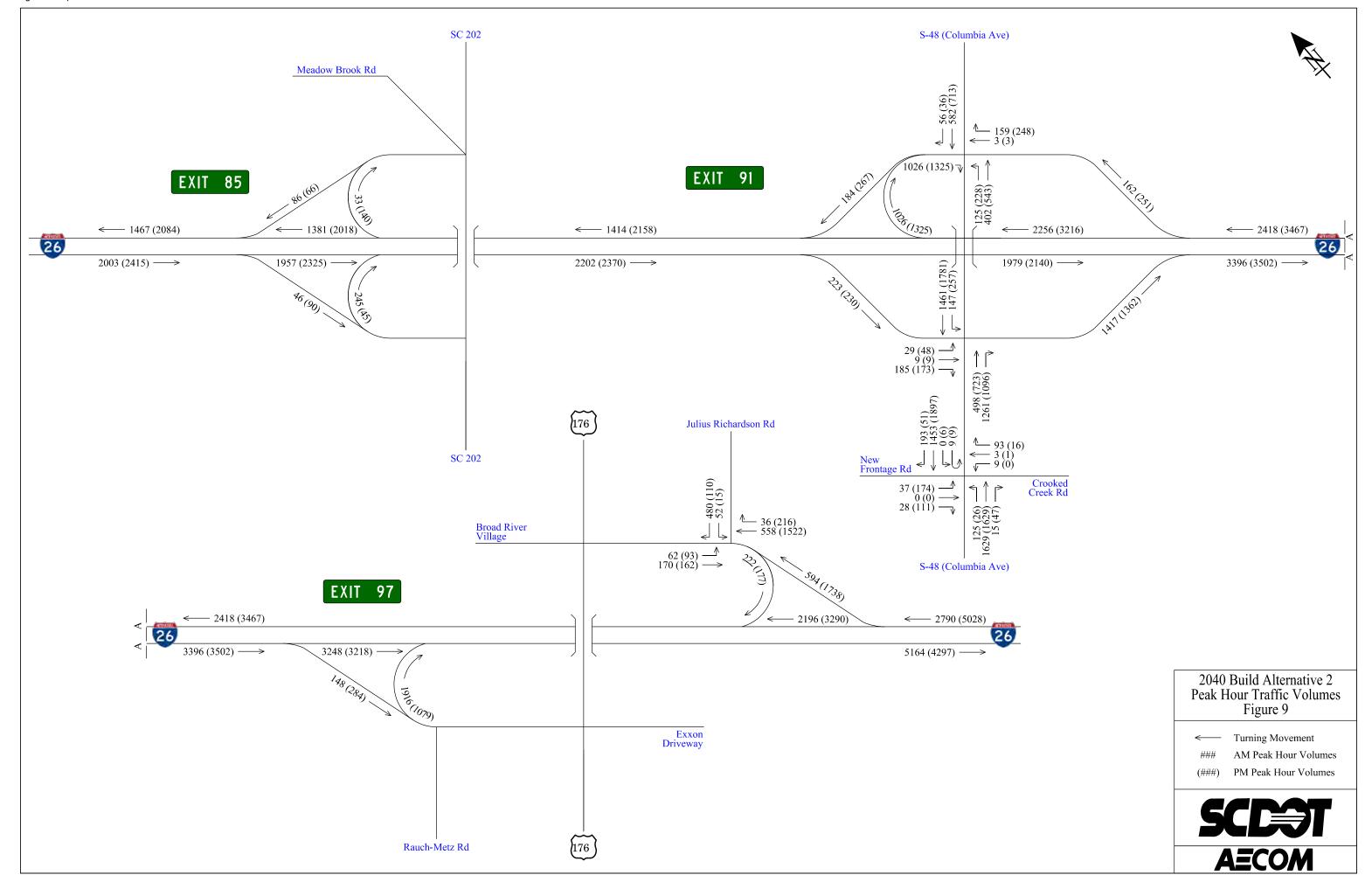

The memo does not provide volumes along I-26, therefore, AECOM used an I-26 traffic count located just east Exit 91 and determined other sections along I-26 in the study area by balancing with the known ramp volumes at Exit 85 and Exit 97. The raw traffic counts are located in **Appendix B**. Finalized traffic volumes (balanced) for all study scenarios are displayed in **Figures 3-9**.


3.3 CRASH ANALYSIS


Crash data collected over the last 3.4 years show low crash rates along I-26 within the Exit 91 interchange area. There was a total 40 crashes with 75 percent of the crashes consisting of either running off the road or rear end. Of the 40 crashes, 8 people were injured with 1 fatality. The one fatality appears to be pedestrian related occurring during the dusk hours. The crash data also indicates that there were 8 rear-end collisions between the on / off ramps (stack 6) over the 3.4 year period which may be attributed to queuing from the westbound off-ramp extending onto the interstate. Crash summaries can be found in **Appendix C**.

The preferred Alternative Diverging Diamond Interchange design is not expected change the existing diamond interchange as the ramp design and number of lanes on the freeway are expected to remain the same. A modification to the S-48 interchange is not expected to have a significant adverse effect on safety on I-26 but is expected to improve the safety on S-48 at the ramps with the fewer conflict points.





3.4 EXISTING 2014 TRAFFIC ANALYSIS

The results of the Existing 2014 intersection analysis using Synchro 9.1 indicate that S-48 at I-26 eastbound ramp is currently operating LOS D in the AM Peak hour and LOS E during PM for the minor street approaches. The westbound off ramp under signal control is operating at LOS B; however, queues from the signal may extend onto I-26.

Table 5 summarizes the LOS and delay for each of study intersections with detailed Synchro reports found in **Appendix D**.

Table 5: Existing 2014 Intersection LOS and Delay

ID	Intersection	Traffic Control	Approach	HCM 2010 Level of Service (LOS)		Control Delay (sec/veh)	
				AM	РМ	AM	PM
		Exit 91 (I-26 at	S-48)				
1	I-26 Eastbound Off Ramp / Crook Creek Road at S-48	Unsignalized	WB (AM)* EB (PM)*	D	Е	28.4	42.7
2	I-26 Westbound Ramps at S-48	Signalized	-	В	В	11.7	19.1

^{*}Since vehicles from Crooked Creek Road can access the I-26 eastbound on ramp to S-48 (Columbia Avenue), the worst of the two minor approaches was reported.

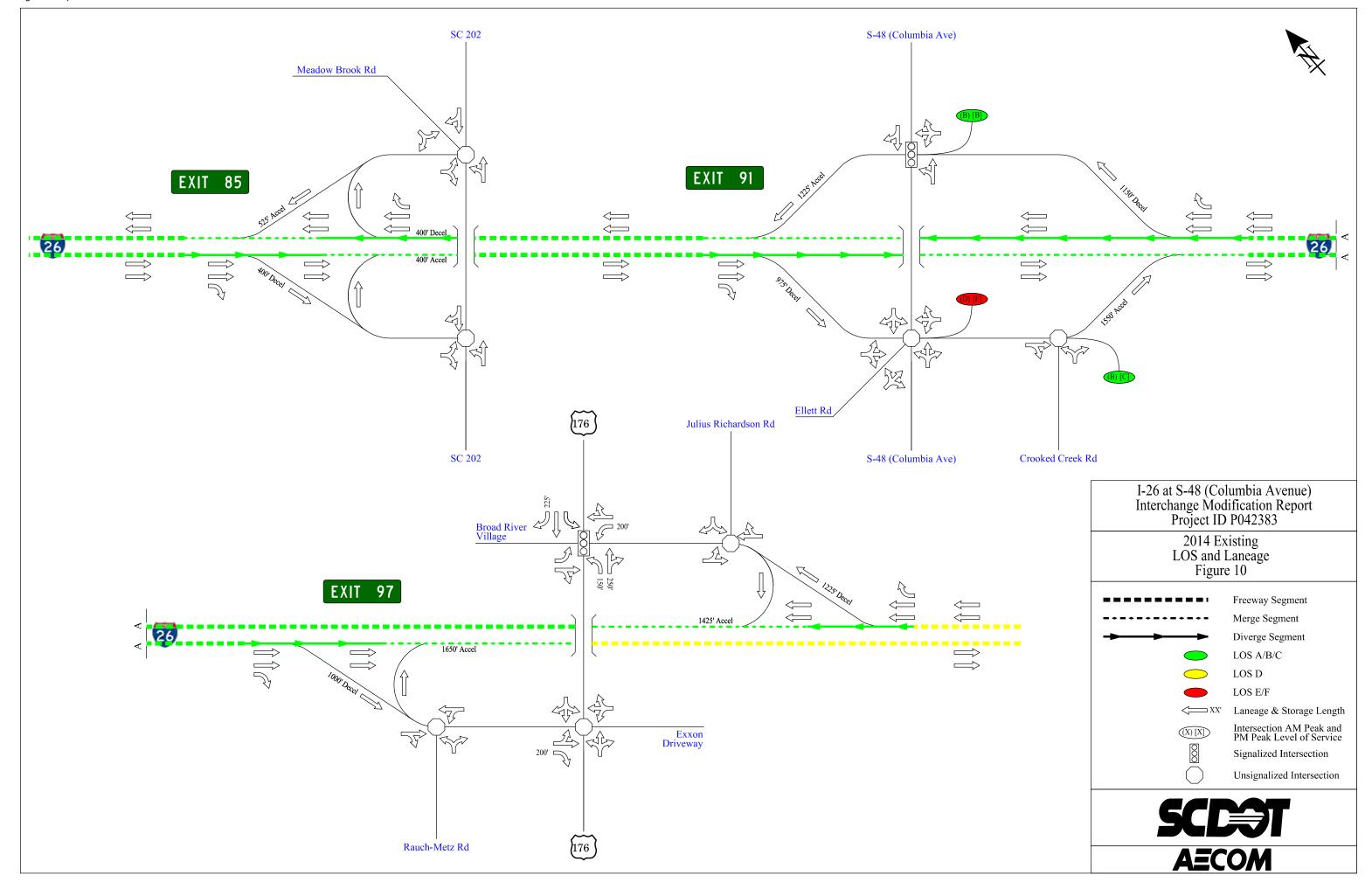

The results of the Existing 2014 Freeway / Merge / Diverge analysis using Highway Capacity Software (HCS) 2010 indicate that just east of Exit 97 (US 176), I-26 is operating at LOS D in the AM peak hour (eastbound) and during the PM peak hour (westbound). All other freeway segment / merge / diverge analyses are operating at LOS C or better.

Table 6 summarizes the LOS and density for each merge / diverge area with detailed HCS reports found in **Appendix E**.

Table 6: Existing 2014 Freeway / Merge / Diverge LOS and Density

Approach	Description	HCM 2010 Level of Service (LOS)		Density (pc/mi/ln)				
		AM	PM	AM	PM			
	Freeway Segment							
	West of Exit 85	Α	В	9.4	11.3			
C a ath a	Between Exit 85 and Exit 91	Α	В	10.6	11.0			
Eastbound	Between Exit 91 and Exit 97	В	В	15.6	14.2			
	East of Exit 97	D	С	30.0	19.4			
	East of Exit 97	В	D	11.6	26.4			
Manthaund	Between Exit 91 and Exit 97	Α	В	9.4	14.7			
Westbound	Between Exit 85 and Exit 91	Α	Α	6.7	10.0			
	West of Exit 85	Α	Α	7.0	9.5			
	Merge Area							
	EB Exit 85 On-Ramp	В	В	15.2	15.9			
Eastbound	EB Exit 91 On-Ramp	В	В	13.7	12.2			
	EB Exit 97 On-Ramp	С	В	25.4	17.5			
	WB Exit 97 On-Ramp	Α	В	7.4	13.6			
Westbound	WB Exit 91 On-Ramp	Α	Α	5.5	9.4			
	WB Exit 85 On-Ramp	В	В	10.3	13.3			
	Diverge Area							
	EB Exit 85 Off-Ramp	В	В	12.8	15.2			
Eastbound	EB Exit 91 Off-Ramp	Α	А	9.1	9.7			
	EB Exit 97 Off-Ramp	В	В	15.3	13.5			
	WB Exit 97 Off-Ramp	Α	С	8.2	24.1			
Westbound	WB Exit 91 Off-Ramp	Α	В	5.3	12.2			
	WB Exit 85 Off-Ramp	Α	В	9.3	13.5			

Figure 10 shows the LOS for the Existing 2014 conditions.

3.5 NO-BUILD 2020 TRAFFIC ANALYSIS

The 2020 No-Build scenario analyzes the conditions if there were no improvements made to the interchange. The results of the No-Build 2020 intersection analysis using Synchro 9.1 indicate that S-48 at I-26 is expected to operate at LOS F in the AM and PM peak hours.

Table 7 summarizes the LOS and delay for each of study intersections with detailed Synchro reports found in **Appendix F**.

Table 7: No-Build 2020 Intersection LOS and Delay

ID	Intersection	Traffic Control	Approach	HCM 2010 Level of Service (LOS)		Control Delay (sec/veh)	
				AM	PM	AM	PM
		Exit 91 (I-26 at \$	S-48)				
1	I-26 Eastbound Off Ramp / Crook Creek Road at S-48	Unsignalized	WB (AM)* EB (PM)*	F	F	900+	900+
2	I-26 Westbound Ramps at S-48	Signalized	-	F	F	126.0	433.7

^{*}Since vehicles from Crooked Creek Road can access the I-26 eastbound on ramp to S-48 (Columbia Avenue), the worst of the two minor approaches was reported.

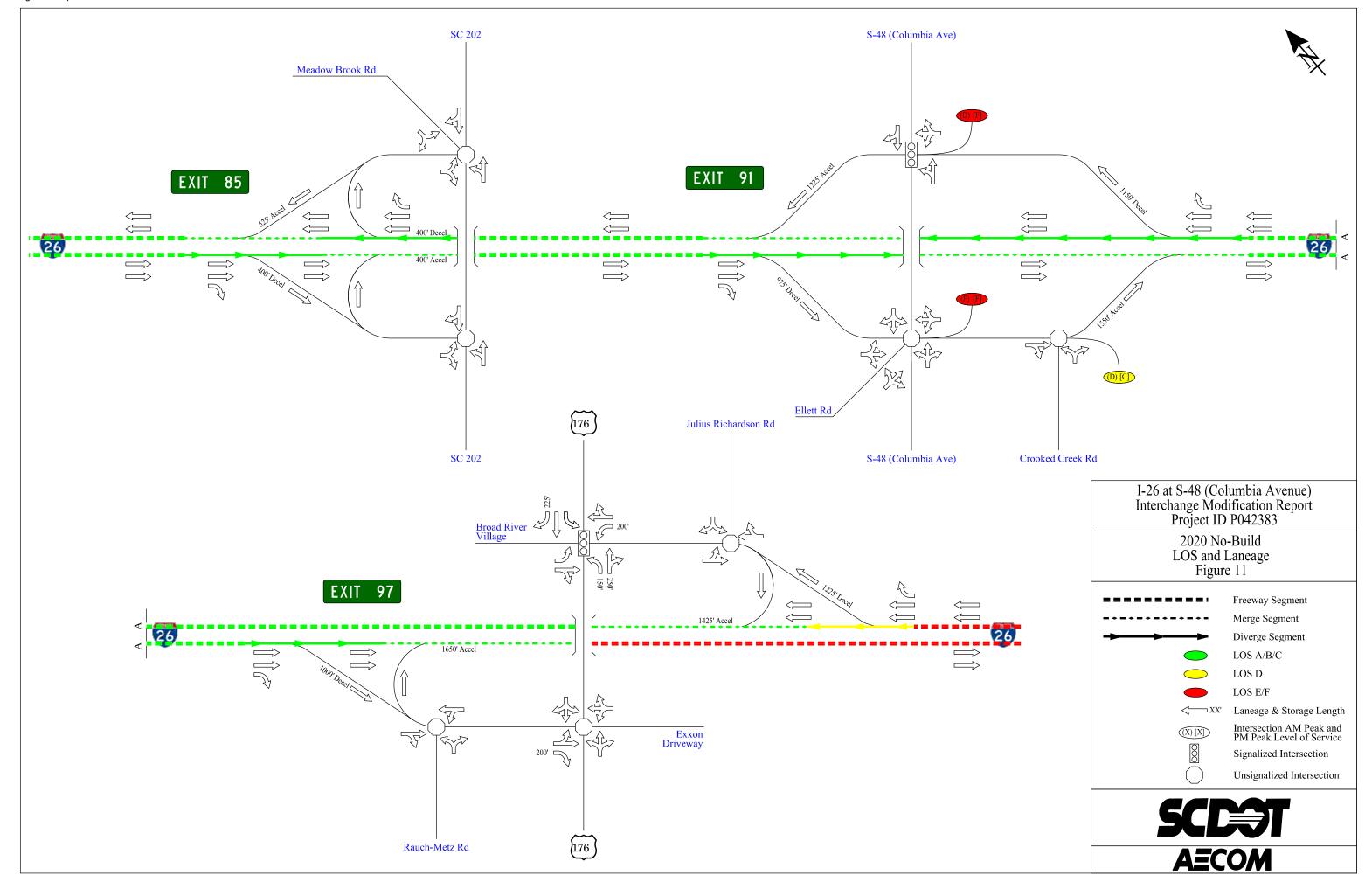

The results of the 2020 No-Build Freeway / Merge / Diverge analysis using Highway Capacity Software (HCS) 2010 indicate that just east of Exit 97 (US 176), I-26 is expected to operate at LOS E in the AM peak hour (eastbound) and during the PM peak hour (westbound). In addition the I-26 eastbound merge area from Exit 97 is expected to operate at LOS D along with the I-26 westbound diverge area during the PM peak hour. All other freeway segment / merge / diverge analyses are operating at LOS C or better.

Table 8 summarizes the LOS and density for each merge / diverge area with detailed HCS reports found in **Appendix G**.

Table 8: No-Build 2020 Freeway / Merge / Diverge LOS and Density

Approach	Description	HCM 2010 Level of Service (LOS)		Density (pc/mi/ln)			
		AM	PM	AM	PM		
Freeway Segment							
	West of Exit 85	Α	В	10.9	13.5		
Cooth over d	Between Exit 85 and Exit 91	В	В	12.1	13.2		
Eastbound	Between Exit 91 and Exit 97	С	С	20.1	20.3		
	East of Exit 97	Е	D	40.9	27.6		
	East of Exit 97	В	E	15.9	38.4		
Manthau a	Between Exit 91 and Exit 97	В	С	13.5	20.5		
Westbound	Between Exit 85 and Exit 91	Α	В	7.9	11.9		
	West of Exit 85	Α	В	8.2	11.5		
	Merge Area						
	EB Exit 85 On-Ramp	В	В	17.0	18.3		
Eastbound	EB Exit 91 On-Ramp	В	В	18.0	18.2		
	EB Exit 97 On-Ramp	D	С	30.8	24.3		
	WB Exit 97 On-Ramp	В	В	12.1	19.6		
Westbound	WB Exit 91 On-Ramp	Α	В	6.9	11.6		
	WB Exit 85 On-Ramp	В	В	11.7	15.5		
	Diverge Area						
	EB Exit 85 Off-Ramp	В	В	14.7	18.0		
Eastbound	EB Exit 91 Off-Ramp	В	В	11.1	12.5		
	EB Exit 97 Off-Ramp	С	С	20.3	20.6		
	WB Exit 97 Off-Ramp	В	D	13.6	31.6		
Westbound	WB Exit 91 Off-Ramp	В	В	10.6	18.8		
	WB Exit 85 Off-Ramp	В	В	10.8	16.0		

Figure 11 shows the LOS for the No-Build 2020 conditions.

3.6 NO-BUILD 2040 TRAFFIC ANALYSIS

The 2040 No-Build scenario analyzes the conditions if there were no improvements made to the interchange. The results of the No-Build 2040 intersection analysis using Synchro 9.1 indicate that S-48 at I-26 is expected to continue to operate at LOS F in the AM and PM peak hours. **Table 9** summarizes the LOS and delay for each of study intersections with detailed Synchro reports found in **Appendix H**.

Table 9: No-Build 2040 Intersection LOS and Delay

ID	Intersection	Traffic Control	Approac h	HCM 2010 Level of Service (LOS)		Control Delay (sec/veh)		
				AM	PM	AM	PM	
Exit 91 (I-26 at S-48)								
1	I-26 Eastbound Off Ramp / Crook Creek Road at S-48	Unsignalized	WB (AM)* EB (PM)*	F	F	900+	900+	
2	I-26 Westbound Ramps at S-48	Signalized	-	F	F	247.4	900+	

^{*}Since vehicles from Crooked Creek Road can access the I-26 eastbound on ramp to S-48 (Columbia Avenue), the worst of the two minor approaches was reported.

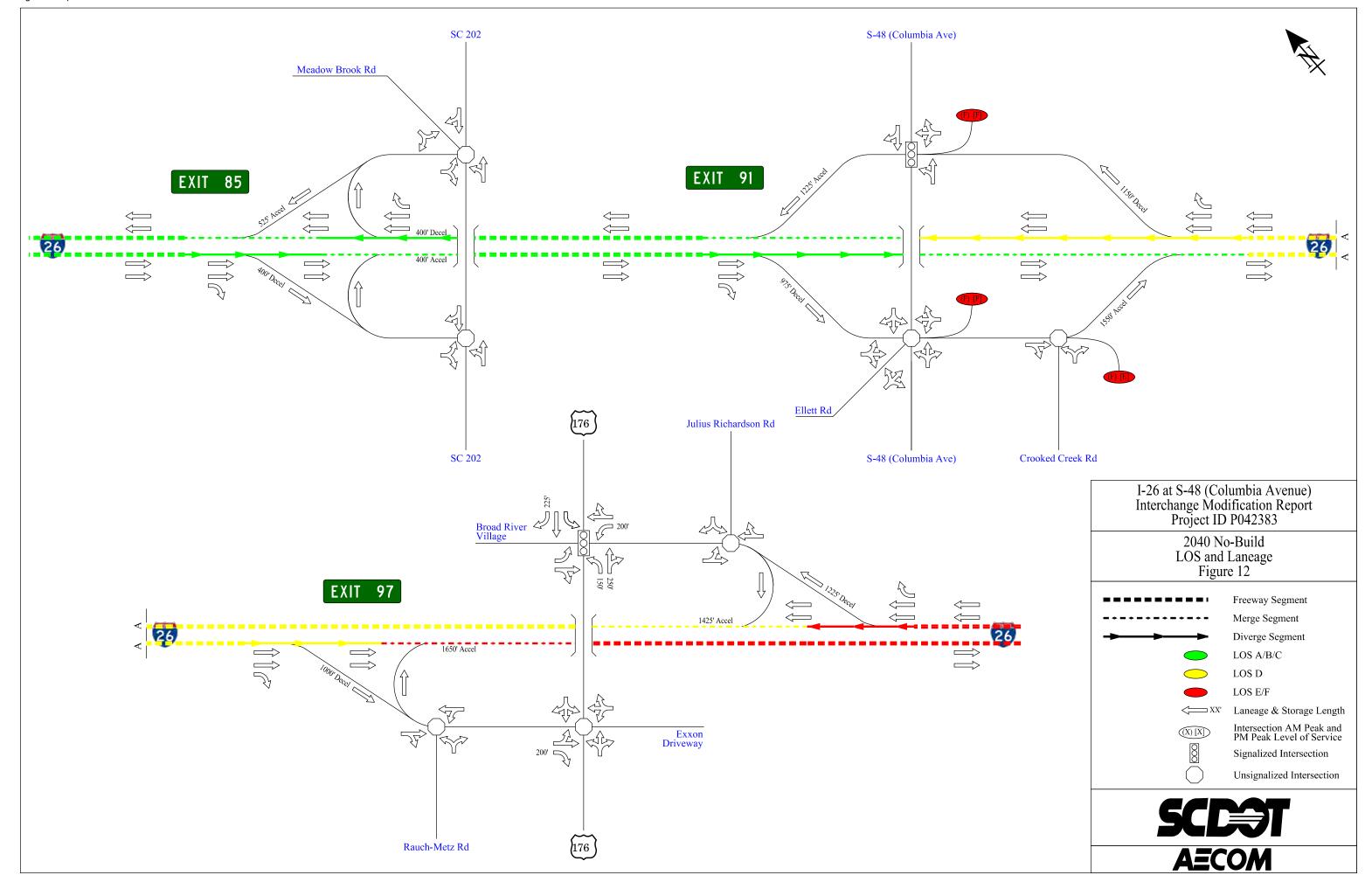

The results of the 2040 No-Build Freeway / Merge / Diverge analysis using Highway Capacity Software (HCS) 2010 indicate that just east of Exit 97 (US 176), I-26 is expected to operate at LOS F in the AM and PM peak hours. Between Exit 91 and Exit 97, the freeway is expected to operate at LOS D in the AM peak hour (eastbound) and PM peak hour (westbound). The PM hour diverge at Exit 91 is also LOS D. In addition the I-26 eastbound merge area from Exit 97 is expected to operate at LOS F along with the I-26 westbound diverge area during the PM peak hour. All other freeway segment / merge / diverge analyses are operating at LOS C or better.

Table 10 summarizes the LOS and density for each merge / diverge area with detailed HCS reports found in **Appendix I**.

Table 10: No-Build 2040 Freeway / Merge / Diverge LOS and Density

Approach	Description	HCM 2010 Level of Service (LOS)		Density (pc/mi/ln)				
		AM	PM	AM	PM			
Freeway Segment								
	West of Exit 85	В	С	15.8	19.5			
Cooth owned	Between Exit 85 and Exit 91	В	С	17.5	19.1			
Eastbound	Between Exit 91 and Exit 97	D	D	31.3	33.0			
	East of Exit 97	F	F	105.3	50.3			
	East of Exit 97	С	F	23.3	91.3			
VV a a the accord	Between Exit 91 and Exit 97	С	D	19.5	32.4			
Westbound	Between Exit 85 and Exit 91	В	В	11.1	17.1			
	West of Exit 85	В	В	11.5	16.5			
	Merge Area							
	EB Exit 85 On-Ramp	С	С	23.0	24.7			
Eastbound	EB Exit 91 On-Ramp	С	С	26.2	27.2			
	EB Exit 97 On-Ramp	F	F	42.0	34.7			
	WB Exit 97 On-Ramp	В	D	18.6	28.3			
Westbound	WB Exit 91 On-Ramp	В	В	10.6	17.4			
	WB Exit 85 On-Ramp	В	С	15.6	21.3			
	Diverge Area							
	EB Exit 85 Off-Ramp	С	С	20.9	25.1			
Eastbound	EB Exit 91 Off-Ramp	В	В	17.8	19.5			
	EB Exit 97 Off-Ramp	D	D	29.7	30.7			
	WB Exit 97 Off-Ramp	С	F	21.5	44.2			
Westbound	WB Exit 91 Off-Ramp	В	D	17.7	28.3			
	WB Exit 85 Off-Ramp	В	С	15.0	22.5			

Figure 12 shows the LOS for the 2040 No-Build Conditions

3.7 BUILD 2020 TRAFFIC ANALYSIS

The 2020 Build scenario analyzes the conditions for three-interchange alternatives at Exit 91. For all three Alternatives, the following changes were included in the 2020 Build scenario:

- A New Frontage Road approximately 1000 feet to the south of the I-26 eastbound ramps was included to carry the traffic of the proposed Chapin Technology Park. The new Frontage Road was assumed to be a signalized intersection.
- Ellet Road (old frontage road) was removed in the Build scenario. In the Build scenario,
 Ellet Road traffic redistributed and added to the New Frontage Road traffic.
- Crooked Creek Road was realigned to connect to the New Frontage Road intersection with S-48. In the Build scenario, it will not have direct access to the I-26 EB on ramp.
 Crooked Creek Road traffic was redistributed and added to the Frontage Road traffic.

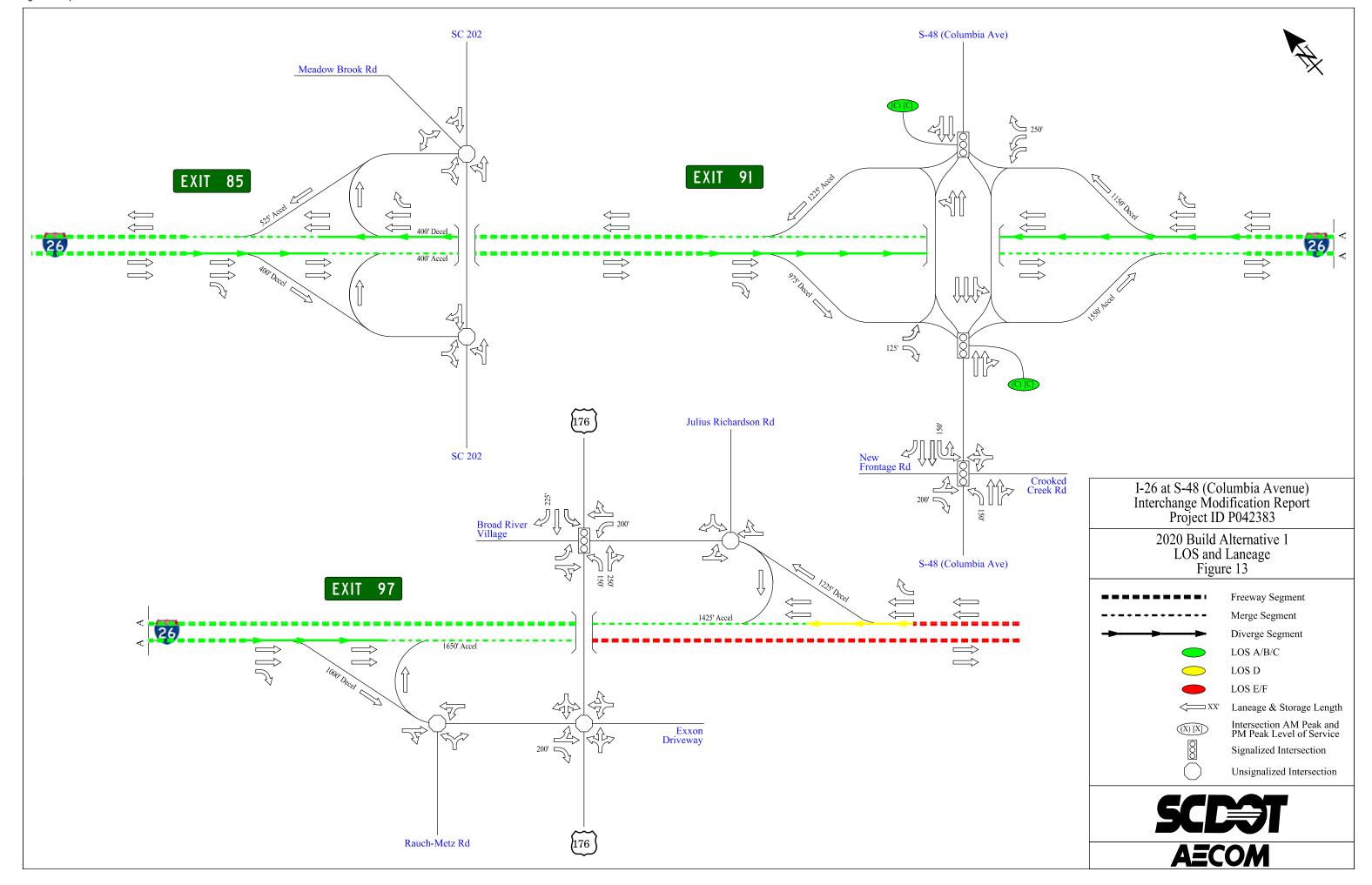
The results of the Build 2020 analysis using Synchro 9.1 indicate that two of three alternatives are expected to operate at LOS C of better. Alternative 1 (DDI) is expected to have signals at both ramps; therefore, the LOS is balanced at both intersections to obtain proper signals timing. Alternative 2 (Partial Cloverleaf) has an expected LOS A at the I-26 eastbound ramps because no signal is recommended at the I-26 westbound ramps and signal can operate independently. Alternative 3 (Dual Roundabouts) is expected to operate at LOS F for the westbound ramps during the PM peak hour; therefore, it should not be considered as a viable alternative.

Table 11 summarizes the LOS and delay for each of study intersections with detailed Synchro reports found in **Appendix J and K**. Detailed Sidra output reports are found in **Appendix N**.

HCM 2010 Level of **Control Delay** Traffic (sec/veh) Service ID Intersection **Approach** Control (LOS) **AM** PM AM PM Exit 91 (I-26 at S-48) - Diverging Diamond Interchange - Alt 1 1 I-26 Eastbound Ramps at S-48 Signalized С С 20.9 22.3 С 21 I-26 WB Ramps at S-48 Signalized В 17.2 23.6 22 S-48 at I-26 WB Off Ramp Signalized С В 20.5 16.9 Exit 91 (I-26 at S-48) – Partial Cloverleaf – Alt 2 1 I-26 Eastbound Ramps at S-48 Signalized 4.1 4.7 Α Α 2 S-48 at I-26 WB Off Ramp WB В С 12.7 19.8 Unsignalized

Table 11: Build 2020 Intersection LOS and Delay

The results of the 2020 Build Freeway / Merge / Diverge analysis using Highway Capacity Software (HCS) 2010 indicate that just east of Exit 97 (US 176), I-26 is expected to operate at LOS E in the AM peak hour (eastbound) and during the PM peak hour (westbound). In addition


the I-26 eastbound merge area from Exit 97 is expected to operate at LOS D along with the I-26 westbound diverge area during the PM peak hour. All other freeway segment / merge / diverge analyses are operating at LOS C or better.

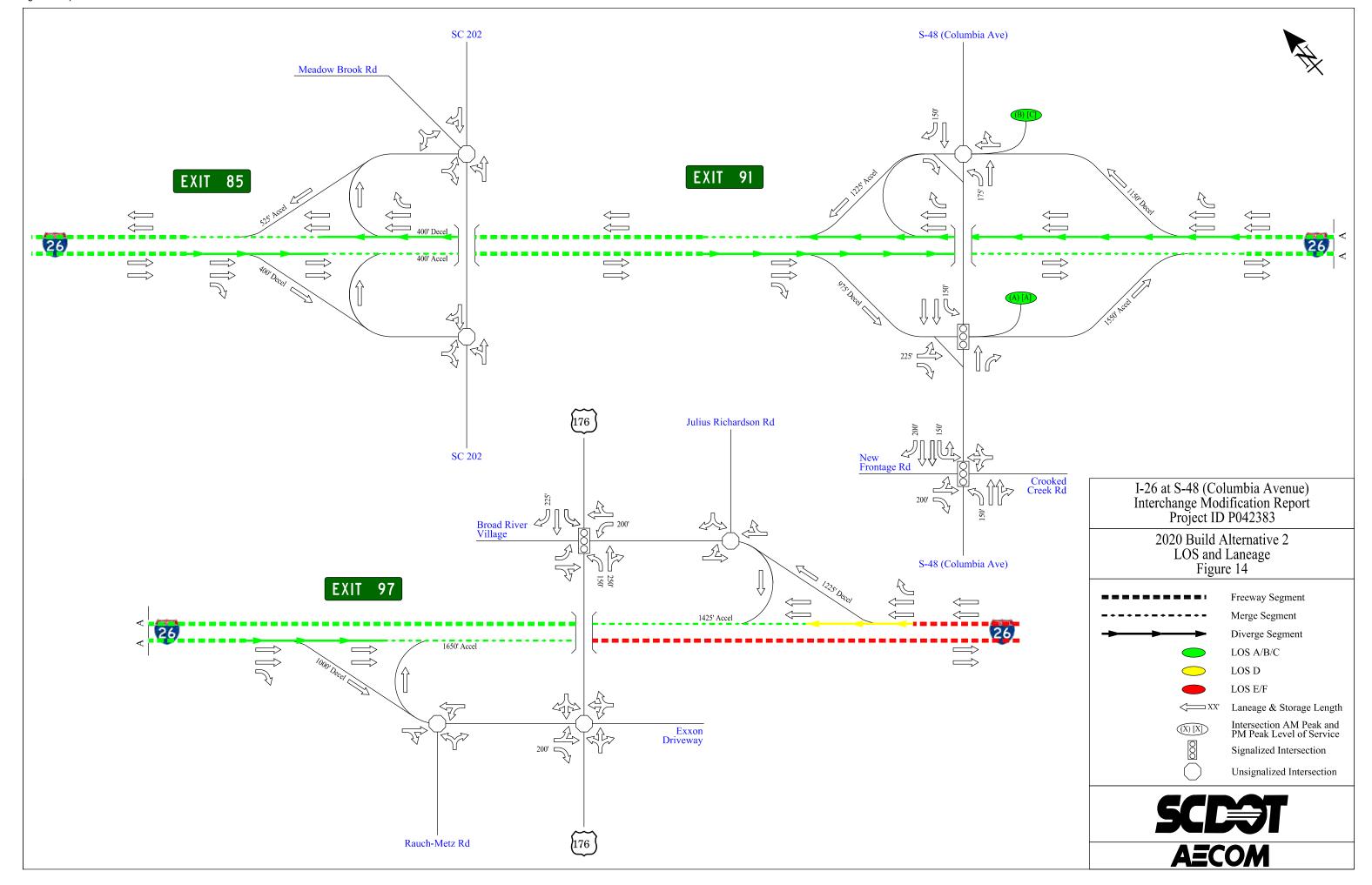

Table 12 summarizes the LOS and density for each merge / diverge area with detailed HCS reports found in **Appendix G**.

Table 12: Build 2020 Freeway / Merge / Diverge LOS and Density

Approach	Description	HCM 2010 Level of Service (LOS)		Density (pc/mi/ln)			
		AM	PM	AM	PM		
Freeway Segment							
	West of Exit 85	Α	В	10.9	13.5		
Cooth over d	Between Exit 85 and Exit 91	В	В	12.1	13.2		
Eastbound	Between Exit 91 and Exit 97	С	С	20.1	20.3		
	East of Exit 97	Е	D	40.9	27.6		
	East of Exit 97	В	Е	15.9	38.4		
Westbound	Between Exit 91 and Exit 97	В	С	13.5	20.5		
vvestbound	Between Exit 85 and Exit 91	Α	В	7.9	11.9		
	West of Exit 85	Α	В	8.2	11.5		
Merge Area							
	EB Exit 85 On-Ramp	В	В	17.0	18.3		
Eastbound	EB Exit 91 On-Ramp	В	В	18.0	18.2		
	EB Exit 97 On-Ramp	D	С	30.8	24.3		
	WB Exit 97 On-Ramp	В	В	12.1	19.6		
Westbound	WB Exit 91 On-Ramp	Α	В	6.9	11.6		
	WB Exit 85 On-Ramp	В	В	11.7	15.5		
	Diverge Area						
	EB Exit 85 Off-Ramp	В	В	14.7	18.0		
Eastbound	EB Exit 91 Off-Ramp	В	В	11.1	12.5		
	EB Exit 97 Off-Ramp	С	С	20.3	20.6		
	WB Exit 97 Off-Ramp	В	D	13.6	31.6		
	WB Exit 91 Off-Ramp – Alt 1	В	В	10.6	18.8		
Westbound	WB Exit 91 Off- Ramp – Alt 2	В	В	10.6	16.3		
	WB Exit 91 Off Loop Ramp – Alt 2	А	В	9.0	18.8		
	WB Exit 85 Off-Ramp	В	В	10.8	16.0		

Figure 13 and 14 shows the LOS for the 2020 Build Conditions for Alternative 1 and 2.

3.8 BUILD 2040 TRAFFIC ANALYSIS

The 2040 Build scenario analyzes the conditions for three-interchange alternatives at Exit 91. For three Alternatives, the following changes were included in the 2040 Build scenario:

- A New Frontage Road approximately 1000 feet to the south of the I-26 eastbound ramps was included to carry the traffic of the proposed Chapin Technology Park. The new Frontage Road was assumed to be a signalized intersection.
- Ellet Road (old frontage road) was removed in the Build scenario. In the Build scenario,
 Ellet Road traffic redistributed and added to the New Frontage Road traffic.
- Crooked Creek Road was realigned to connect to the New Frontage Road intersection with S-48. In the Build scenario, it will not have direct access to the I-26 EB on ramp.
 Crooked Creek Road traffic was redistributed and added to the Frontage Road traffic.

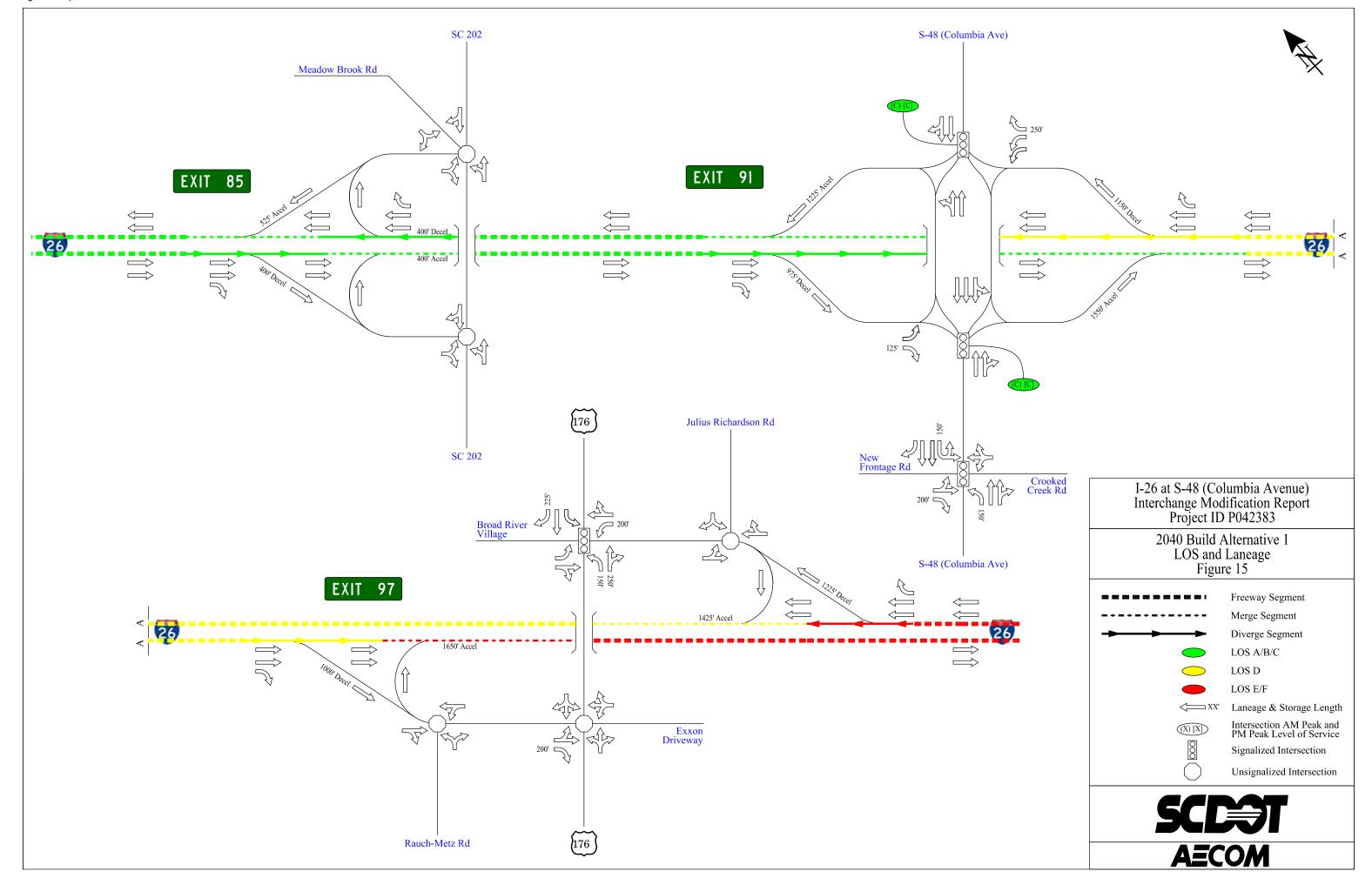
The results of the Build 2040 analysis using Synchro 9.1 indicate that two of three alternatives are expected to operate at LOS C of better. Alternative 1 (DDI) is expected to have signals at both ramps; therefore, the LOS is balanced at both intersections to obtain proper signals timing. Alternative 2 (Partial Cloverleaf) has an expected LOS A at the I-26 eastbound ramps because no signal is recommended at the I-26 westbound ramps and signal can operate independently. Alternative 3 (Dual Roundabouts) is expected to operate at LOS F for the westbound ramps during the PM peak hour; therefore, it should not be considered as a viable alternative.

Table 13 summarizes the LOS and delay for each of study intersections with detailed Synchro reports found in **Appendix L and M**. Detailed Sidra output reports are found in **Appendix N**.

HCM 2010 Level of **Control Delay** Traffic (sec/veh) Service ID Intersection **Approach** Control (LOS) PM AM PM AM Exit 91 (I-26 at S-48) - Diverging Diamond Interchange - Alt 1 1 I-26 Eastbound Ramps at S-48 Signalized С С 24.3 25.1 С С 21 I-26 WB Ramps at S-48 Signalized 26.6 29.2 22 S-48 at I-26 WB Off Ramp Signalized В В 19.4 16.9 Exit 91 (I-26 at S-48) – Partial Cloverleaf – Alt 2 1 I-26 Eastbound Ramps at S-48 Signalized 4.2 5.0 Α Α Unsignalized 2 S-48 at I-26 WB Off Ramp WB В С 13.3 21.0

Table 13: Build 2040 Intersection LOS and Delay

The results of the 2040 Build Freeway / Merge / Diverge analysis using Highway Capacity Software (HCS) 2010 indicate that just east of Exit 97 (US 176), I-26 is expected to operate at LOS F in the AM and PM peak hours. Between Exit 91 and Exit 97, the freeway is expected to


operate at LOS D in the AM peak hour (eastbound) and PM peak hour (westbound). The PM hour diverge at Exit 91 is also LOS D. In addition the I-26 eastbound merge area from Exit 97 is expected to operate at LOS F along with the I-26 westbound diverge area during the PM peak hour. All other freeway segment / merge / diverge analyses are operating at LOS C or better.

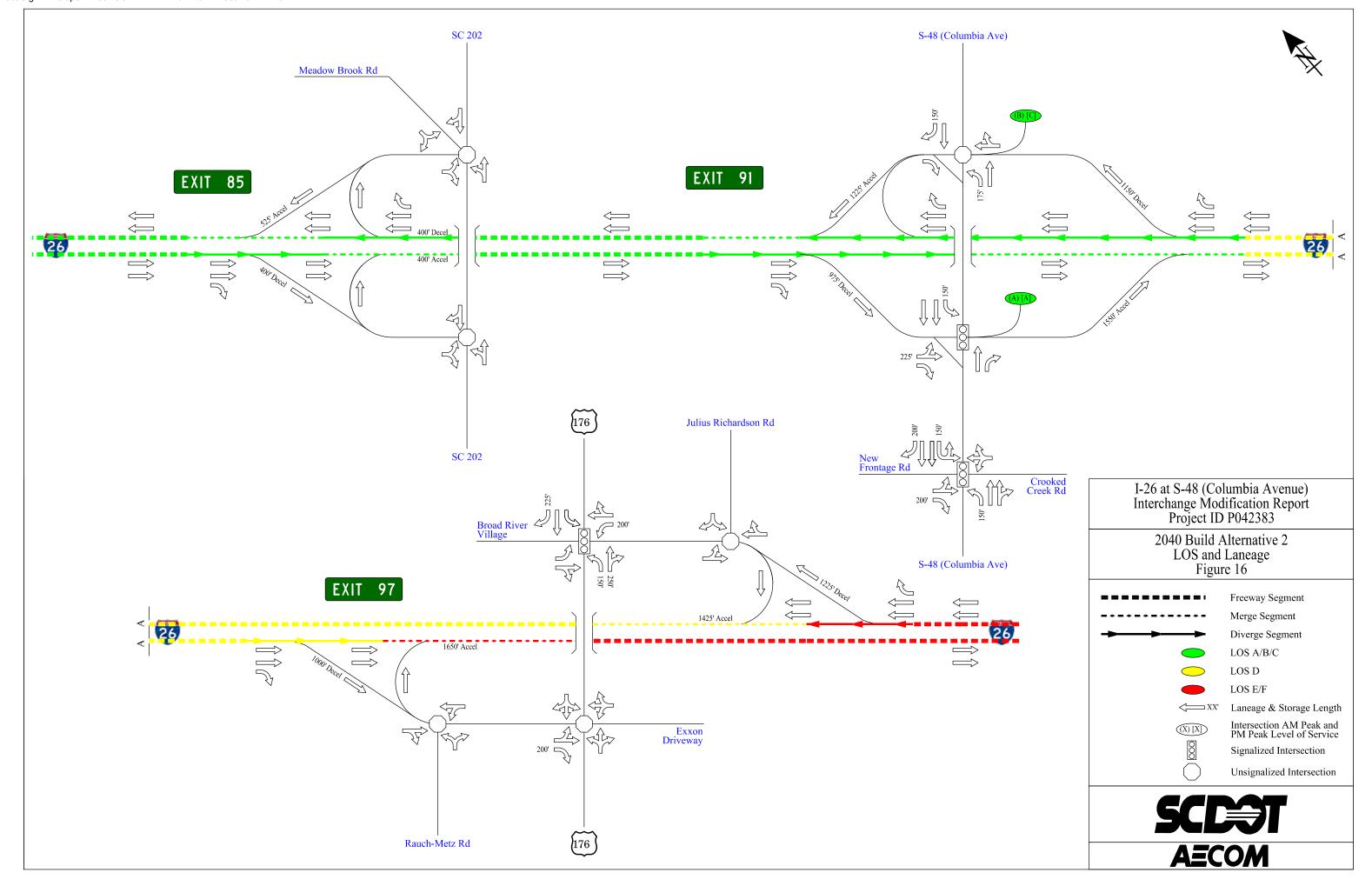

Table 14 summarizes the LOS and density for each merge / diverge area with detailed HCS reports found in **Appendix I**.

Table 14: Build 2040 Freeway / Merge / Diverge LOS and Density

Approach	Description	HCM 2010 Level of Service (LOS)			Density (pc/mi/ln)		
		AM	PM	AM	PM		
Freeway Segment							
	West of Exit 85	В	С	15.8	19.5		
_ Between Exit 85 and Exit 91			С	17.5	19.1		
Eastbound	Between Exit 91 and Exit 97	D	D	31.3	33.0		
	East of Exit 97	F	F	105.3	50.3		
	East of Exit 97	С	F	23.3	91.3		
Mache et le d	Between Exit 91 and Exit 97	С	D	19.5	32.4		
Westbound	Between Exit 85 and Exit 91	В	В	11.1	17.1		
West of Exit 85		В	В	11.5	16.5		
	Merge Area						
	EB Exit 85 On-Ramp	С	С	23.0	24.7		
Eastbound EB Exit 91 On-Ramp		С	С	26.2	27.2		
	EB Exit 97 On-Ramp	F	F	42.0	34.7		
	WB Exit 97 On-Ramp	В	D	18.6	28.3		
Westbound	WB Exit 91 On-Ramp	В	В	10.6	17.4		
	WB Exit 85 On-Ramp	В	С	15.6	21.3		
	Diverge Area						
	EB Exit 85 Off-Ramp	С	С	20.9	25.1		
Eastbound	EB Exit 91 Off-Ramp	В	В	17.8	19.5		
	EB Exit 97 Off-Ramp	D	D	29.7	30.7		
	WB Exit 97 Off-Ramp	С	F	21.5	44.2		
	WB Exit 91 Off-Ramp – Alt 1	В	D	17.7	28.3		
Westbound	WB Exit 91 Off- Ramp – Alt 2	В	Α	10.6	6.7		
[WB Exit 91 Off Loop Ramp – Alt 2	В	С	16.1	25.8		
	WB Exit 85 Off-Ramp	В	С	15.0	22.5		

Figure 15 and 16 shows the LOS for the 2040 Build Conditions for Alternative 1 and 2.

4.0 VISSIM ANALYSIS

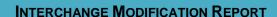
Simulation modeling is a very useful tool for designing improvements to the roadway system. It enables engineers and planners to predict and compare the outcomes of both No-Build and Build alternatives. For this project VISSIM 7.0 software was selected for the traffic operational analysis due to its powerful multi-model modeling capabilities. VISSIM is stochastic traffic simulation software that uses the psycho-physical driver behavior model developed by R. Wiedemann. It combines a perceptual model of the driver with a vehicle model. Every driver with his or her specific behavior characteristics is assigned to a specific vehicle. As a result, the driver behavior corresponds to the technical capabilities of his vehicle. In addition, the optional 3D visualization capability makes it easier to visualize the traffic flow patterns in the corridor. As a result the analyst can see the issues in the model and propose the appropriate solution

4.1 MODEL DEVELOPMENT

The following subsections summarize the data collection, field observations, traffic assignment, and other relevant inputs that were required for the development of the VISSIM models. First, the existing condition models were developed and calibrated, which then served as the base for the development of the future year No-Build and Build model networks.

4.1.1 Geometric Data

To assist in coding of the model network, aerial photography was obtained using VISSIM 7's built-in Bing Maps aerial feature. In addition, Google Maps was also used to for the geometrical information of the study corridor. Lane configurations were initially taken from the aerial pictures and confirmed with the field observations.


Grades (gradient) are an important element of the microsimulation models as they directly impact the vehicle acceleration and deceleration parameters. It is particularly very important for a heavy truck's acceleration and deceleration travelling at the higher speed. The field observations data suggested that grades are very slight in the study area. The study team utilized United States Geological Survey (USGS)¹ data to obtain grades for the model segments.

4.1.2 Traffic Control Data

4.1.2.1 Signal Controllers

VISSIM can model signalized intersections using either the built-in fixed-time control or various other external signal control logic formats. Among the available external logic formats is the Ring Barrier Controller (RBC), which was used in this model at the signalized intersection. The settings on this controller type are saved to an external data file with the extension *.rbc.

¹ http://viewer.nationalmap.gov/basic/

It should be noted that in the 2014, 2020 No-Build and 2040 No-Build scenarios the signals were coded as RBC – Actuated Uncoordinated.

For the 2020 and 2040 Build AM and PM scenarios, the signals on S-48 (Columbia Avenue) interchange (DDI) were coded as RBC- Actuated Coordinated. In addition, the signal at I-26 WB On & Off Ramps and US-176 are coded as Actuated Uncoordinated.

4.1.2.2 Signal Timings

Traffic signal timing plans for the two signalized intersections; I-26 westbound On-Off Ramps & Columbia Avenue intersection and I-26 WB On-Off Ramps & Columbia Avenue intersection were obtained from the South Carolina Department of Transportation. However, the plans only had minimum, maximum, yellow, red times and phase information. Based on this, 2014 AM and PM peak hour Synchro models were developed and optimized to calculate the splits and cycle lengths. Split and cycle length information was entered into the VISSIM models.

Similarly, 2020 and 2040 AM and PM peak hour No-Build and Build synchro models were developed to obtain the signal timing information, which was then used in the VISSIM models.

4.1.2.3 Stop Signs

Stop controlled intersections are modeled in VISSIM using a combination of stop signs and priority rules. The stop sign and stop line of the priority rule define the location at which vehicles must stop. The amount of time a vehicle is stopped is determined by the time distribution assigned to the respective vehicle class. In the absence of time distributions, a vehicle will stop for one time step. Priority rules are implemented to establish the minimum gap time and headway at which the stopped vehicle may proceed into the receiving traffic stream. Stop and yield signs were coded based on the aerial data.

4.1.3 Speed Data

The posted speed limits data on the roadways were collected from Google Maps' street view function. For the existing year model calibration, the average speed data for section along the interstate corridor was collected from INRIX. This data was used to develop the desired speed distribution for the I-26 segments. The desired speed distribution for the turning vehicles at an intersection was assumed to be 17 MPH and 14 MPH for cars and heavy vehicles respectively with a 1.5 MPH of standard deviation.

Table 15: Speed Distribution

SD No	Speed Limit (MPH)	Min	Max	15%	85%
3	15	10	20		
5	25	20	30		
7	35	30	40		
8	40	35	45		
9	45	40	50		
10	50	45	55		
15	65	40	75	60	70
18	65	60	85	70	78.8

Desired Speed Decision points are used for permanent speed changes within the network and are coded at locations where the speed change would typically occur (location of speed signs).

A new series of desired speed distributions are assigned to each vehicle class at the Desired Speed Decision point. Therefore, as a vehicle passes over a decision point, its speed is adjusted according to the new distribution.

Reduced Speed Areas were used to model short sections with reduced speeds (curves or turns). Similar to the Desired Speed Decision points, a new set of desired speed distributions (in this case 'reduced' speeds) are assigned to each vehicle class to account for slower speeds within the reduced speed area. However, unlike the Desired Speed Decision Point, when encountering a Reduced Speed Area, each vehicle begins to decelerate in advance to reach the lower desired speed as it enters the defined area. After leaving the reduced speed area, the vehicle returns to its actual desired speed.

The Reduced Speed Areas coded in the model correspond to turns (left and right) and locations that because of their geometry will impose a mandatory reduction on the speed of vehicles, independently of their originally desired speed.

4.1.4 Traffic Input

VISSIM supports two different forms of vehicle assignments; Dynamic and Static. In dynamic assignment, the vehicle travels from its origin to designation based on the best available route. Parking lots are used as the origin and destination points and generally there are multiple routes between each origin and destination.

Static assignment assumes that the vehicle will follow an assigned path or route from its origin to destination irrespective of the friction or cost. Route is a sequence of links and connectors from a routing decision point to the destination(s).

The study corridor does not have multiple routes option i.e. for a vehicle there is only one route available to travel between any origin and destination. Hence, it was determined that the static assignment would be the most suitable to replicate the existing conditions. Each vehicle input source on I-26 and cross-streets had its routing decision point. Route stretched to each on and off-ramp followed by another routing decision (origin) to eventually take the vehicles through interchange to reach its destination. No vehicles are taken out or added to the network automatically; therefore, it is important that balanced volume flows are entered.

4.1.4.1 Traffic Composition

The default vehicle types available in VISSIM are Car, HGV (truck), Bus, Tram (transit), Bike, and Pedestrian. These can be used to define traffic composition for a microsimulation model. For the purpose of this study, only two default vehicle types; Car and HGV (truck) were utilized. Traffic compositions are the proportions of each vehicle type present in each of the vehicle input sources. Vehicle Inputs are time variable traffic volumes entered at the source node. For the modeling purpose, I-26 (East and West ends of the model) and the cross-streets were defined as source nodes.

4.1.4.2 Exiting Condition Volumes

The 2014 Existing Condition AM and PM peak hour turning movement volumes were developed from the (2014) collected counts. Most of the collected approach and receiving volumes were balanced. However, at some locations where the approach and receiving volumes were off, minor adjustments were done to get the balanced volumes. No vehicles were taken out or added to the network automatically; therefore, it was important that balanced volume flows were entered.

4.1.4.3 2020 and 2040 No-Build and Build Volumes

It was assumed that in 2020 or 2040 the traffic pattern i.e. origin and destination would remain unchanged between the No-Build and Build scenarios. Hence, the No-Build and Build condition traffic volumes were kept consistent.

4.1.5 Driving behavior Parameters

During the simulation, the driver behavior parameters are used to guide the vehicles through the model network. VISSIM uses five driving behavior models, out of which only two; Urban (Motorized) and Freeway (Free Lane Selection) were used for the development of the base year model network. The Urban (Motorized) parameter was used to model surface streets within the network. The Freeway (Free Lane Selection) parameter was used to model the freeway facilities within the project network.

4.1.5.1 Data Limitations

There were a few limitations associated with the collected data. Limitations and relevant logical solution are listed below:

• Traffic Signal Data:

- Signal plans were obtained from the SCDOT, however, the signal timing, splits and offsets were not available.
 - VISSIM (RBC controller) requires various signal parameter inputs. Using the information provided in the signal plan, Synchro models were developed to develop and optimized to generate the splits and timings.
 - Using the base year Synchro model, 2020 and 2040 No-Build Synchro models and signal timing data were developed.

Grade/Elevation Data:

Grade or Elevation is an important component of microsimulation as it can have a significant impact on the acceleration and deceleration parameter of a vehicle, especially on the heavy trucks. As mentioned in the Section 4.2 elevation data was obtained from the United States Geological Survey (USGS) and grades were calculated using the best engineering judgement. Grades were then applied to the model segments.

Traffic Volumes:

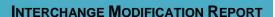
- At some locations, including on I-26 mainline, traffic counts were not available such as west of Exit 91. The only 24-hour traffic count on I-26 that was conducted just east of Exit 91.
 - Using the engineering judgement, logical existing and future traffic volumes were back calculated and balanced.

4.2 BASE YEAR MODEL CALIBRATION AND VISUAL VALIDATION

In order to achieve logical microsimulation results, it is imperative to calibrate and validate the model using observed field data. It should be noted that there are no universally accepted or definitive methods for performing model calibration and validation. The responsibility lies with the modeler to adopt and implement a suitable procedure depending upon the scope and budget of the project that will provide an acceptable level of confidence in the model results. Once the calibration targets are achieved, the same parameters can then be applied to the future year models.

4.2.1 Calibration Criteria

To ensure satisfactory calibration of the model, standards were used to establish targets regarding traffic flows and travel times. The targets of this calibration effort were set at the values included in Traffic Analysis Toolbox Volume III –Guidelines for Applying Traffic Microsimulation Modeling Software² published by the Federal Highway Administration (FHWA) shown below:


Criteria and Measures	Calibration Acceptance Targets
Hourly Flows, Model Versus Observed	
Individual Link Flows	
Within 15%, for 700 veh/h < Flow < 2700 veh/h	> 85% of cases
Within 100 veh/h, for Flow < 700 veh/h	> 85% of cases
Within 400 veh/h, for Flow > 2700 veh/h	> 85% of cases
Sum of All Link Flows	Within 5% of sum of all link counts
GEH Statistic < 5 for Individual Link Flows*	> 85% of cases
GEH Statistic for Sum of All Link Flows	GEH < 4 for sum of all link counts
Travel Times, Model Versus Observed	
Journey Times, Network	
Within 15% (or 1 min, if higher)	> 85% of cases
Visual Audits	
Individual Link Speeds	
Visually Acceptable Speed-Flow Relationship	To analyst's satisfaction
Bottlenecks	
Visually Acceptable Queuing	To analyst's satisfaction

GEH measure is a formula used in traffic modeling to compare two sets of traffic volumes (Observed and Modeled). Its mathematical formulation is similar to the Chi-Squared test, but it is not a true statistical test but rather an empirical formula. The formulation for the GEH Statistic is as follows:

$$GEH = \sqrt{\frac{2*(M-O)^2}{(M+O)}}$$

Where M represents model estimate volume and O represents field counts.

² http://ops.fhwa.dot.gov/trafficanalysistools/tat_vol3/vol3_guidelines.pdf, page64

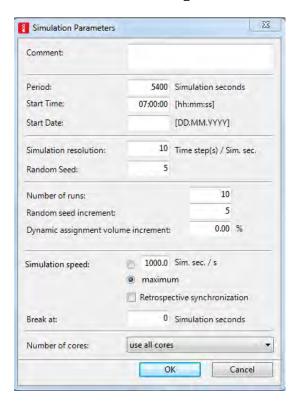
This statistic is typically used to offset the discrepancies that occur when using only simple percentages, as traffic volumes vary over a wide range. In other words, if using only percentages, small absolute discrepancies have no impact on large volumes but a large percent impact in smaller numbers, and vice versa. It has been shown that for traffic volumes smaller than 10,000 a five percent variation yields smaller numbers than a GEH of five. Beyond 10,000, five percent differences keep growing linearly whereas GEH=5 follows a decaying curve.

Based on the scope and purpose of this study it was determined that base year model calibration will be based on the link flows, travel time and speed criteria. For the link volume calibration, 2014 traffic counts and turning movements were used to compare with the model link volumes.

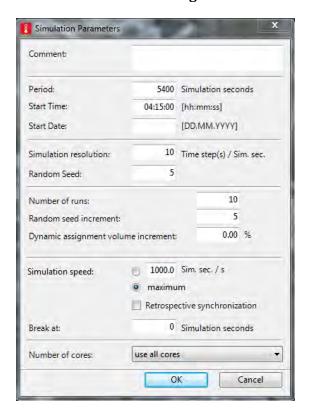
For the link speed comparison, it was recommended to use the INRIX speed data against the model link speeds. In the study area, INRIX only provided speeds on the I-26 links, therefore only I-26 model link speeds were used for the calibration and validation purposes. Data collection points were placed on I-26 corridor in areas upstream and downstream of merge and diverge at the locations of the INRIX speed data collection.

4.2.2 Simulation Setting and Random Seed Variation

The AM peak hour model was set run from 7:00-8:30 AM with 30 minutes of seeding time. Hence, the actual analysis period was 7:30-8:30AM. Similarly, the PM peak hour model was set to run from 4:15-5:45PM with 30 minutes of seeding time. The actual PM analysis period was from 4:45-5:45PM. The model was ran ten times starting with a random seed at five with five seed increments. Simulation parameter settings are pictorially shown on the following page.


4.2.3 Visual Validation

Visual validation of the models is an imperative step in the development and calibration of the model. It is essential for the modeler to perform a thorough visual validation to eliminate any coding errors and achieving logical results.


After coding, the models were ran and visually inspected multiple times. The errors pertaining to the lane change decision, yield, conflict area, etc. were then addressed to achieve realistic vehicle movements. The validation process was performed for all the existing, no-build and build models.

Simulation Settings - AM

Simulation Settings - PM

4.2.4 Calibration Results

2014 Existing Condition AM and PM peak hour models were run with the VISSIM's default simulation parameters settings. It was observed that with the default simulation parameters the models' link volumes were within the desired ranges for the calibration. However, the model link speeds were less than the observed INRIX speeds on the I-26 links. Hence, some minor adjustments to the desired speed distribution and speed curve were performed to account for the higher speeds observed in the INRIX data.

4.2.4.1 Link Volumes and Speed

A model is assumed to be reasonably calibrated, if:

- Link flows satisfy modeled versus observed flow thresholds for 85% of the individual links.
- Sum of all link flows is within 5% of sum of all link counts.
- 85% of the network link flows have a GEH less than 5.
- Model link speeds fall within ±2.5MPH of INRIX Speeds.

Table 16 and 17 shows overall calibration results under AM and PM peak hours.

Table 16: 2014 AM Peak Hour Calibration Results

Calibration Summary Speed Data						
MOE Criteria	Target	Actual	Calibrated			
Within Acceptable Range (±5 MPH of INRIX Speed)	90%	100.0%	Calibrated			
Within Desirable Range(±2.5 MPH of INRIX Speed)	75%	100.0%	Calibrated			
Flow	(Count) Data					
MOE Criteria	Target	Actual	Calibrated			
Individual Link Flow	85%	99.1%	Calibrated			
Sum of All Link Flows	5%	1.4%	Calibrated			
GEH Individual Link	85%	98.0%	Calibrated			
GEH - All Links	5.00	2.40	Calibrated			

Table 17: 2014 PM Peak Hour Calibration Results

Calibration Summary						
<u> </u>	peed Data	T	I			
MOE Criteria	Target	Actual	Calibrated			
Within Acceptable Range (±5 MPH of INRIX Speed)	90%	100.0%	Calibrated			
Within Desirable Range(±2.5 MPH of INRIX Speed)	75%	100.0%	Calibrated			
Flow	(Count) Data					
MOE Criteria	Target	Actual	Calibrated			
Individual Link Flow	85%	100.0%	Calibrated			
Sum of All Link Flows	5%	1.2%	Calibrated			
GEH Individual Link	85%	100.0%	Calibrated			
GEH - All Links	5.00	2.26	Calibrated			

4.2.4.2 Travel Time

A model is reasonably calibrated when the modeled travel times are within 15% (or one minute if higher) of the average field collected travel time for 85% of the cases. **Table 18** shows the AM and PM peak hour travel time calibration results.

Table 18: Travel Time Calibration Results

Time	Percentage	Calibrated
7:30 AM - 8:30 AM	100%	Calibrated
4:45 PM - 5:45 PM	100%	Calibrated

Percentage of Travel Times within 15% (or one minute)

4.3 MEASURES OF EFFECTIVENESS

4.3.1 95th Percentile (Worst Case) Methodology

For the AM and PM peak hourly analysis, *95 percent Worst Case Result method*³ as described in the FHWA Tool Box was utilized for the worst case (density) determination. The equation below shows the 95th percentile density equation:

95 percent Worst Result = M + 1.64 * S Where.

M = Mean observed result (weighted density) in the model runs;

S = Standard deviation of the result (weighted density) in the model runs

Weighted delay results from the 10 batch runs were compiled by each intersection. Further, average and standard deviation in the model runs were calculated. The resultant weighted delay was calculated utilizing the 95 percent worst case result method. Error! Reference source not found. **Table 19** below shows the 95th percentile delay calculation method.

Table 19: 95th Percentile Calculation Method

Time	Calibrated
Model Runs	Intersection Average Delay
Run 1	D1
Run 2	D2
Run 3	D3
Run 10	D16
Average Wt. Delay (D _a)	D _a = (D1+D2+D3++D10) / 10
St. Deviation (S _d)	S _d = Stand. Dev (D1, D2, D3,,D10)

_

³ http://ops.fhwa.dot.gov/trafficanalysistools/tat_vol3/Vol3_Guidelines.pdf page 77

4.3.2 Delay Reporting for Stop and Signal Controlled Intersections

Stop Controlled Intersection

Most of the stop controlled intersections in the study corridor are "1-Way Stop". Because the main approach is generally a free-flow with heavy traffic movement, the stop controlled movement is weighted out. As a result, even though the stop controlled approach operated at LOS E or F but overall the intersection reported as operating at LOS D or better. It was determined that for stop controlled intersections, worst approach delay should be reported.

Signalized (or Signal Controlled Intersection)

For the signal controlled intersections, the 95th percentile of the overall (weighted) delays were calculated.

MOEs for the all the No-Build and Build models are compiled in the following subsections.

4.3.3 2014 Existing Condition AM and PM Peak Hour MOEs

After the existing conditions VISSIM model was calibrated, the measures of effectiveness (MOEs) for existing conditions were obtained for the AM and PM peak hours.

Table 20 shows the intersection delay and Level of Service for the both the peak periods.

2014 Existing Condition AM PM Intersection Intersection Avg. Avg. Exit # Traffic **Delay Delay** Controller LOS* LOS* (Sec. / (Sec. / Veh.) Veh.) S-48 and I-26 WB Ramps Signalized 14.1 В 19.5 В 91 S-48 and I-26 EB Ramps Stop 14.5 В 19.7 C

Table 20: 2014 Existing AM / PM Peak Hour Delay and LOS (VISSIM)

4.3.4 2020 No-Build AM and PM Peak Hour MOEs

Table 21 shows the intersection delay and level of service for the AM and PM peak hours under 2020 No-Build scenario.

^{*}Delay and LOS for the stop controlled intersection is the worst case approach delay and LOS observed. It is not the overall delay and LOS for the stop controlled intersection.

INTERCHANGE MODIFICATION REPORT

Table 21: 2020 No-Build AM / PM Peak Hour Delay and LOS (VISSIM)

		2020 No-Build Condition						
Intersection		Intersection	AN		PI	N		
Intersection	Exit #	Traffic Controller	Avg. Delay (Sec. / Veh.)	LOS*	Avg. Delay (Sec. / Veh.)	LOS*		
S-48 and I-26 WB Ramps	91	Signalized	51.6	D	81.0	F		
S-48 and I-26 EB Ramps	91	Stop	>300.0	F	>300.0	F		

^{*}Delay and LOS for the stop controlled intersection is the worst case approach delay and LOS observed. It is not the overall delay and LOS for the stop controlled intersection.

4.3.5 2020 Build (DDI) AM and PM Peak Hour MOEs

In addition to the DDI project, the following changes were included in the 2020 Build scenario:

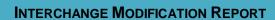

- A New Frontage was included to carry the traffic of the proposed future developments. It
 was connected to the Columbia Avenue around Shell Gas Station, south of the I-26 EB
 Ramps intersection. It coded and analyzed as a signalized intersection.
- Ellet Road was removed in the built scenario. In the build scenario, Ellet Road traffic redistributed and added to the New Frontage Road traffic.
- Crooked Creek Road was realigned to connect to the New Frontage Road intersection with Columbia Avenue. In the build scenario, it will not have direct access to the I-26 EB on ramp. Crooked Creek Road traffic was redistributed and added to the Frontage Road traffic.

Table 22 shows the intersection delay and level of service for the AM and PM peak hours under 2020 Build scenario. The build scenario would be a Diverging Diamond Interchange (DDI) at I-26 and Columbia Avenue interchange.

Table 22: 2020 Build (DDI) AM / PM Peak Hour Delay and LOS (VISSIM)

		2020 Build Condition						
Intersection		Intersection	AM		PI	VI		
	Exit #	Traffic Controller	Avg. Delay (Sec. / Veh.)	LOS*	Avg. Delay (Sec. / Veh.)	LOS*		
S-48 and I-26 WB Ramps	91	Signalized	15.5	В	16.3	В		
S-48 and I-26 EB Ramps	91	Signalized	12.0	В	12.6	В		

^{*}Delay and LOS for the stop controlled intersection is the worst case approach delay and LOS observed. It is not the overall delay and LOS for the stop controlled intersection.

4.3.6 2040 No-Build AM and PM Peak Hour MOEs

Table 23 shows the intersection delay and level of service for the 2040 No-Build AM and PM peak hour scenario.

Table 23: 2040 No-Build AM / PM Peak Hour Delay and LOS (VISSIM)

		2040 No-Build Condition						
Intersection		Intersection	АМ		РМ			
Intersection	Exit#	Traffic Controller	Avg. Delay (Sec. / Veh.)	LOS*	Avg. Delay (Sec. / Veh.)	LOS*		
S-48 and I-26 WB Ramps	91	Signalized	74.2	Е	90.9	F		
S-48 and I-26 EB Ramps	ا ق ا	Stop	>300.0	F	>300.0	F		

^{*}Delay and LOS for the stop controlled intersection is the worst case approach delay and LOS observed. It is not the overall delay and LOS for the stop controlled intersection.

4.3.7 2040 Build (DDI) AM and PM Peak Hour MOEs

In 2040 Build scenario, in addition to the DDI project, the following changes were included in the 2040 Build scenario:

- A New Frontage was included to carry the traffic of the proposed future developments. It
 was connected to the Columbia Avenue around Shell Gas Station, south of the I-26 EB
 Ramps intersection. It coded and analyzed as a signalized intersection.
- Ellet Road was removed in the built scenario. In the build scenario, Ellet Road traffic redistributed and added to the New Frontage Road traffic.
- Crooked Creek Road was realigned to connect to the New Frontage Road intersection with Columbia Avenue. In the build scenario, it will not have direct access to the I-26 EB on ramp. Crooked Creek Road traffic was redistributed and added to the Frontage Road traffic.

Table 24 shows the intersection delay and level of service for the 2040 Build AM and PM peak hour scenario.

Table 24: 2040 Build (DDI) AM / PM Peak Hour Delay and LOS (VISSIM)

		2040 Build Condition						
Intersection		Intersection	AM PM			VI		
intersection	Exit #	Traffic Controller	Avg. Delay (Sec. / Veh.)	LOS*	Avg. Delay (Sec. / Veh.)	LOS*		
S-48 and I-26 WB Ramps	91	Signalized	17.8	В	15.7	В		
S-48 and I-26 EB Ramps	91	Signalized	24.5	С	27.5	С		

^{*}Delay and LOS for the stop controlled intersection is the worst case approach delay and LOS observed. It is not the overall delay and LOS for the stop controlled intersection.

5.0 SUMMARY OF FINDINGS

The following is a summary of the results for the analysis of the project to provide interchange improvements at Exit 91 - S-48 (Columbia Avenue). As shown in this analysis, under the No-Build conditions, by 2020 the level of service begins to fail (LOS E/F) at the I-26 ramps. In the 2040 No-Build scenario, all intersections of concern at Exit 91 are at failing level of service conditions.

- 1. I-26 Eastbound Ramps at S-48
- 2. I-26 Westbound Ramps at S-48

The scenario in which the diverging diamond interchange alternative is constructed, the 2020 and 2040 Build conditions show an acceptable level of service (C or higher) at all intersections.

The HCS analysis of the freeway, merge, and diverge segments reach similar conclusions regarding acceptable levels of service. The freeway segments directly adjacent to Exit 91 in the Existing, No-Build, and Build scenarios operate at level of service D or better. Merge and diverge analysis at Exit 91 also indicates a level of service of D or better in the existing and 2020/2040 No-Build and Build years.

It should be noted that at Exit 97, to the East of Exit 91, intersections reach a failing level of service by 2020. Freeway segments reach failing conditions in 2040.

5.1 FINDINGS

2014 Existing Condition

The 2014 analysis results show that most of the intersections in the study area operate at LOS C or better.

2020 No-Build Condition

In the 2020 No-Build AM and PM scenarios, only a few stop controlled approaches operate at LOS D or better. The signalized intersections and stop controlled approaches listed below operate at a LOS E or worse.

- I-26 EB Ramps & S-48 Intersection; Stop Controlled Approach
- I-26 WB Ramps & S-48 Intersection; Signalized Intersection

2020 Build (DDI) Condition

In the 2020 Build (DDI) AM and PM scenarios, both the intersections on S-48 (Columbia Avenue) operate well at LOS B. The signalized intersections listed below operate at a LOS E or worse:

I-26 WB Off-Ramp & US-176; Signalized Intersection

2040 No-Build Condition

Under the 2040 No-Build condition the signalized intersections and stop controlled approaches listed below operate at a LOS E or worse:

INTERCHANGE MODIFICATION REPORT

- I-26 EB Ramps & S-48 Intersection; Stop Controlled Approach
- I-26 WB Ramps & S-48 Intersection; Signalized Intersection

2040 Build (DDI) Condition

All the signalized intersections on S-48 (Columbia Avenue) operate at LOS C or better.

5.2 CONCLUSION AND RECOMMENDATION

The traffic analysis presented in this report suggests that the proposed diverging diamond alternative at S-48 (Columbia Avenue) interchange will operate acceptably in both the 2020 and 2040 build scenarios and does not adversely impact the adjacent interchanges.

6.0 FEDERAL HIGHWAY ADMINISTRATION (FHWA) POLICY

It is in the national interest to maintain the Interstate System to provide the highest level of service on terms of safety and mobility. Adequate control of access is critical to providing such service. Therefore FHWA has developed policy points that must be addressed prior to granting a new or modified access point to the interstate system. The policy points were originally detailed in the Federal Register on October 22, 1990 955 FR 42670), and updated in the Federal Register: February 11, 1998 (Volume 63, Number 28). On August 27, 2009 FHWA published a new policy in the Federal Register (Volume 74, Number 165. The following section details how the proposed action meets the requirements for the new or revised access points to the existing Interstate System.

Policy Point #1: The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a)).

Interstate 26 is an east / west main route of the interstate highway system in the southeastern United States. It spans from US 17 in Charleston, South Carolina to US 23 in Kingsport, Tennessee. I-26 is a 4-lane divided highway with a posted speed limit of 70 mile per hour. S-48 (Columbia Avenue) is a two lane minor arterial that connects downtown Chapin with I-26 at Exit 91. The existing Exit 91 interchange is a diamond interchange approximately 20 miles from Columbia, South Carolina. The eastbound off ramp is under stop control while westbound off ramp is signalized. No turn lanes are present to / from I-26. Access management concerns include Ellett Road which is less than 100 feet south of the I-26 eastbound off ramp and Crooked Creek Road which intersects with I-26 eastbound on ramp.

Access management along S-48 is also expected to improve with the proposed DDI. There are plans to consolidate closely spaced driveways adjacent to the interchange termini ramps to one frontage road intersecting S-48 over 1000 feet south of the interchange under signal control.

The purpose of the interchange modification is to improve the operational efficiency and safety of the existing interchange configuration and to accommodate projected traffic volumes. Based on 2020 and 2040 projection traffic volumes, both interstate off-ramps are expected to operate at LOS F with the current interchange configuration. Safety concerns include I-26 westbound off ramp queuing onto I-26 and unsignalized traffic control for the I-26 eastbound off ramp.

Policy Point #2: The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a)).

The diverging diamond interchange and partial cloverleaf alternatives were analyzed as part of this report. Results from the analysis indicates both alternatives are expected to provide a LOS C or better for the 2040 projected design volumes. The preferred alternative was the diverging

diamond interchange due its right-of-way costs and location of the planned development north of the interchange. Ramp metering, mass transit, and HOV facilities are not warranted based on existing or design year volumes and are not expected to improve operations for this suburban interchange.

Policy Point #3: An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)).

Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

An operational analysis was performed for Existing 2014, Opening 2020, and Design 2040 years along I-26 between Exit 85 (SC 202) and Exit 97 (US 176). All mainline segments, merge and diverge ramp junctions as well as surface street intersection were studied. Synchro 9.1 was used for the intersections, HCS 2010 for the mainline segments and merge / diverge areas, and VISSIM 7.0 to model everything together.

The Existing 2014 traffic analysis indicates as shown in Figure 10 that majority of the study is operating at LOS C or better with following exceptions:

- US 176 at I-26 westbound off ramp (Exit 97)
- I-26 freeway segment east of Exit 97

The No-Build 2020 and 2040 traffic analysis indicates, as shown in Figure 11 and 12, that basically everything east of Exit 91 (S-48) is not operating at an acceptable LOS C. Please note the intersections on Exit 91 (S-48) are expected to operate at LOS F while the I-26 westbound segment prior to Exit 91 and off-ramp are projected to operate at LOS D.

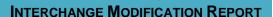
The Build 2020 and 2040 traffic analysis indicates, as shown in Figure 13 and 15, that overall operations at the interchange of I-26 at S-48 (Columbia Avenue) would be improved when comparing to the No-Build scenario. East of Exit 91 (S-48) would continue to operate at LOS D until Exit 97 where the LOS worsens to F due to capacity on the mainline. Operation at the intersections on the surface streets at Exit 97 would not be impacted with the proposed interchange modification due to the 6-mile distance to the study interchange and would continue to operate the same as in the No-Build scenario.

INTERCHANGE MODIFICATION REPORT

Policy Point #4: The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)).

The proposed interchange modification for this project would provide all relevant traffic movements at the I-26 and S-48 interchange. The proposed interchange design concept will meet or exceed all applicable SCDOT, AASHTO, and FHWA design standards.

It should be noted that the proposed design plans to remove the existing Crooked Creek Road access with the I-26 eastbound on ramp and realign it with S-48 (Columbia Avenue) to the south. In addition, the closely spaced Ellett Road just south of the I-26 eastbound off ramp is expected to be realigned with this new Crooked Creek Road.


Policy Point #5: The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93.

The proposed project is consistent with the COATS 2035 Long Range Transportation Plan, and lists the S-48 (Columbia Avenue) project as a Prioritized Road Widening Project. The project is also included as a system upgrade in SCDOT's Statewide Transportation Improvement Program (STIP) for Lexington County. The STIP covers all federally funded transportation improvements for which funding has been approved and that are expected to be undertaken in the six-year period the STIP covers. The fiscally-constrained STIP includes approximately \$13,000,000 for preliminary design services, right-of-way acquisition, and project construction through 2019. Full funding is reasonably anticipated to be available for its completion.

Policy Point #6: In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111).

There are currently no planned or programmed additional interchanges within the study area for the project or the expanded study area for analysis of the adjacent interchanges in the SCDOT STIP or the Central Midland Council of Governments (CMCOG) Long Range Plan.

In the event that a project to construct an interchange is initiated in the future it will also be subject to the FHWA policy for additional access to the Interstate System, and an Interchange Justification Report will be required.

Policy Point #7: When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d)).

The current report incorporates planned traffic volumes from two major developments in the area. The Chapin Technology Park (approved) and Chapin Commerce Village (planned). Chapin Technology Park is located south of the interchange along S-48 (Columbia Avenue) and Chapin Commerce Village (planned), located north of the interchange. Both development are planned generate a significant number of vehicles and were accounted for with the proposed design of diverging diamond interchange alternative. There have been a series of public meetings that have taken place.

<u>Policy Point #8:</u> The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111).

The proposed alternative is expected to have minimal impact on natural environment such was water quality, floodplains, farmland, and cultural resources as a result retrofitting the existing diamond to a diverging diamond interchange.

A draft Environmental Assessment (EA) is currently being prepared for SCDOT and submitted to FHWA. Effects on human and natural environment was assessed.

Approval of this IMR can only be given by FHWA with the completion of a successful NEPA document.

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX A

S-48 TRAFFIC PROJECTIONS MEMO

AECOM

10 Patewood Drive, Building VI, Suite 500 Greenville, SC 29615 T 864-234-3000; www.aecom.com

Memorandum

To: Mrs. Gaye Sprague, PE

Sprague & Sprague Consulting Engineers

From: Ryan Eckenrode, P.E., PTOE, Traffic Engineer, AECOM

Date: June 14, 2016

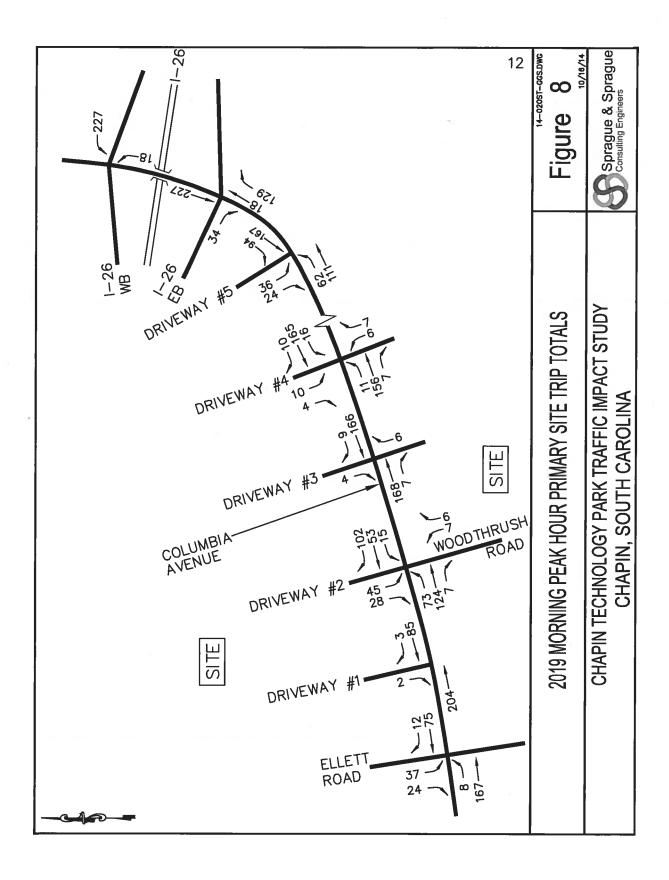
Reference: S-48 (Columbia Avenue) Corridor Improvement Project – Traffic Projections

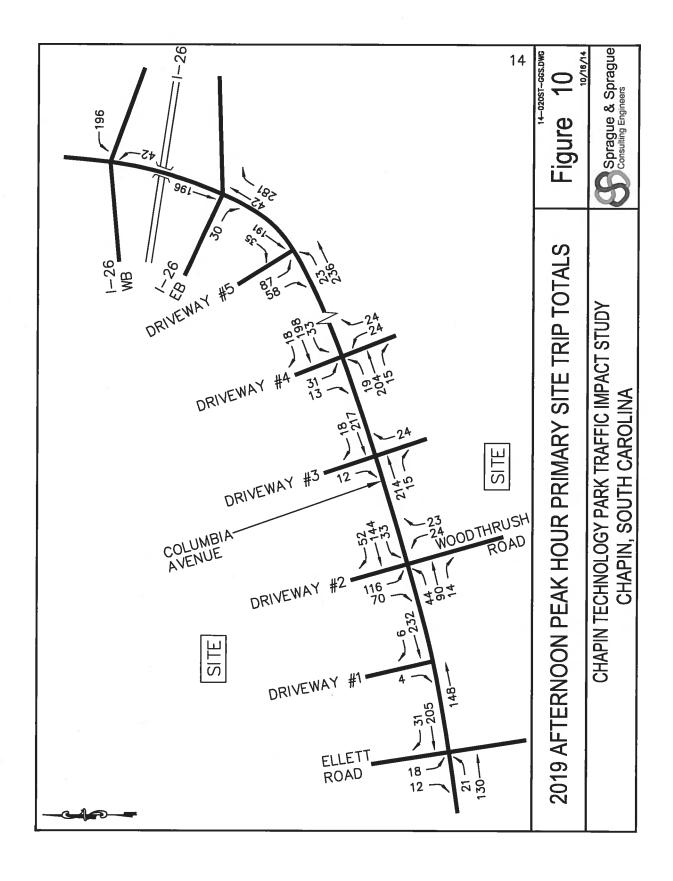
As directed by Mead & Hunt / Lexington County and SCDOT, AECOM developed a traffic forecast for Opening Year (2020) and Design Year (2040) for the S-48 (Columbia Avenue) Corridor Improvement Project. AECOM originally recommended a 1.64% linear growth rate; however, SCDOT approved a 1.25% linear growth rate at the following intersections on July 24, 2014:

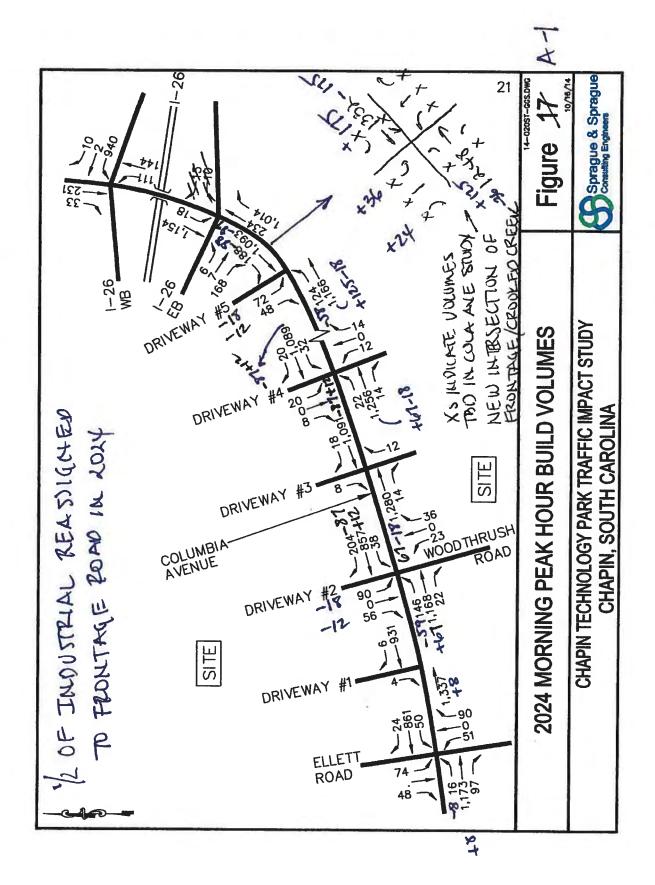
- 1. Columbia Avenue and I-26 Eastbound Ramps
- 2. Columbia Avenue and I-26 Westbound Ramps
- 3. I-26 Eastbound ramp and Crooked Creek Road
- 4. Ellet Road and Columbia Avenue
- 5. Columbia Avenue and Eagle Chase Court
- 6. Columbia Avenue and Woodthrush Road
- 7. Columbia Avenue and Ellet Road/Chapin High School (1)
- 8. Columbia Avenue and Chapin High School (2)
- 9. Columbia Avenue and Ellet Road/Chapin High School (3)
- 10. Columbia Avenue and East Boundary Street
- 11. Columbia Avenue and Clark Street/Peak Street
- 12. Lexington Street and Columbia Avenue
- 13. Lexington Street and Beaufort Street
- 14. Lexington Street and Chapin Road
- 15. Lexington Street and Water Street
- 16. Lexington Street and Clark Street
- 17. Amicks Ferry Road and Columbia Avenue
- 18. Amicks Ferry Road and Chapin Road
- 19. Amicks Ferry Road and Zion Church Road
- 20. Amicks Ferry Road and Broomstraw Road
- 21. Amicks Ferry Road and Virginia Street

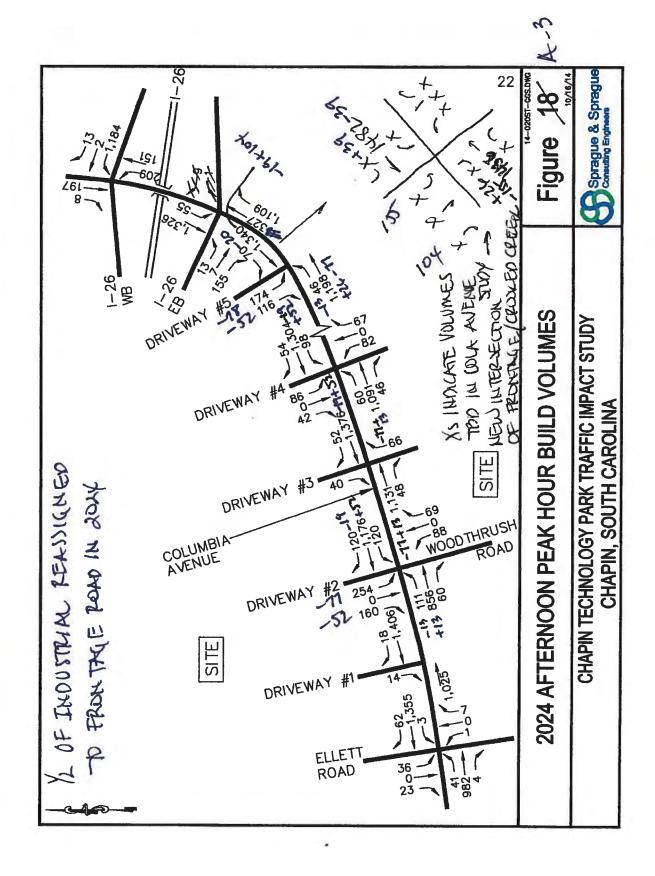
AECOM used the 2014 existing traffic volumes and grew them at a linear rate of 1.25% to obtain the base Opening Year (2020) and Design Year (2040) traffic projections. After these projections were complete, a traffic study for the Chapin Technology Park and Chapin Commerce Village Development became available. These two developments are significant in size and impact the S-48 corridor. At the direction of Prime Consultant Mead & Hunt, Lexington County and SCDOT, AECOM added additional traffic volumes to the base

volumes previously presented to be conservative and to better estimate the turning movement volumes to / from Columbia Avenue. The following describes the methods AECOM used to add the additional volumes:


- Chapin Technology Park (120 acre industrial park, 450 single family houses, and 350,000 SF of commercial). Based on the final traffic study submitted and approved by SCDOT on October 13, 2015 for the Chapin Technology Park, the opening year is 2019. AECOM added these new trips to the Opening Year (2020). The Chapin Technology Park is not expected to be complete until 2024 as these trips at full build-out were added to the Design Year (2040). The Technology Park is located north of Columbia Avenue near Woodthrush Road.
- Chapin Commerce Village (132,000 SF Specialty Retail, 8,350 SF Quality Restaurant, 8,350 SF General Office, 4,500 SF Fast Food Restaurant with Drive-Through, 8,350 High Turn-Over (Sit-Down) Restaurant, 4,050 SF Fast Food Restaurant with Drive-Through, 4,950 SF Convenience Market with Gasoline Pumps, 8,350 SF Quality Restaurant, 120 Room Hotel, 8,350 Quality Restaurant, and 4,050 SF General Office Building). This development has not had a traffic study and is only in the early planning stages. It is located just east of I-26 along S-48/Columbia Avenue.


Traffic volume figures showing how both of these developments were distributed within the study area are attached to this document. Once the 2020 and 2040 No-Build traffic volumes projections were developed, AECOM rerouted traffic for Alternative 9A. AECOM looked at the existing traffic patterns and the path of the new road to determine the percentage of traffic that would use the new facility. Based on these two criterions, the following engineering assumptions were made:


- 25% of Westbound Left-turns from Columbia Avenue onto Lexington Avenue are expected to use New Road as shown in alternative 9A.
- 25% of Westbound Left-turns from Columbia Avenue onto Amicks Ferry Road is expected to use New Road as shown in Alternative 9A.
- 25% of Northbound Right-turns from Lexington Avenue on Columbia Avenue is expected to use New Road as shown in Alternative 9A.
- 25% of Northbound Right-turns from Amicks Ferry Road on Columbia Avenue is expected to use New Road as shown in Alternative 9A.
- 50% of Westbound Left-turns from Chapin Road onto Amicks Ferry Road is expected to use New Road as shown in Alternative 9A.
- 50% of Westbound Left-turns from Chapin Road onto Lexington Avenue is expected to use New Road as shown in Alternative 9A.
- 50% of Northbound Right-turns from Amicks Ferry Road onto Chapin Road is expected to use New Road as shown in Alternative 9A.
- 50% of Northbound Right-turns from Lexington Road onto Chapin Road is expected to use New Road as shown in Alternative 9A.
- E. Boundary Street at Columbia Avenue becomes a Right-in Right-out, so 75% Eastbound Right-turns move to New Road / Clark Street. Also 75% of the Northbound Right turns move to New Road / Clark Street.


Each one of these engineering assumptions is documented in the attached figures with its own color to carefully track the new traffic patterns. It is to be noted that the traffic volume assumptions are likely to change if Columbia Avenue (between Boundary Street and Amicks Ferry Road) becomes over capacity. The New Road is not expected to be at capacity using these assumptions and therefore can handle additional traffic if necessary.

Volume Development Figures

Project: Chapin Commerce Village

Date: 10/22/2014

Location	Description of Use	Units		Trips/Unit	PM Peak Hours Trips
North Parcel A	Specialty Retail Center	132000	SF	0.00271	358
North Parcel B	Quality Restaurant	8350	SF	0.00749	63
North Parcel C	General Office Building	eral Office Building 8350		0.00149	12
North Parcel D	Fast Food Restaurant with Drive-Through	4500 SF		0.03384	152
		Total PM Peak Hour Trips			585

Location	Description of Use	Units		Trips/Unit	PM Peak Hours Trips
South Parcel E	High-Turnover (Sit-Down) Restaurant	8350	SF	0.01115	93
South Parcel F	Fast Food Restaurant with Drive-Through	4050	SF	0.03384	137
South Parcel G	Convenience Market with Gasoline Pumps	4950	SF	0.05092	252
South Parcel H	Quality Restaurant	8350	SF	0.00749	63
South Parcel I	Hotel	120	Rooms	0.6	72
South Parcel J	Quality Restaurant	8350	SF	0.00749	63
South Parcel K	General Office Building	4050	SF	0.00149	6

Total PM Peak Hour Trips

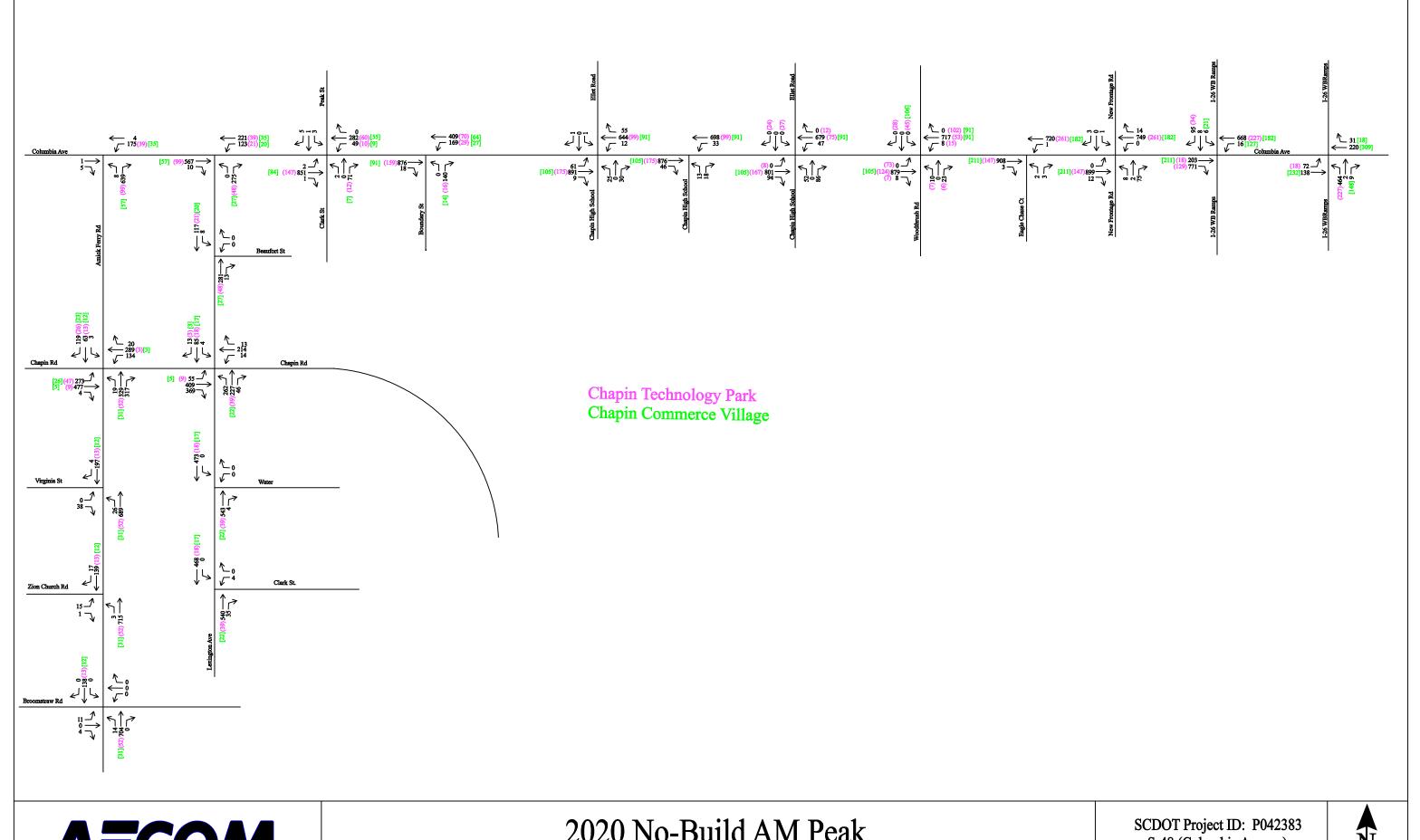
685

13019-32

	<u>0</u>	hapin Co able 1 - T	Chapin Commerce Village Table 1 - Trip Generation	Village							
and like	Intensity	ito		Daily		A	AM Peak Hour	'n	ď	PM Peak Hour	5
		6	Total	ln	Out	Total	n.	Out	Total	ā	Out
310 Hotel	120	rooms	702	351	351	64	38	56	72	37	35
710 General Office Building*	8,350	s.f.	95	46	46	13	11	2	12	2	10
710 General Office Building*	4,050	s.f.	46	23	23	9	2	1	9	1	5
826 Speciality Retail	132,000	s.f.	5,686	2,843	2,843	,	ı	1	338	149	189
853 Convenience Market with Gasoline Pumps	4,950	s.f.	4,186	2,093	2,093	203	102	101	252	126	126
931 Quality Restaurant	8,350	s.f.	752	376	376	7	9	-	63	52	11
931 Quality Restaurant	8,350	s.f.	752	376	376	7	9	1	63	52	11
931 Quality Restaurant	8,350	s.f.	752	376	376	7	9	П	63	52	11
932 High-Turnover (Sit Down) Restaurant	8,350	s.f.	1,062	531	531	06	20	40	82	49	33
934 Fast Food Restaurant with Drive-Through	4,500	s.f.	2,234	1,117	1,117	204	104	100	147	9/	71
934 Fast Food Restaurant with Drive-Through	4,050	s.f.	2,010	1,005	1,005	184	94	06	132	69	63
Subtotal			18,274	9,137	9,137	785	422	363	1,230	665	565

*Rate was used due to the small square footage

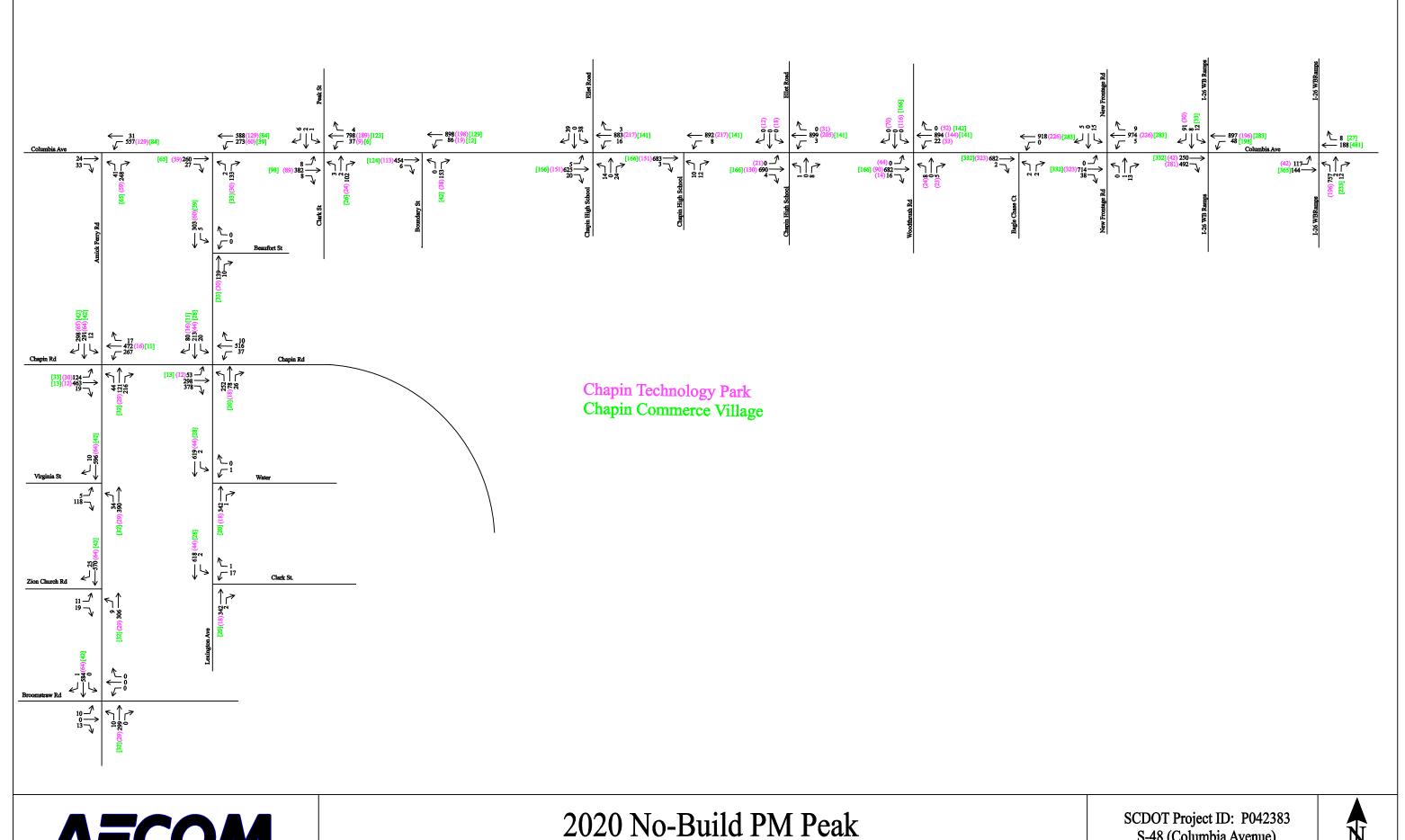
OB TITLE	
OB NO	CALCULATION NO.
ORIGINATOR	DATE
REVIEWER	DATE
SCALE	SHEET NO OF

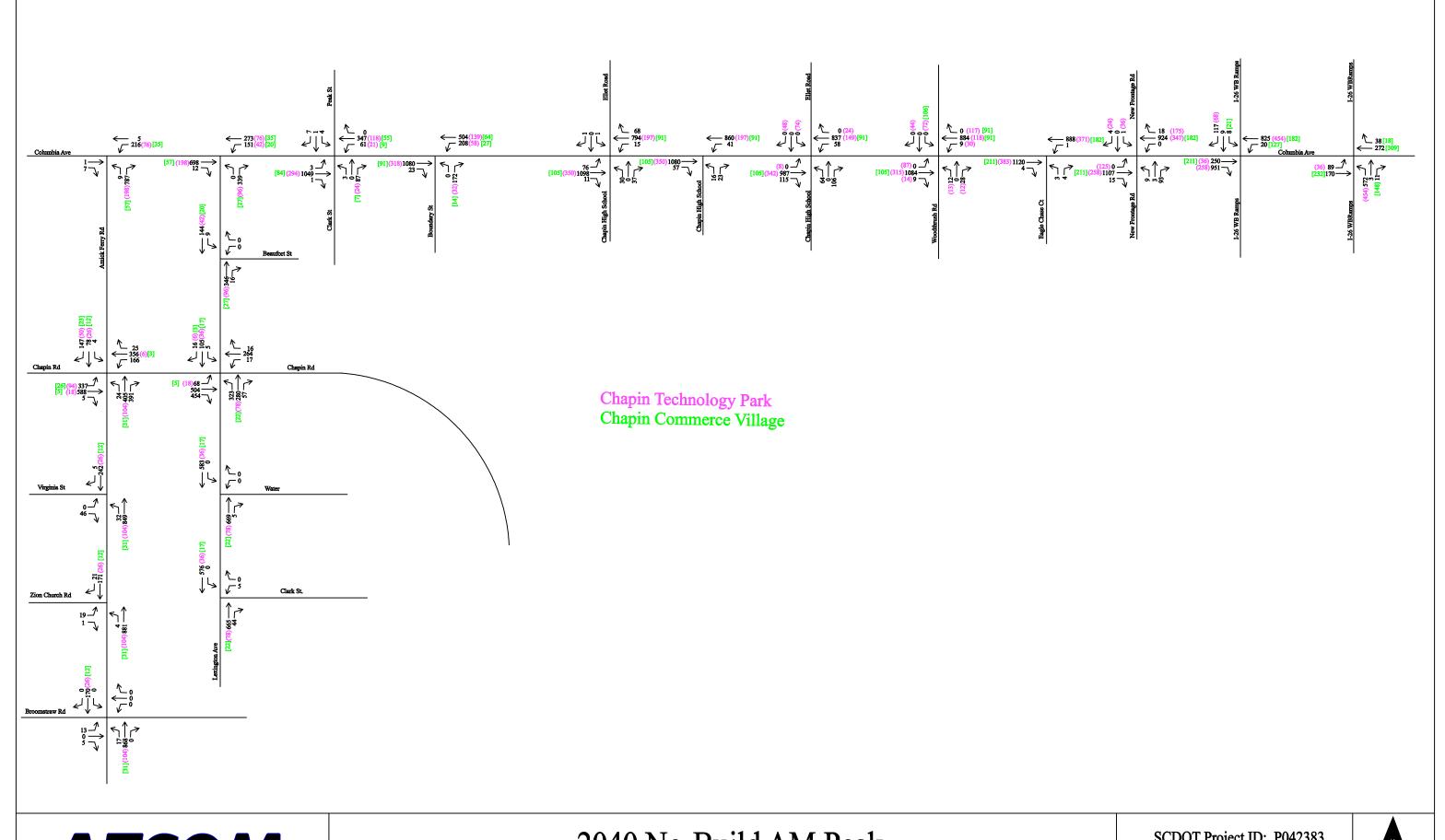

TRIP DISTRI		(5.1)		
CHAPIN COLUMBIA	\$ 507 - F26. ES OFF	(50%)	35% J. 8 of F. 35% 7 7 7 7 7 7 7 7 7 7 88.57	DEVELOPMENT (10x) (10)
		(35.).		

JOB TITLE	
JOB NO	CALCULATION NO.
ORIGINATOR	DATE
REVIEWER	DATE
SCALE	SHEET NO OF

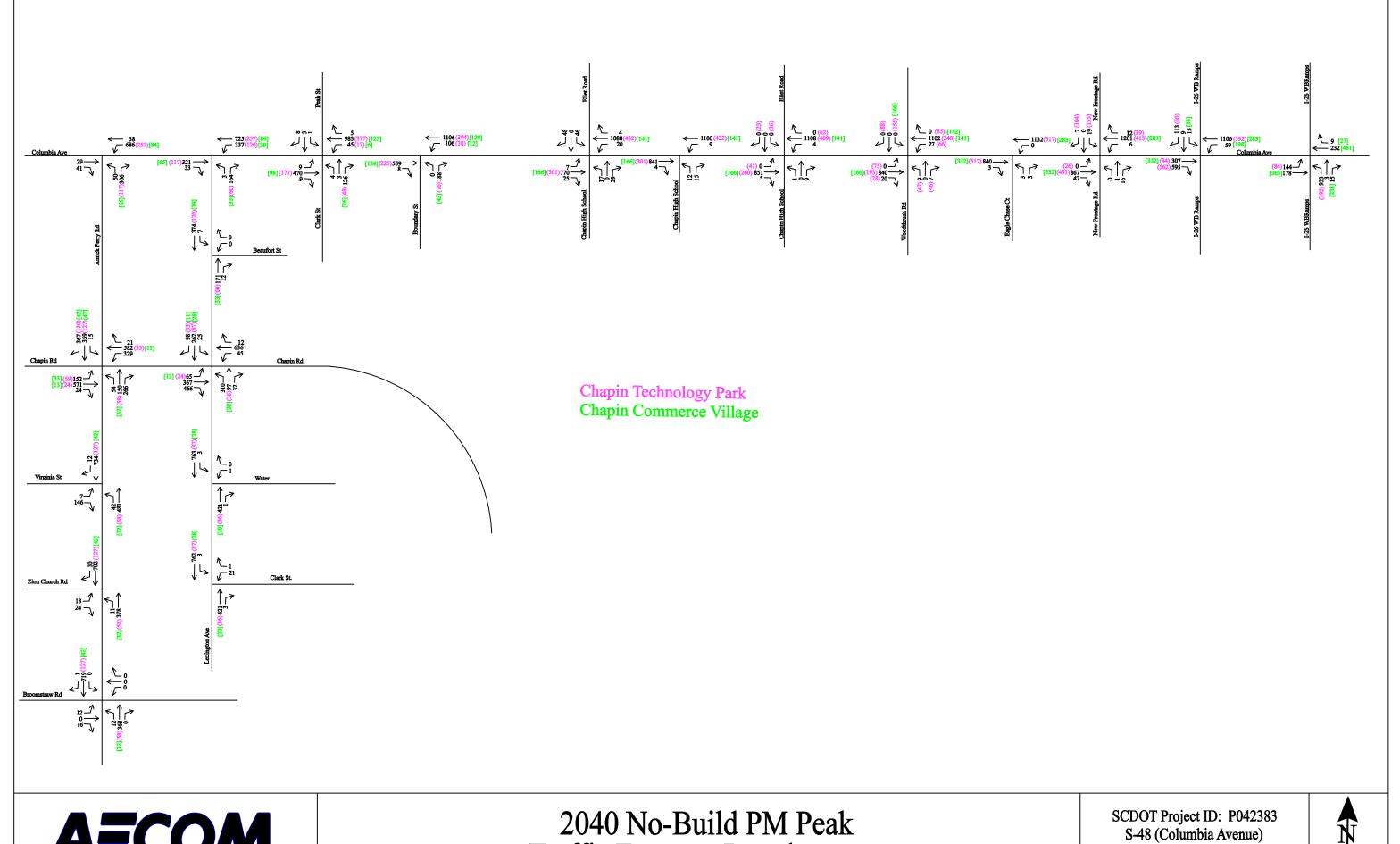
TOTAL TRIP = 785 ENTER = 422					
FXIT = 363					
	IZE EDOFF				
				DEVELO	PMENT
COLUMBIA AVE	P ← (152)		~ (18) ~ (309)	1	~ 42
211-	>	232->	148		(36)-3
		140 0H			
		27			
	COLUM	BIA			

JOB TITLE	
JOB NO	CALCULATION NO.
ORIGINATOR	DATE
REVIEWER	DATE
SCALE	SHEET NO. OF

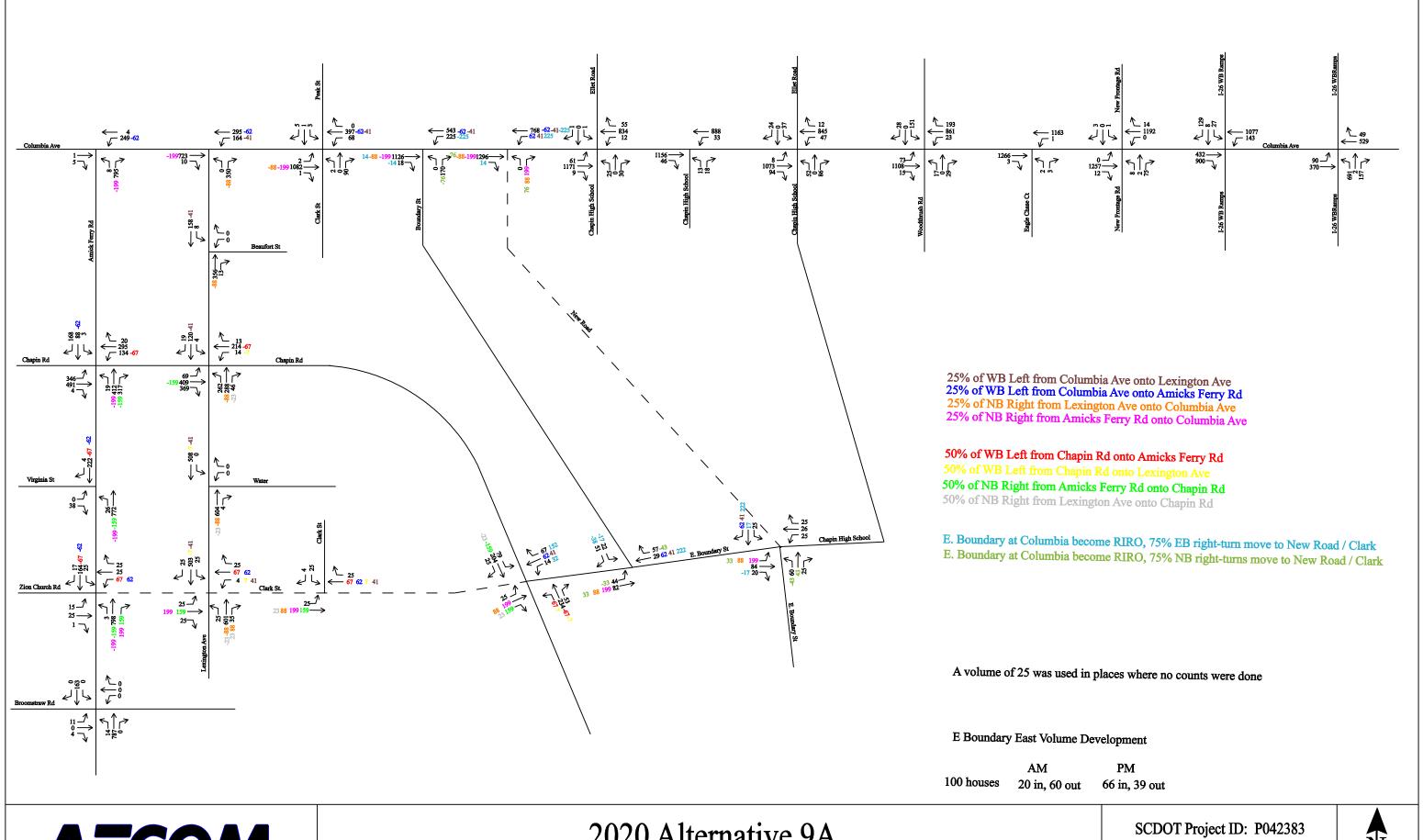

	= 1,730 = 565				
	419 63 72.I			DEVEL	OPM ENT
MARIN	\$\frac{\beta}{4} \leftarrow (283) \frac{\tag{283}}{\tag{198}}	365->	2 (27) = (481)		(57) -3
			WB 0FF 233	1	
		10			
	Corum	2014			



2020 No-Build AM Peak Traffic Forecast Development

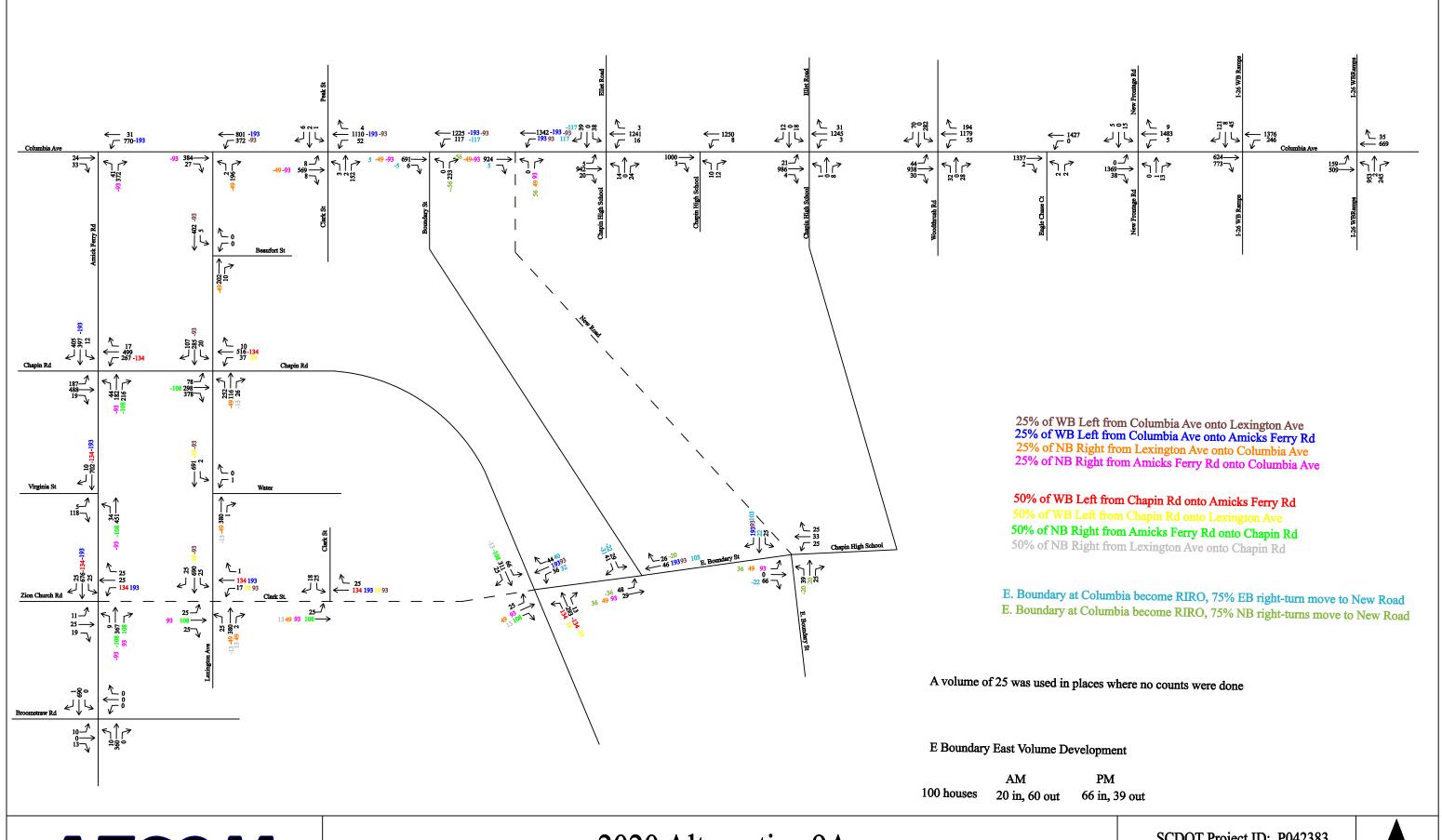


2040 No-Build AM Peak Traffic Forecast Development

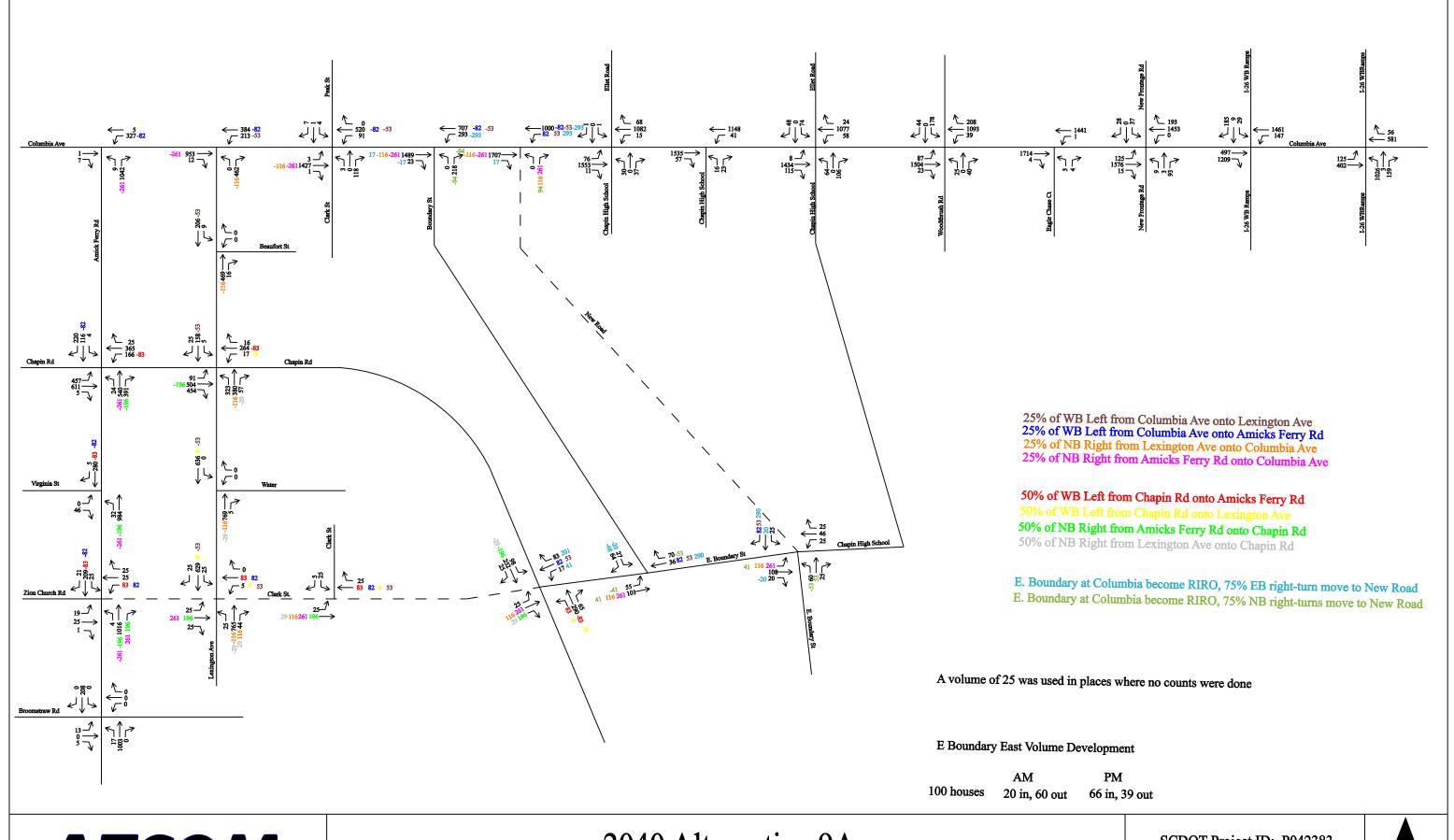


Traffic Forecast Development

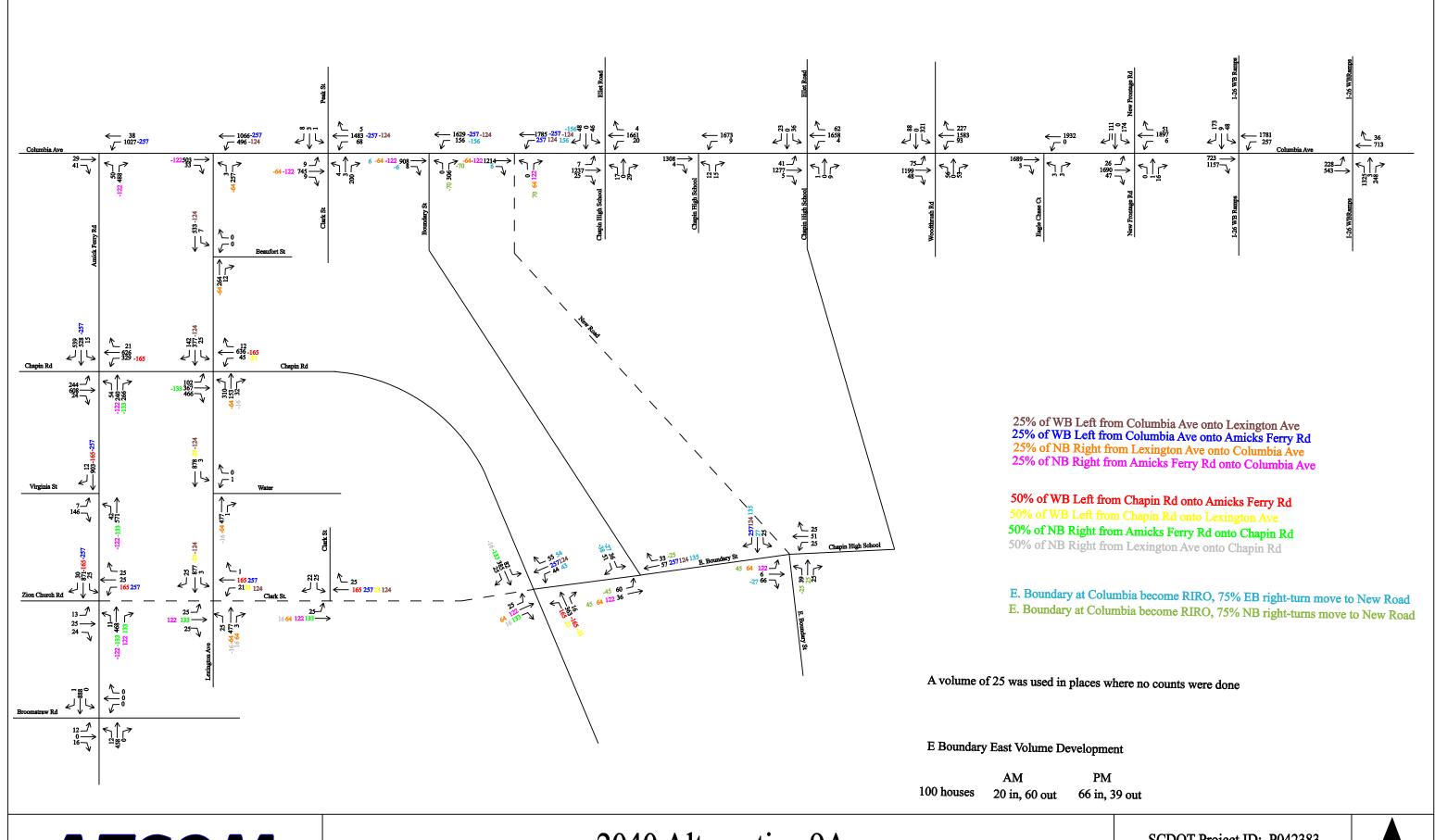
Corridor Improvement Project



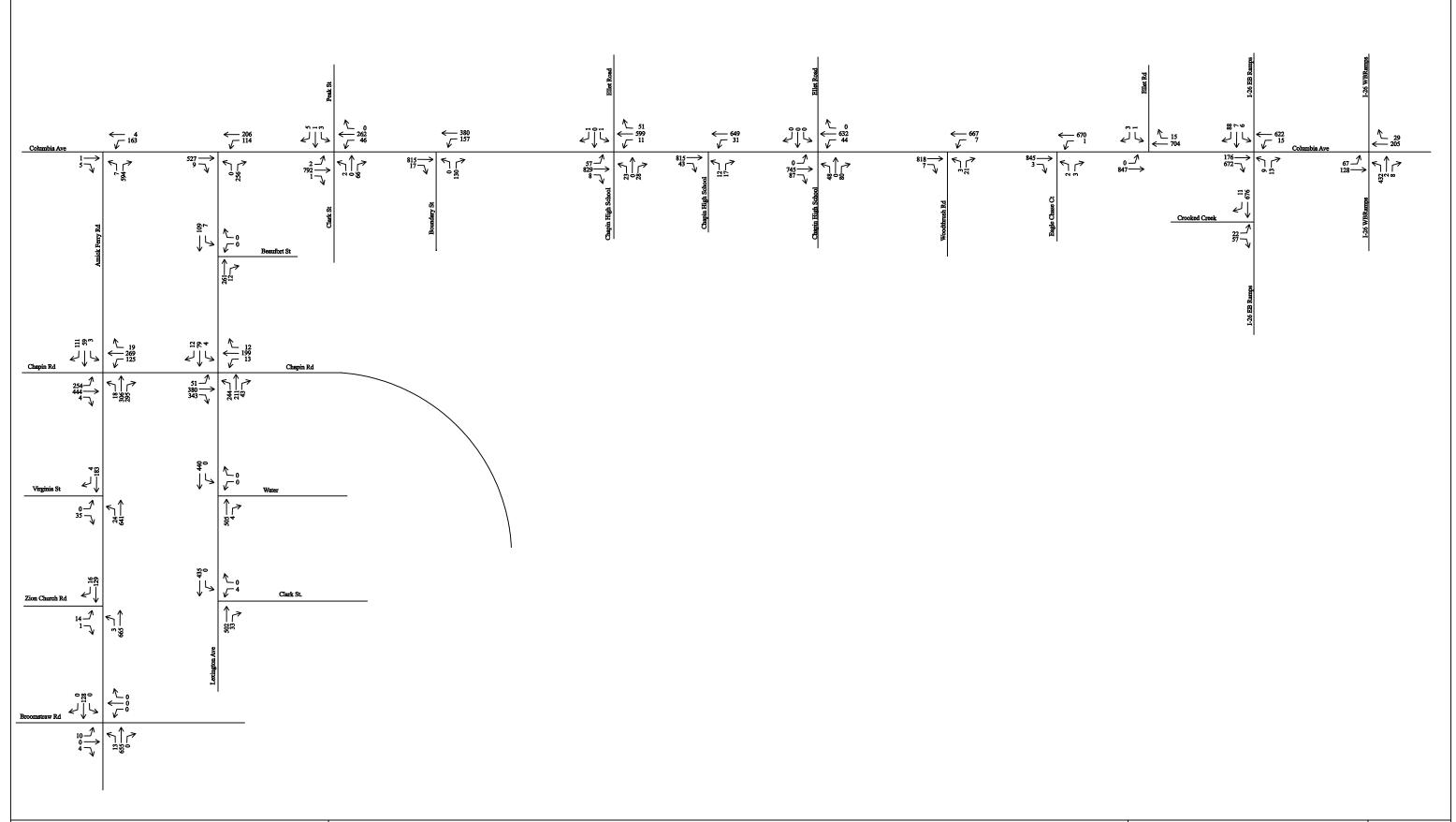
2020 Alternative 9A AM Peak Traffic Forecast Development



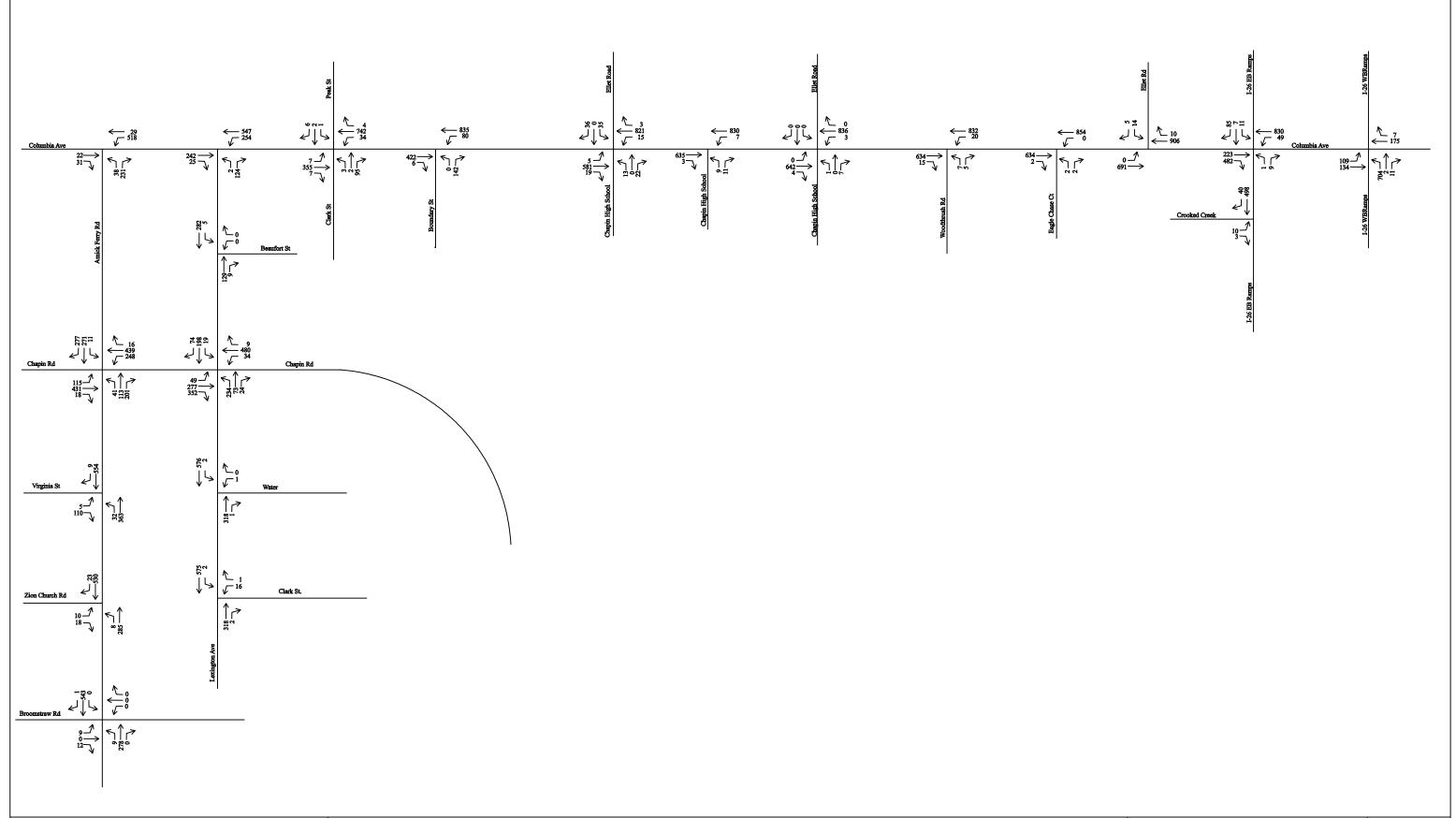
2020 Alternative 9A PM Peak Traffic Forecast Development



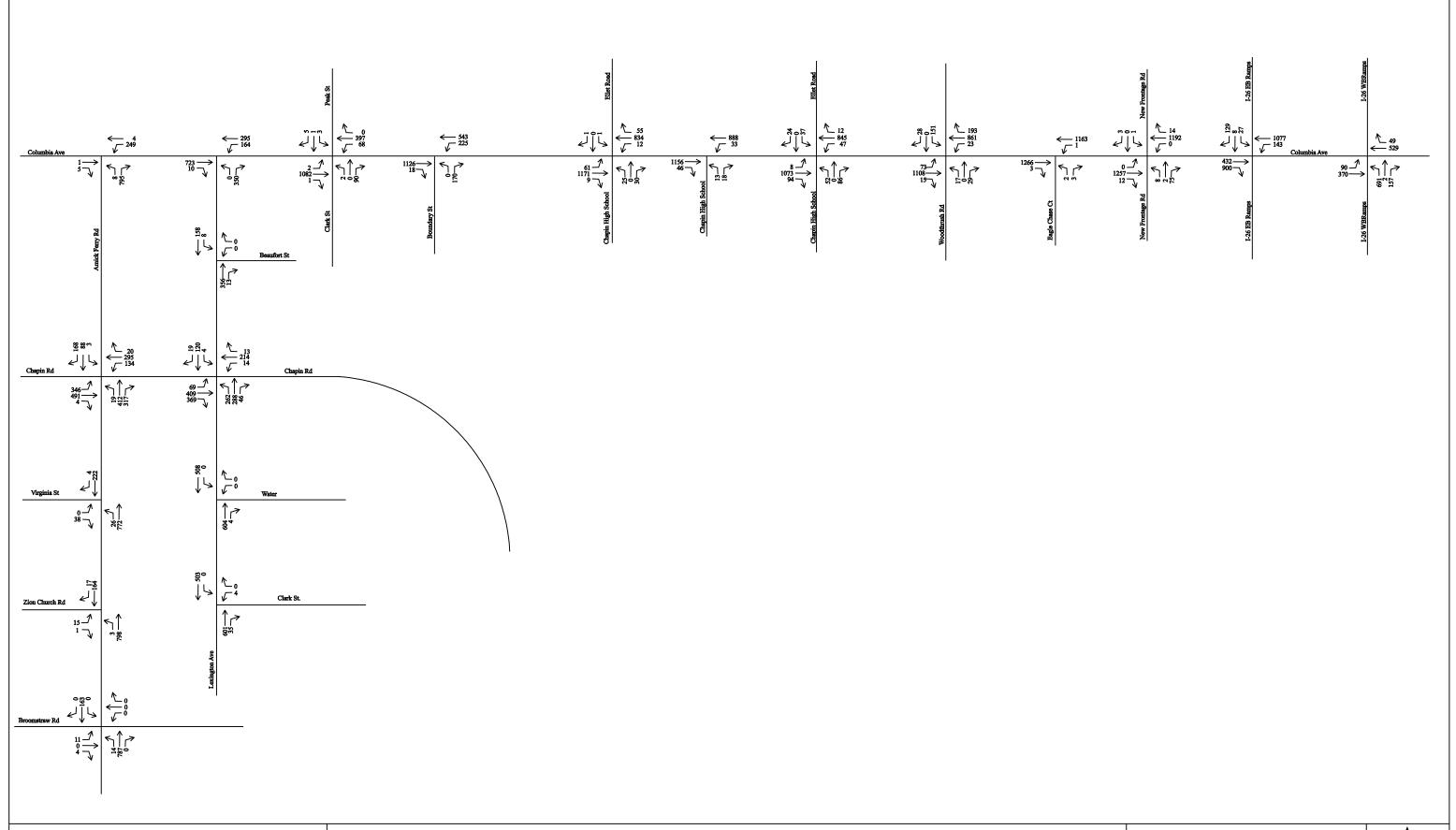
2040 Alternative 9A AM Peak Traffic Forecast Development



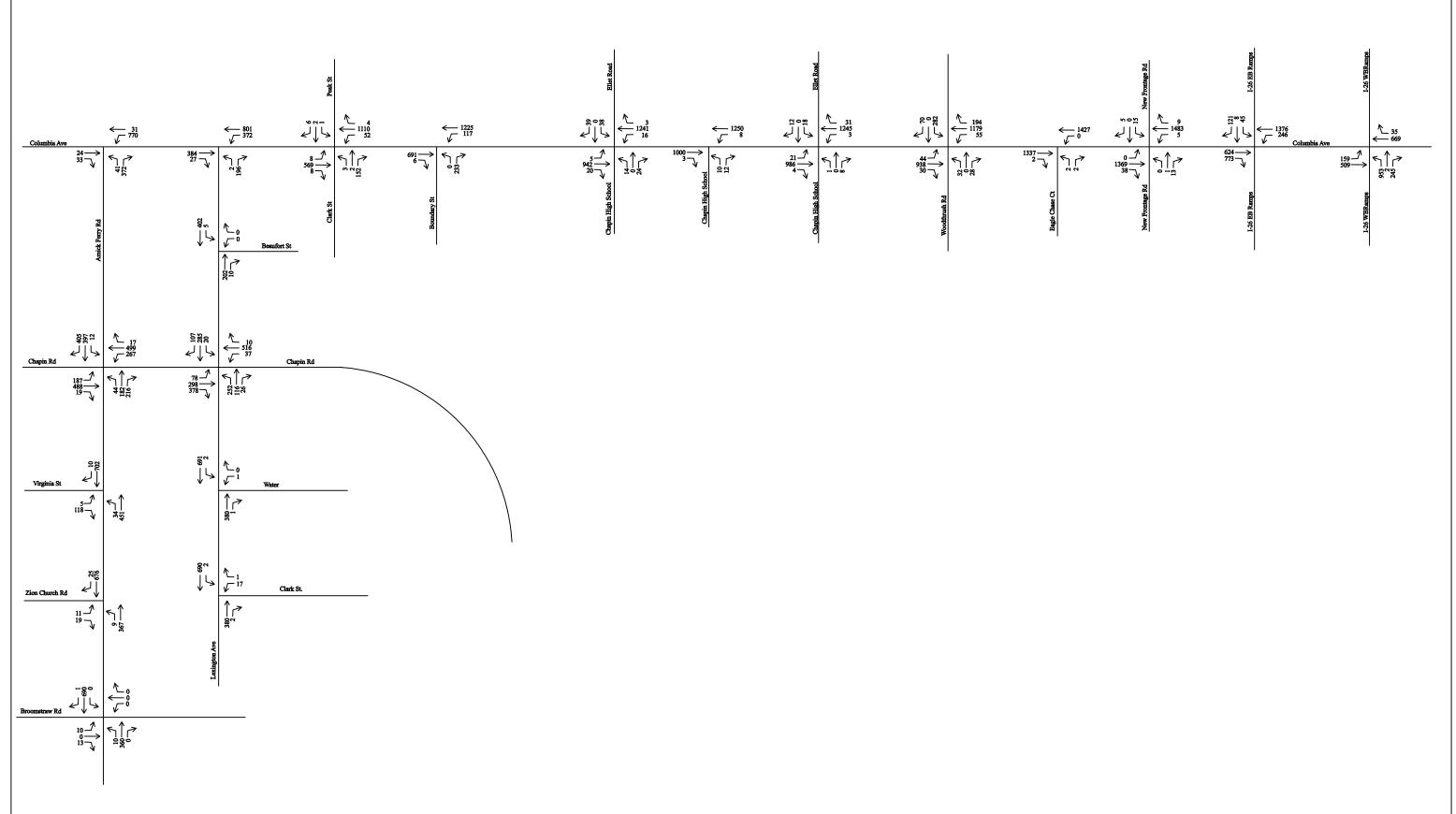
2040 Alternative 9A PM Peak Traffic Forecast Development


Final Traffic Projection Figures

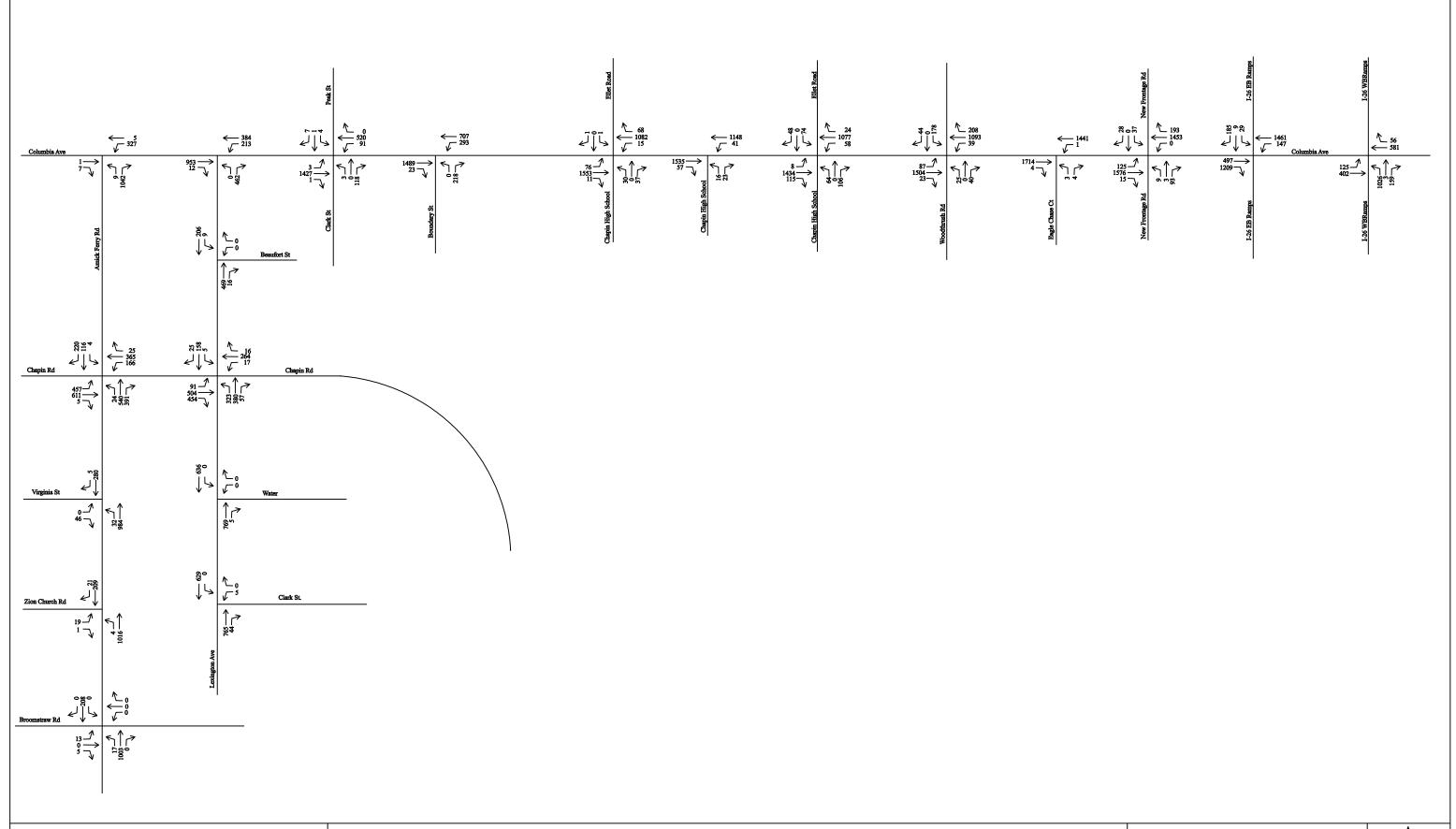
2014 Existing AM Peak Traffic Volumes



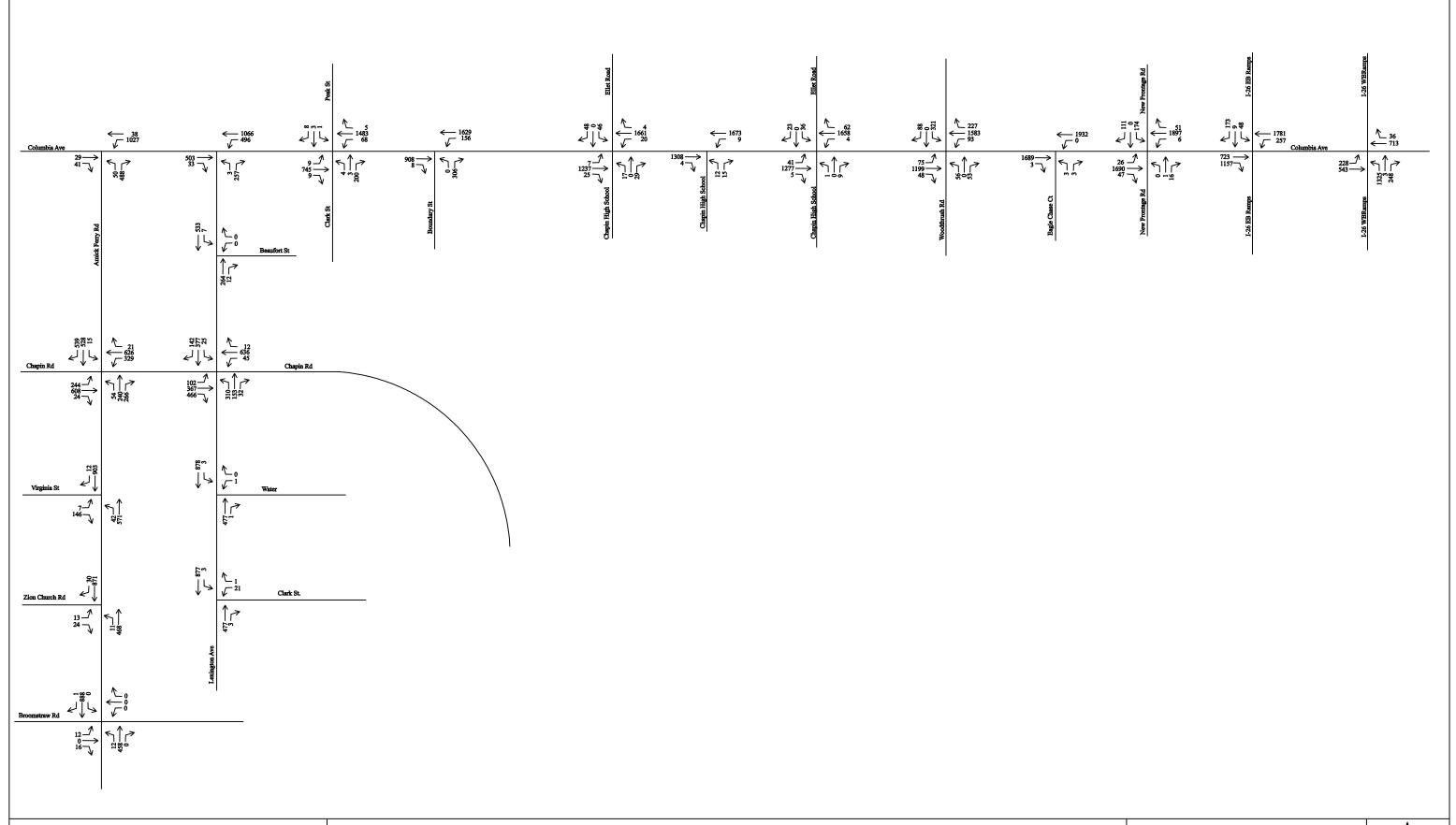
2014 Existing PM Peak Traffic Volumes



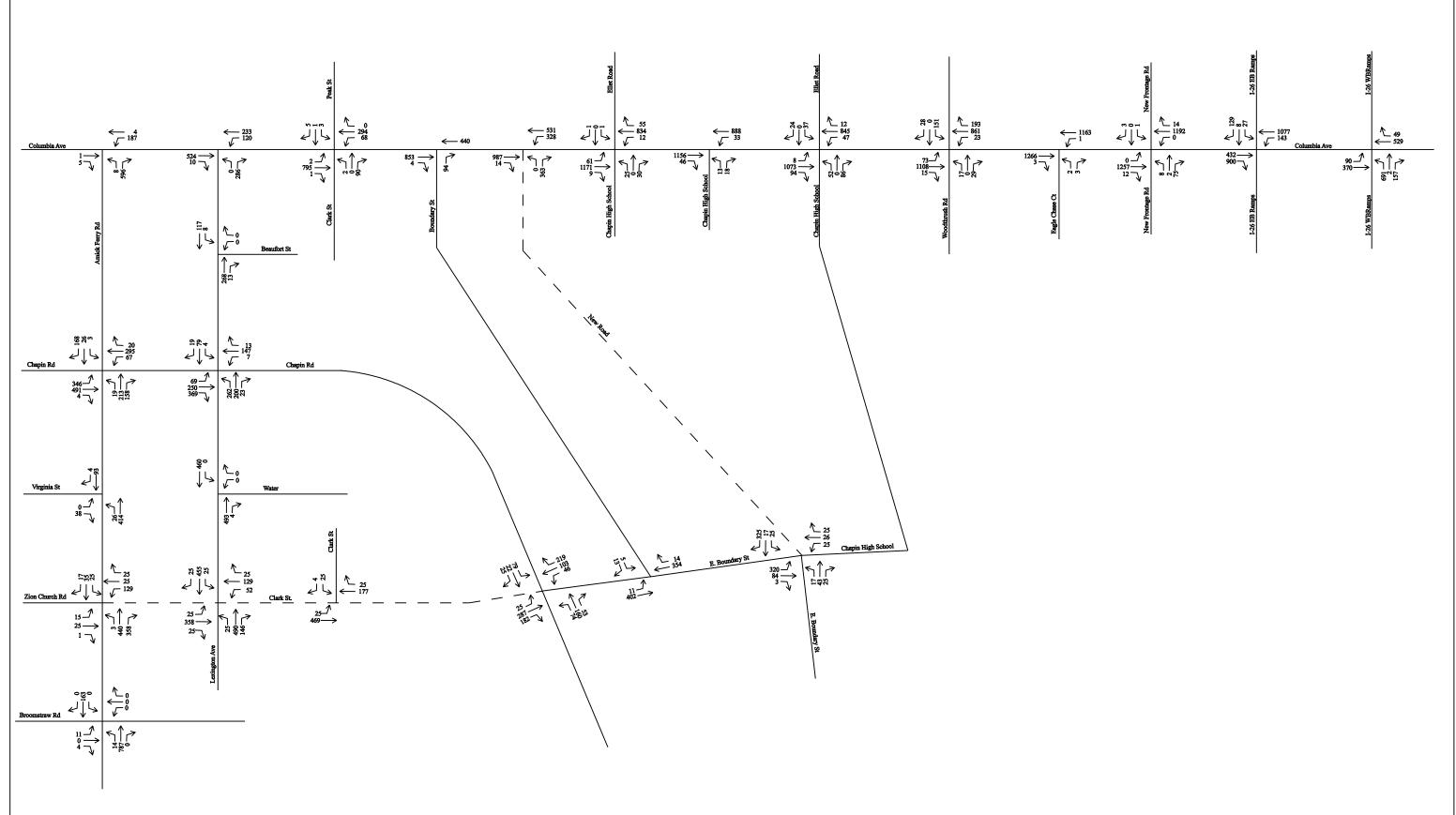
2020 No-Build AM Peak Traffic Forecast



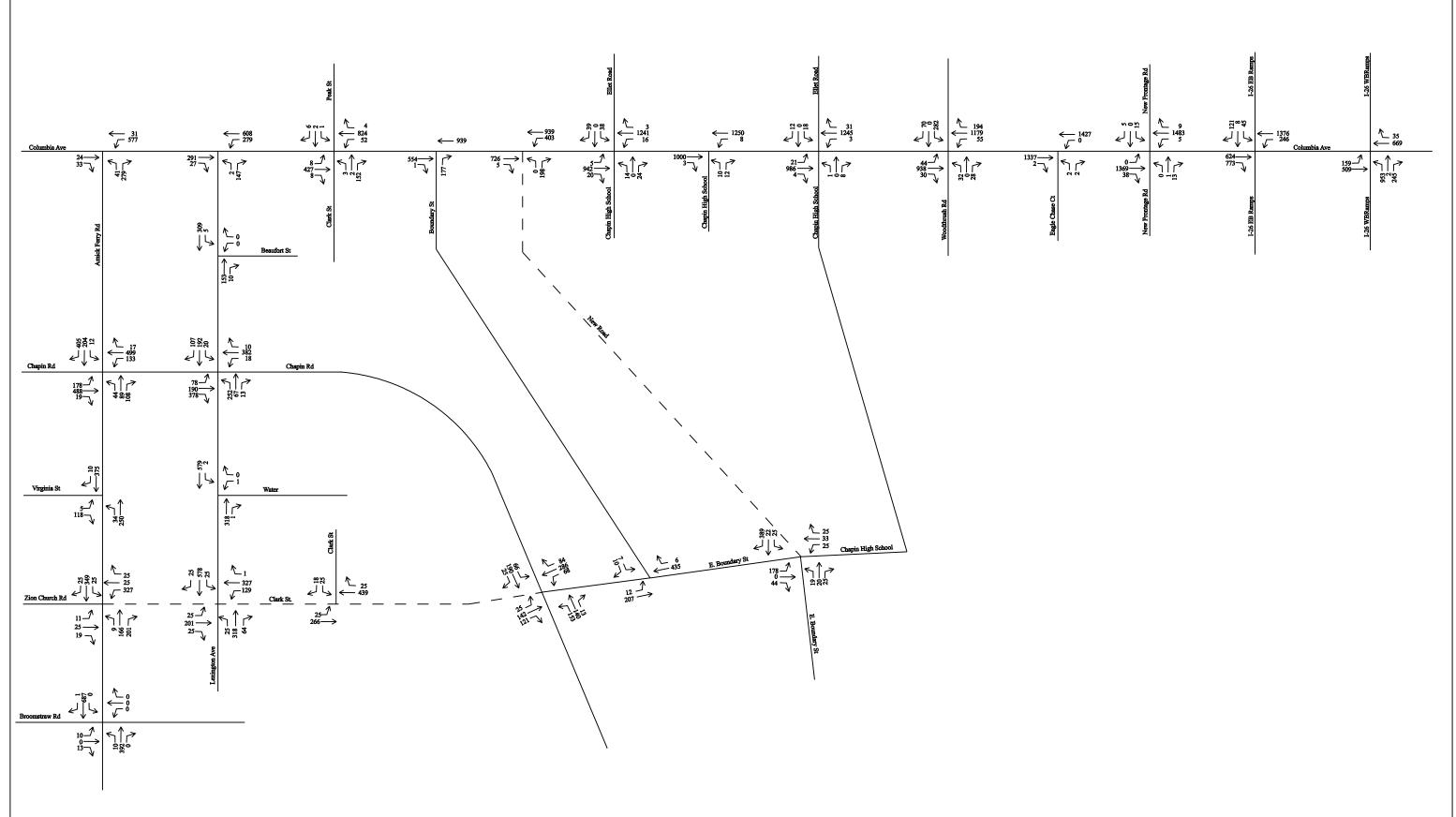
2020 No-Build PM Peak Traffic Forecast



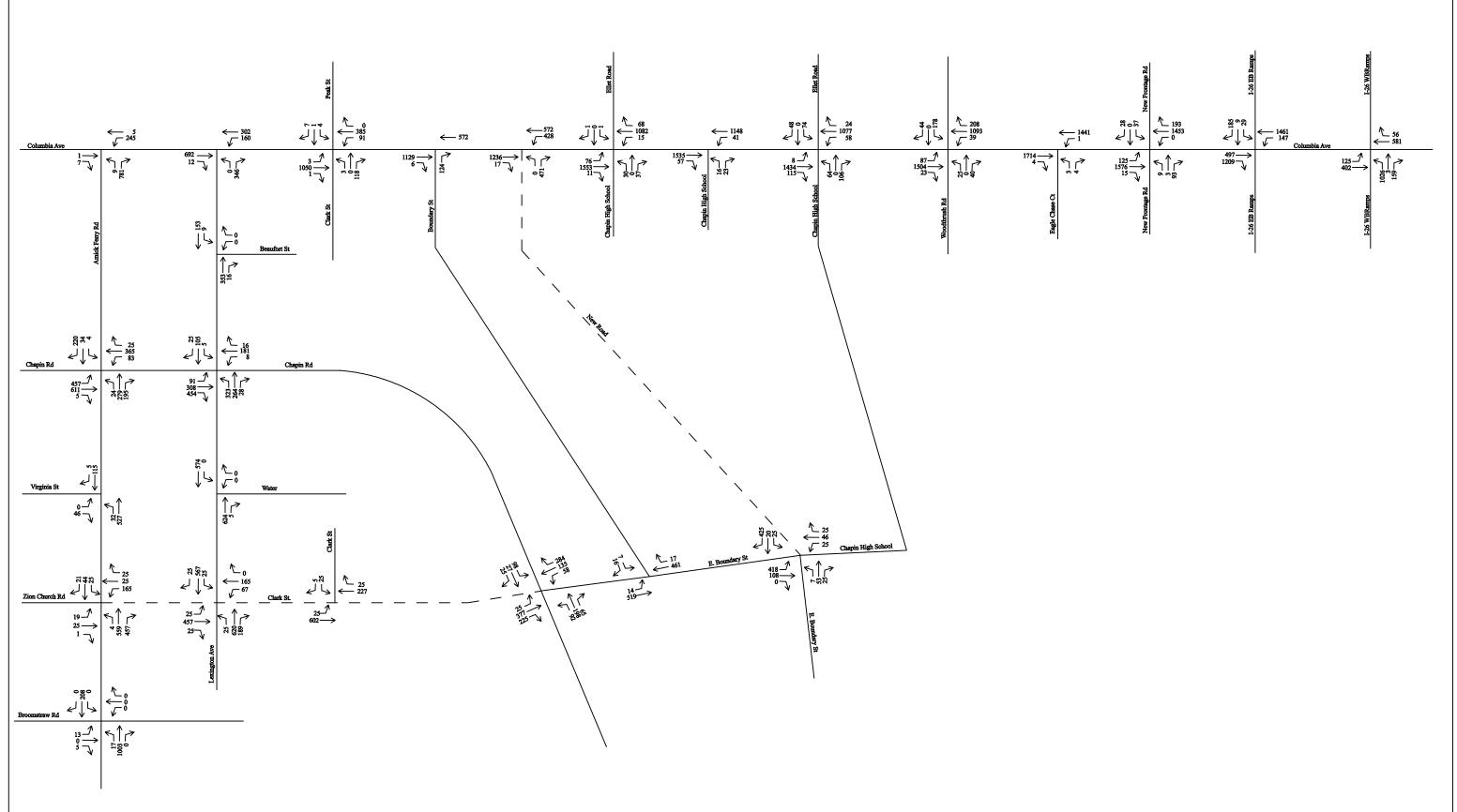
2040 No-Build AM Peak Traffic Forecast



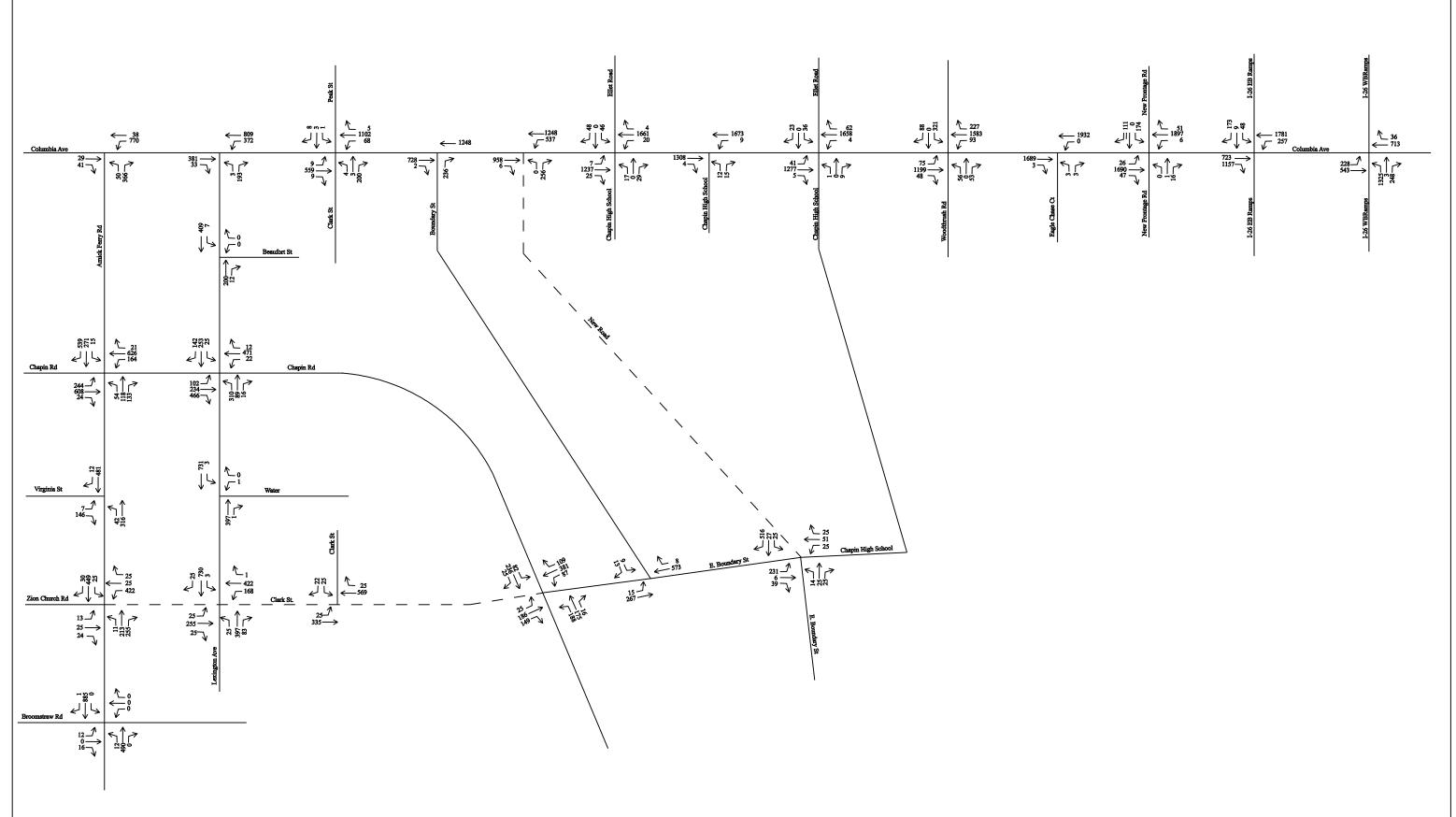
2040 No-Build PM Peak Traffic Forecast



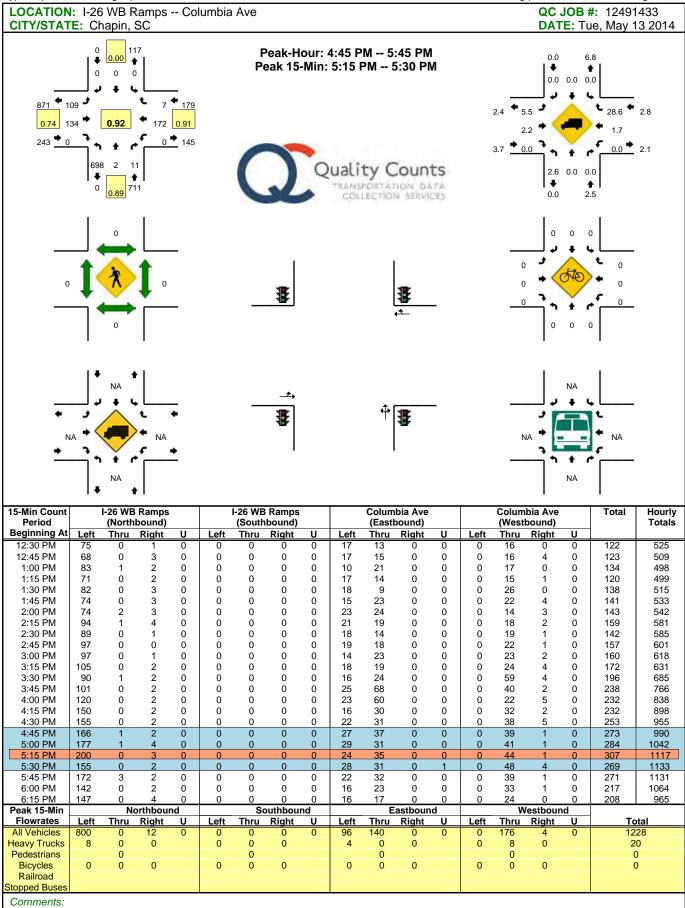
2020 Alternative 9A AM Peak Traffic Forecast

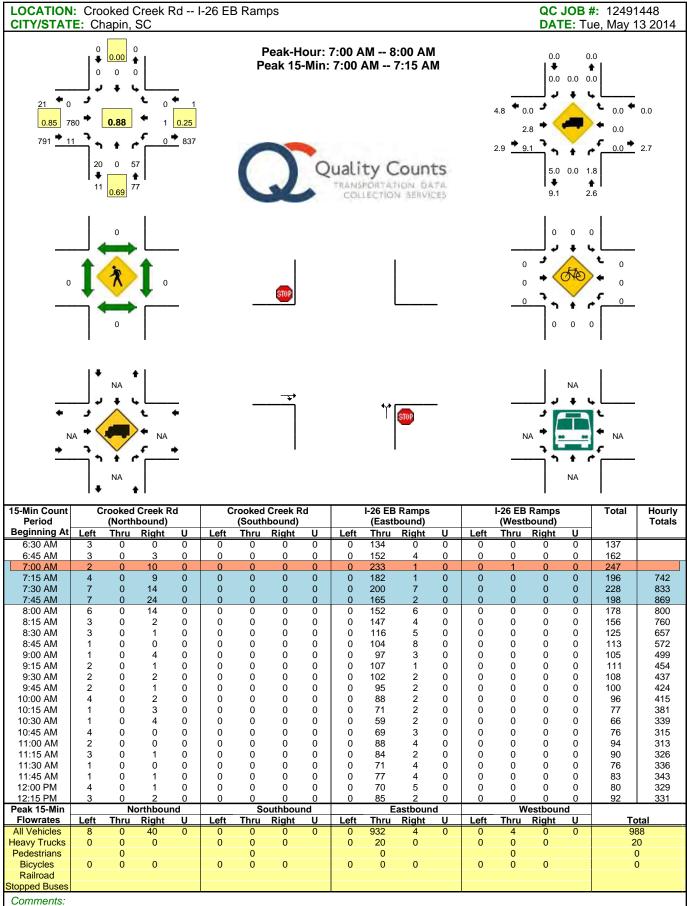


2020 Alternative 9A PM Peak Traffic Forecast



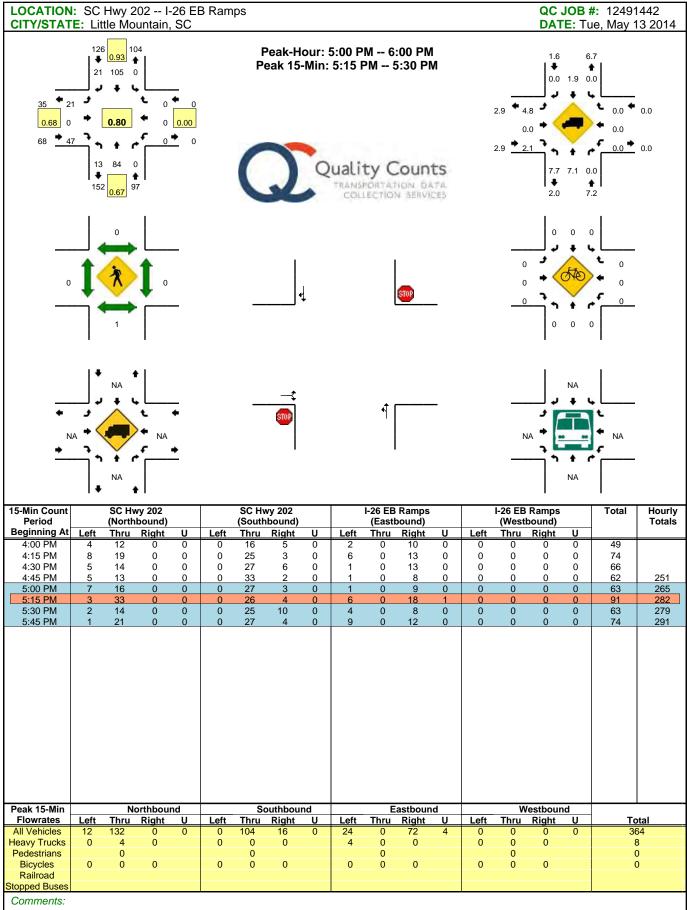
2040 Alternative 9A AM Peak Traffic Forecast


2040 Alternative 9A PM Peak Traffic Forecast


DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX B

TRAFFIC COUNTS



1001																	otal Enteri	
LOCATION CITY/STAT				Col	umbia	Ave											#: 12491 ue, May 1	
	0 0 0 128 • [0 432 • 0	1	29 205	234 0.91				i-Min:	uali	ty C	30 AM 3:00 AM	ä,			3.0 3 3.3 +	100.012	13.8	3.8
0	1	0	• •	_		_	**				*			(0 +	S		
◆ 15-Min Count	JA + 4		NA	<u>+</u>			Ramps			Colum	bia Ave			Colum	NA +	NA • I	NA Total	Hourly
Period Beginning At	1 044		bound)		1 -64	•	bound)		1 064		ound)		1 -44	•	bound)		-	Totals
6:30 AM	Left 56	Thru 1	Right 2	0	Left 0	Thru 0	Right 0	0	Left 16	Thru 15		U	Left 0	Thru 18	Right 3	0	111	
6:45 AM	76			0	ő	0	0	Ö	6	19		0	0	34	6	0	143	
7:00 AM		1	1					Ö										
	48	1 0	1 0	0	0	0	0		18	16		0	Ö	23	8	0	113	
7:15 AM	48 85	0 2	0 1	0 0	0 0	0	0	0	12	14	0 0	0	0 0	23 40	8 9	0	163	530
7:30 AM	48 85 103	0 2 0	0 1 1	0 0 0	0 0 0	0	0	0	12 25	14 22	0 0 0	0	0 0 0	23 40 52	8 9 14	0	163 217	636
7:30 AM 7:45 AM	48 85 103 125	0 2 0 1	0 1 1	0 0 0	0 0 0	0 0	0 0	0 0	12 25 18	14 22 25	0 0 0	0 0 0	0 0 0	23 40 52 53	8 9 14 8	0 0	163 217 231	636 724
7:30 AM 7:45 AM 8:00 AM	48 85 103 125 106	0 2 0 1	0 1 1 1 4	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	12 25 18 16	14 22 25 28	0 0 0 0	0 0 0 0	0 0 0 0	23 40 52 53 61	8 9 14 8 4	0 0 0	163 217 231 220	636 724 831
7:30 AM 7:45 AM 8:00 AM 8:15 AM	48 85 103 125 106 98	0 2 0 1 1 0	0 1 1 1 4 2	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	12 25 18 16 8	14 22 25 28 53	0 0 0 0 0	0 0 0 0	0 0 0 0	23 40 52 53 61 39	8 9 14 8 4 3	0 0 0 0	163 217 231 220 203	636 724 831 871
7:30 AM 7:45 AM 8:00 AM	48 85 103 125 106	0 2 0 1	0 1 1 1 4	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	12 25 18 16	14 22 25 28	0 0 0 0 0 0	0 0 0 0	0 0 0 0	23 40 52 53 61	8 9 14 8 4 3 3 5	0 0 0	163 217 231 220	636 724 831
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM	48 85 103 125 106 98 90 84 77	0 2 0 1 1 0 0 0	0 1 1 1 4 2 3 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	12 25 18 16 8 19 22 17	14 22 25 28 53 24 11 15	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13	8 9 14 8 4 3 3 5 5	0 0 0 0 0 0	163 217 231 220 203 167 147 129	636 724 831 871 821 737 646
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM	48 85 103 125 106 98 90 84 77 70	0 2 0 1 1 0 0 0 1 1	0 1 1 1 4 2 3 0 1	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18	14 22 25 28 53 24 11 15 9	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13	8 9 14 8 4 3 5 5	0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114	636 724 831 871 821 737 646 557
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM	48 85 103 125 106 98 90 84 77 70 71	0 2 0 1 1 0 0 0 1 1 1 0	0 1 1 4 2 3 0 1 1 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20	14 22 25 28 53 24 11 15 9 7	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 13	8 9 14 8 4 3 5 5 5 2 4	0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119	636 724 831 871 821 737 646 557 509
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM	48 85 103 125 106 98 90 84 77 70 71 91	0 2 0 1 1 0 0 0 1 1 0 0	0 1 1 1 4 2 3 0 1 1 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20	14 22 25 28 53 24 11 15 9 7	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 13 17 27	8 9 14 8 4 3 3 5 5 2 4 3	0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152	636 724 831 871 821 737 646 557 509 514
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM	48 85 103 125 106 98 90 84 77 70 71	0 2 0 1 1 0 0 0 1 1 1 0	0 1 1 4 2 3 0 1 1 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20	14 22 25 28 53 24 11 15 9 7	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 13	8 9 14 8 4 3 5 5 5 2 4	0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119	636 724 831 871 821 737 646 557 509
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63	0 2 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13	14 22 25 28 53 24 11 15 9 7 11 15 16 8	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20	8 9 14 8 4 3 3 5 5 5 2 4 4 3 3 0 0 0 4	0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109	636 724 831 871 821 737 646 557 509 514 480 456 446
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:30 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55	0 2 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 1 0 0 0 0 1 1 2	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20	8 9 14 8 4 3 3 5 5 5 2 4 3 0 0 4 11	0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125	636 724 831 871 821 737 646 557 509 514 480 456 446 419
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60	0 2 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 0 0 0 0 0 1 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15	8 9 14 8 4 3 3 5 5 2 4 3 0 0 4 11 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:15 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60 68	0 2 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 1 0 0 0 0 1 1 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15 10	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15 45	8 9 14 8 4 3 3 5 5 5 2 4 4 3 0 0 0 4 11 3 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101 150	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425 485
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60	0 2 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 0 0 0 0 0 1 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15	8 9 14 8 4 3 3 5 5 2 4 3 0 0 4 11 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:50 AM 11:45 AM 11:45 AM	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60 68 50 66 79	0 2 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 0 0 0 0 0 1 2 2 0 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15 10 19 11 16 26	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10 18 27 27 24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15 45 24 23 15	8 9 14 8 4 3 3 5 5 2 4 3 0 0 4 11 3 0 2 2 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101 150 115 139 145	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425 485 491 505 549
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM 11:45 AM 11:30 AM 11:45 AM 11:45 AM 12:00 PM 12:15 PM	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60 68 50 66	0 2 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 1 0 0 0 0 0 1 1 2 2 0 1 1 0 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15 10 19	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10 18 27 27 24 27	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15 45 24 23 15	8 9 14 8 4 3 3 5 5 2 4 3 0 0 4 11 3 0 2 2 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101 150 115 139	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425 485 491 505
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM 11:45 AM 11:45 AM 12:00 PM 12:15 PM Peak 15-Min	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60 68 50 66 79 59	0 2 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 0 0 0 0 0 1 1 2 2 0 1 1 0 0 0 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15 10 19 11 16 26 19	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10 18 27 27 24 27 24 27	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15 45 24 23 15	8 9 14 8 4 3 3 5 5 2 4 3 0 0 4 11 3 0 2 2 1 0 /estbour	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101 150 115 139 145 119	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425 485 491 505 549 518
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:00 AM 10:15 AM 10:30 AM 11:45 AM 11:30 AM 11:45 AM 12:00 PM 12:15 PM Peak 15-Min Flowrates	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60 68 50 66 79 59	0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 0 0 0 0 0 1 2 2 0 1 1 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15 10 19 11 16 26 29 19 11 11 16 20 16 16 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10 18 27 27 24 27 E Thru	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15 45 24 23 15 11	8 9 14 8 4 3 3 5 5 5 2 4 4 3 0 0 0 4 11 3 0 2 2 2 1 0 0 //estbour Right	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101 150 115 139 145 119	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425 485 491 505 549 518
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 11:45 AM 11:30 AM 11:45 AM 12:00 PM 12:15 PM Peak 15-Min Flowrates All Vehicles	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60 68 50 66 79 59	0 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 0 0 0 0 0 1 2 2 2 0 1 1 1 0 0 0 1 1 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15 10 19 11 16 26 19	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10 18 27 27 24 27 Entry 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15 45 24 23 15 11	8 9 14 8 4 3 3 5 5 2 4 3 0 0 4 11 3 0 2 2 1 0 Vestbour Right 32	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101 150 115 139 145 119	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425 485 491 505 549 518
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:00 AM 10:15 AM 10:30 AM 11:45 AM 11:30 AM 11:45 AM 12:00 PM 12:15 PM Peak 15-Min Flowrates	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60 68 50 66 79 59	0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 0 0 0 0 0 1 2 2 0 1 1 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15 10 19 11 16 26 29 19 11 11 16 20 16 16 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10 18 27 27 24 27 E Thru	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15 45 24 23 15 11	8 9 14 8 4 3 3 5 5 5 2 4 4 3 0 0 0 4 11 3 0 2 2 2 1 0 0 //estbour Right	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101 150 115 139 145 119 145 119	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425 485 491 505 549 518
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM 11:45 AM 11:30 AM 11:45 AM 12:00 PM 12:15 PM Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians Bicycles	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60 68 50 66 79 59	0 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 0 0 0 0 0 1 2 2 2 0 1 1 1 0 0 0 1 1 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15 10 19 11 16 26 19	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10 18 27 27 24 27 E. Thru 100 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15 45 24 23 15 11 W Thru 212 4	8 9 14 8 4 3 3 5 5 2 4 3 0 0 4 11 3 0 2 2 1 0 Vestbour Right 32	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101 150 115 139 145 119 145 119	636 724 831 871 821 737 646 557 509 514 480 456 449 425 485 491 505 549 518
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:00 AM 10:15 AM 10:30 AM 11:45 AM 11:30 AM 11:45 AM 11:45 AM 12:00 PM 12:15 PM Peak 15-Min Flowrates All Vehicles Pedestrians Bicycles Railroad	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60 68 50 66 79 59 Left 500 28	0 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 0 0 0 0 0 1 2 2 2 0 1 1 1 0 0 1 1 0 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15 10 19 11 16 26 19 21 21 21 21 21 21 21 21 21 21 21 21 21	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10 18 27 27 24 27 Entry 100 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15 45 24 23 15 11 V Thru	8 9 14 8 4 3 3 5 5 2 4 3 0 0 4 11 3 0 2 2 1 0 Vestbour Right 32 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101 150 115 139 145 119 145 119	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425 485 491 505 549 518
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:35 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 11:45 AM 11:30 AM 11:45 AM 11:45 AM 12:00 PM 12:15 PM Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60 68 50 66 79 59 Left 500 28	0 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 0 0 0 0 0 1 2 2 2 0 1 1 1 0 0 1 1 0 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15 10 19 11 16 26 19 21 21 21 21 21 21 21 21 21 21 21 21 21	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10 18 27 27 24 27 Entry 100 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15 45 24 23 15 11 V Thru	8 9 14 8 4 3 3 5 5 2 4 3 0 0 4 11 3 0 2 2 1 0 Vestbour Right 32 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101 150 115 139 145 119 145 119	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425 485 491 505 549 518
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:35 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 11:15 AM 11:30 AM 11:45 AM 11:45 AM 12:00 PM 12:15 PM Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians Bicycles Railroad	48 85 103 125 106 98 90 84 77 70 71 91 53 45 63 55 60 68 50 66 79 59 Left 500 28	0 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 4 2 3 0 1 1 0 0 0 0 0 1 2 2 2 0 1 1 1 0 0 1 1 0 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 25 18 16 8 19 22 17 18 20 20 16 16 13 15 10 19 11 16 26 19 21 21 21 21 21 21 21 21 21 21 21 21 21	14 22 25 28 53 24 11 15 9 7 11 15 16 8 22 10 18 27 27 24 27 Entry 100 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 40 52 53 61 39 28 25 13 17 27 11 12 20 20 15 45 24 23 15 11 V Thru	8 9 14 8 4 3 3 5 5 2 4 3 0 0 4 11 3 0 2 2 1 0 Vestbour Right 32 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	163 217 231 220 203 167 147 129 114 119 152 95 90 109 125 101 150 115 139 145 119 145 119	636 724 831 871 821 737 646 557 509 514 480 456 446 419 425 485 491 505 549 518

Type of peak I											iviet	hod to	or deter	mining				ing Volum
LOCATION CITY/STAT				₹d I	-26 EE	3 Ram	р										#: 12491 ue, May 1	
7 0.92 4 528 4	0 0 0 440 7 40	0.93	• 0	0 0.00 → 491				Min:	ualit	ty C	:00 PM 5:15 PM	IS TA		0.0 • 0 2 2.3 • 2	2.3	0.0 0	0.0	0.0
0		0	0	_		_	STOP					-		 c 	0 + 0	A	0 0	
◆ 15-Min Count	NA +	NA NA Crooked		<u></u> →	C		Creek Ro	1		I-26 EE	STOP 3 Ramp	-			NA +	NA •	NA Total	Hourly
Period	1 -64		bound)		1 -64	<u> </u>	bound)		1 -64		oound)		1 064	_ •	bound)			Totals
12:30 PM	Left 1	Thru 0	Right 0	0	Left 0	Thru 0	Right 0	0	Left 0	Thru 77	Right 2	0	Left 0	Thru 0	Right 0	0	80	
12:45 PM 1:00 PM 1:15 PM 1:30 PM 1:35 PM 2:00 PM 2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:15 PM 4:30 PM 4:30 PM 4:30 PM 4:45 PM	2 3 0 0 1 2 3 3 0 0 0 0 3 6 6 4 2	0 0 0 0 0 0 0 0 0 0 0	0 1 2 1 1 1 1 0 0 1 2 0 1 2 0 1 1 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	72 74 74 75 63 71 72 64 66 80 69 72 111 119 68 100 88	4 5 2 4 5 5 6 5 4 6 3 4 14 7 8 2 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	78 83 78 80 69 78 80 72 74 88 72 77 131 132 83 106 98	319 319 310 305 307 299 304 314 306 311 368 412 423 452 419
5:15 PM 5:30 PM	0	0	0 3	0	0	0	0	0	0	121 115	9	0	0	0	0	0	133 127	481 502
5:45 PM	3	0	0	0	0	0	0	0	0	113	18	0	0	0	0	0	134	538
6:00 PM 6:15 PM	3	0	5	0	0	0	0	0	0	96	7	0	0	0	0	0	111	505 450
Peak 15-Min	1		1 orthbou	0 nd	0		0 outhboun	0 d	0	79 E	6 astbound	0 !	0		0 /estbour	0 nd	87	459
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		otal
All Vehicles	4	0	0	0	0	0	0	0	0	556	16	0	0	0	0	0		76
Heavy Trucks Pedestrians	0	0	0		0	0	0		0	20 0	0		0	0	0			0
Bicycles	0	0	0		0	0	0		0	0	0		0	0	0)
Railroad											-				-			
Stopped Buses																		
Stopped Buses Comments:																		

LOCATION CITY/STAT	N: SC	Hwy 2	02 I-	-26 E							ivie	triou it	or deter	mining	QC	JOB #	#: 12491 ie, May 1	
185 7 0.80 C	136 62 7 0 • [0.85 74 0 0.86	0	• ₀			Peak-Heak 15	i-Min:	vali	ty C		ts			2.2 0.0 0.0	4.1 0.	0.0	0.0
		0	0	_		_		4			STOP	_		0 0	0 0		0 0	
* *	NA + (NA NA NA	NA NA	<u>+</u>		_	-\$			↑		-		N		NA +	► NA	
15-Min Count Period			bound)		1.6	(South	wy 202 nbound)			(Eastl	Ramps cound)			(Westl	Ramps cound)		Total	Hourly Totals
7:00 AM	33	Thru 9 18	Right 0	0	Left 0	<u>Thru</u> 14 24	Right 14	0	Left 2	Thru 0 0	Right 9 5	0	Left 0	Thru 0 0	Right 0	0	81	
7:15 AM 7:30 AM	30	29	0	0	0	17	16 17	0	0	0	7	0	0	0	0	0	94 109	272
7:45 AM 8:00 AM	21	26 19	0	0	0	19 13	15 13	0	2	0	<u>7</u> 1	<u>0</u> 1	0	0	0	0	92 72	376 367
8:15 AM 8:30 AM 8:45 AM	16 10 7	10 13 3	0 0 0	0 0 0	0 0 0	9 11 4	5 9 6	0 0 0	2 4 0	0 0 0	3 4 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	45 51 24	318 260 192
				nd		So Thru	outhbou Right	ınd U	Left	E Thru	astboun Right	U	Left	W Thru	estboui Right	nd U	To	otal
Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians Bicycles	Left 156 0	116 12 0 0	Right 0 0 0	0	0 0 0	68 0 0	68 0	0	0 0	0 0 0 0	28 0 0	0	0 0	0 0 0 0	0 0	0	43 1 (36 2)
Flowrates All Vehicles Heavy Trucks Pedestrians	156 0	116 12 0	Right 0 0	U	0	68 0 0	68 0		0	0 0	0	0	0	0	0	0	43 1 (36 2)

Method for determining peak hour: Total Entering Volume

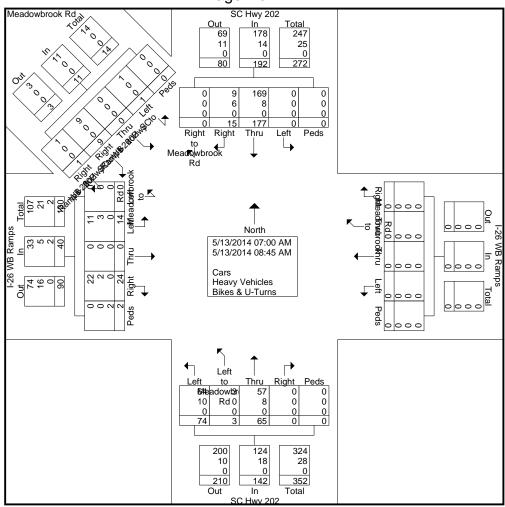
Type of peak hour being reported: Intersection Peak LOCATION: SC Hwy 202 -- I-26 WB Ramps/Meadow Brook Rd QC JOB #: 12491446 CITY/STATE: Pomaria, SC **DATE:** Tue, May 13 2014 Peak-Hour: 7:15 AM -- 8:15 AM 13.5 + Peak 15-Min: 7:30 AM -- 7:45 AM 11 114 0 36.4 3.5 0.0 13.4 12.5 0.0 0.0 0.00 0.0 55 45 0 Quality Counts 13.3 0.0 + + 137 100 0.83 11.0 COLLECTION SERVICES 0 0 0 0 NA I-26 WB Ramps/Meadow Brook/RdTotal 15-Min Count SC Hwy 202 SC Hwy 202 Hourly (Northbound) (Southbound) (Eastbound) (Westbound) Totals Period **Beginning At** Right Thru Right Left Thru Right Thru Thru Right 7:00 AM 0 0 0 0 41 7:15 AM 68 7:30 AM 10 0 30 0 0 70 7:45 AM 246 16 13 0 31 0 0 0 0 0 0 3 0 0 0 67 8:00 AM 256 12 9 0 23 0 0 0 0 51 8:15 AM 5 0 0 0 10 2 0 2 0 4 0 0 0 0 0 30 218 3 8:30 AM 11 0 0 0 20 1 0 0 0 1 0 0 0 0 43 191 8:45 AM 10 0 13 137 Peak 15-Min Northbound Southbound Eastbound Westbound **Flowrates** Right Thru <u>Thru</u> Right Thru Right Total Left Right Thru All Vehicles 40 28 280 Heavy Trucks 8 0 0 0 0 0 0 0 0 0 16 Pedestrians 0 0 **Bicycles** 0 0 0 0 0 0 0 0 0 0 0 0 0 Railroad Stopped Buse Comments:

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name: 12491446 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

Site Code : 12491446 Start Date : 5/13/2014

Page No : 1
Groups Printed- Cars - Heavy Vehicles - Turns


												Group	5 FIIII	ieu- c	<i>i</i> ais -	пеач	y veni	cies -	<u>i uiiis</u>												-
			SC H	wy 20	2			1-2	26 WI	3 Ran	nps				SC H	wy 20	2			I-	26 WI	B Ran	nps			Me	eadow	brook	k Rd		
				n Ńorth						n East						ı Śout						n Wes				F	rom N	orthw	est		
			1	Right to					Thru to					Left to					Left to		1	1 1100	Ì					0			
	l			Meadow			l		Meadow				l	Meadow					Meadow	l					Left to	Thru to	Right to	Right to			
Start Time	Left	Thru	Right	brook	Peds	App. Total	Left	Thru	brook	Right	Peds	App. Total	Left	brook	Thru	Right	Peds	App. Total	brook	Left	Thru	Right	Peds	App. Total	SC Hwy	I-26 WB	SC Hwy	I-26 WB	Peds	App. Total	Int. Total
				Rd					Rd					Rd					Rd						202	Ramps	202	Ramps			
Factor	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		
07:00 AM	0	23	1	0	0	24	0	0	0	0	0	0	7	0	3	0	0	10	0	2	0	2	0	4	0	0	3	0	0	3	41
07:15 AM	0	30	6	0	0	36	0	0	0	0	0	0	10	0	10	0	0	20	0	2	0	7	0	9	0	0	3	0	0	3	68
07:30 AM	0	30	2	0	0	32	0	0	0	0	0	0	19	1	10	0	0	30	0	1	0	6	0	7	0	0	1	0	0	1	70
07:45 AM	0	31	2	0	0	33	0	0	0	0	0	0	16	0	13	0	0	29	0	2	0	2	0	4	0	0	1	0	0	1	67
Total	0	114	11	0	0	125	0	0	0	0	0	0	52	1	36	0	0	89	0	7	0	17	0	24	0	0	8	0	0	8	
				-	-			-	-	-	-	-		-		-	-			-	-		-			_	_	-	-	_	
08:00 AM	0	23	1	0	0	24	0	0	0	0	0	0	8	1	12	0	0	21	0	2	0	3	1	6	0	0	0	1	0	1	52
08:15 AM	o o	10	2	Ō	Ō	12	0	Ō	Ō	0	Ō	Ö	7	0	5	0	0	12	0	2	Ō	4	Ó	6	1	Ō	Ö	0	Ō	1	31
08:30 AM	0	20	1	Ō	Ō	21	0	Ō	0	0	Ō	0	7	Ō	11	Ō	0	18	0	3	0	0	1	4	0	0	Ô	Ō	0	0	43
08:45 AM	0	10	0	0	0	10	0	0	0	Ô	0	Ö	0	1	1	0	0	2	0	0	0	0	0	0	n	0	1	n	0	1	13
Total	0	63	4	0	0	67	0	0	0	0	0	0	22	2	29	0	0	53	0	7	0	7	2	16	1	0	1	1	0	3	139
rotar	, 0	00	7	Ū	O	01	, ,	O	U	O	U	· ·		_	20	O	Ū	00	, 0	•	O	•	_	.0		U	•		O	Ū	100
Grand Total	0	177	15	0	0	192	1 0	٥	0	0	0	0	74	3	65	0	0	142	0	14	0	24	2	40	1	0	9	1	0	11	385
Apprch %	l ő	92.2	7.8	0	0	102	0	0	0	0	0	U	52.1	2.1	45.8	0	0	172	0	35	0	60	5	40	9.1	0	81.8	9.1	0		000
Total %	0	46	3.9	0	0	49.9	0	0	0	0	0	0	19.2	0.8	16.9	0	0	36.9	0	3.6	0	6.2	0.5	10.4	0.3	0	2.3	0.3	0	2.9	
Cars	0	169	9	0	0	178	0	0	0	0	0	0	64	3	57	0	0	124	0	11	0	22	0.5	33	0.3	0	q	1	0	11	346
% Cars	"	95.5	60	0	0	92.7	0	0	0	0	0	0	86.5	100	87.7	0	0	87.3		78.6	•	91.7	0	82.5	100	0	100	100	0	100	89.9
	- 0	55.5	- 00			52.1						0	00.0	100	01.1			01.0		10.0		51.1		02.0	100		100	100		100	03.3
Heavy Vehicles % Heavy Vehicles	0	4.5	40	0	0	7.3	0	0	0	0	0	0	13.5	0	12.3	0	0	12.7	0	21.4	0	8.3	0	12.5	0	0	0	0	0	0	9.6
% Heavy venicles			+0_			7.0							10.0		12.0							5.0		.2.0							1 0.0
% Bikes & U-Turns	0	0	0	Ω	0	0	0	O	0	0	O	0	0	0	0	Λ	0	0	0	0	0	0	100	5	0	0	0	0	0	0	0.5
76 DIKES & U∗TUINS		J	J	0	J	U		0	0	J	J	J		J	J	J	0	0		J	J	J	100	J		J	0	J	J	U	ı .

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name: 12491446 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

Site Code : 12491446 Start Date : 5/13/2014

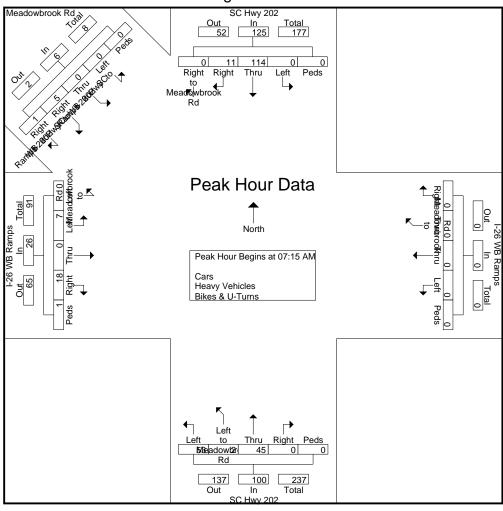
Page No : 2

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name: 12491446 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

Site Code : 12491446 Start Date : 5/13/2014

Page No : 3


		,	SC H	wy 20	2			1-2	26 WE	3 Ram	nps				SC H	wy 20	2			I-:	26 WI	3 Ran	nps			Мє	eadow	brook	Rd		
			From	North	1				Fron	n East	:				From	Sout	h				From	Wes 1	t			Fı	rom N	orthw	est		
Start Time	Left	Thru	Right	Right to Meadow brook Rd	Peds	App. Total	Left	Thru	Thru to Meadow brook Rd	Right	Peds	App. Total	Left	Left to Meadow brook Rd	Thru	Right	Peds	App. Total	Left to Meadow brook Rd	Left	Thru	Right	Peds	App. Total	Left to SC Hwy 202	Thru to I-26 WB Ramps	Right to SC Hwy 202	Right to I-26 WB Ramps	Peds	App. Total	Int. Total
Peak Hour	Analys	sis Fro	m 07:	00 AN	/l to 08	3:45 AN	1 - Pea	ak 1 o	f 1																						
Peak Hour f	for En	tire Int	ersec	tion B	egins	at 07:1	5 AM																								
07:15 AM	0	30	6	0	0	36	0	0	0	0	0	0	10	0	10	0	0	20	0	2	0	7	0	9	0	0	3	0	0	3	68
07:30 AM	0	30	2	0	0	32	0	0	0	0	0	0	19	1	10	0	0	30	0	1	0	6	0	7	0	0	1	0	0	1	70
07:45 AM	0	31	2	0	0	33	0	0	0	0	0	0	16	0	13	0	0	29	0	2	0	2	0	4	0	0	1	0	0	1	67
08:00 AM	0	23	1	0	0	24	0	0	0	0	0	0	8	1	12	0	0	21	0	2	0	3	1	6	0	0	0	1	0	1	52
Total Volume	0	114	11	0	0	125	0	0	0	0	0	0	53	2	45	0	0	100	0	7	0	18	1	26	0	0	5	1	0	6	257
% App. Total	0	91.2	8.8	0	0		0	0	0	0	0		53	2	45	0	0		0	26.9	0	69.2	3.8		0	0	83.3	16.7	0		
PHF	.000	.919	.458	.000	.000	.868	.000	.000	.000	.000	.000	.000	.697	.500	.865	.000	.000	.833	.000	.875	.000	.643	.250	.722	.000	.000	.417	.250	.000	.500	.918

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name: 12491446 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

Site Code : 12491446 Start Date : 5/13/2014

Page No : 4

PHF .000 .919 .458 .000 .000

Quality Counts, LLC

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name: 12491446 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

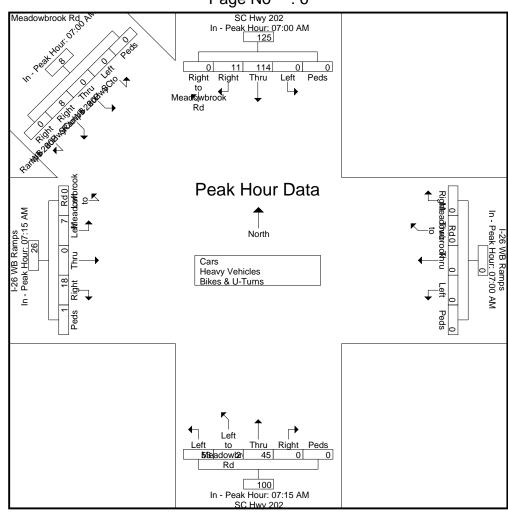
.722 .000 .000 .667 .000 .000

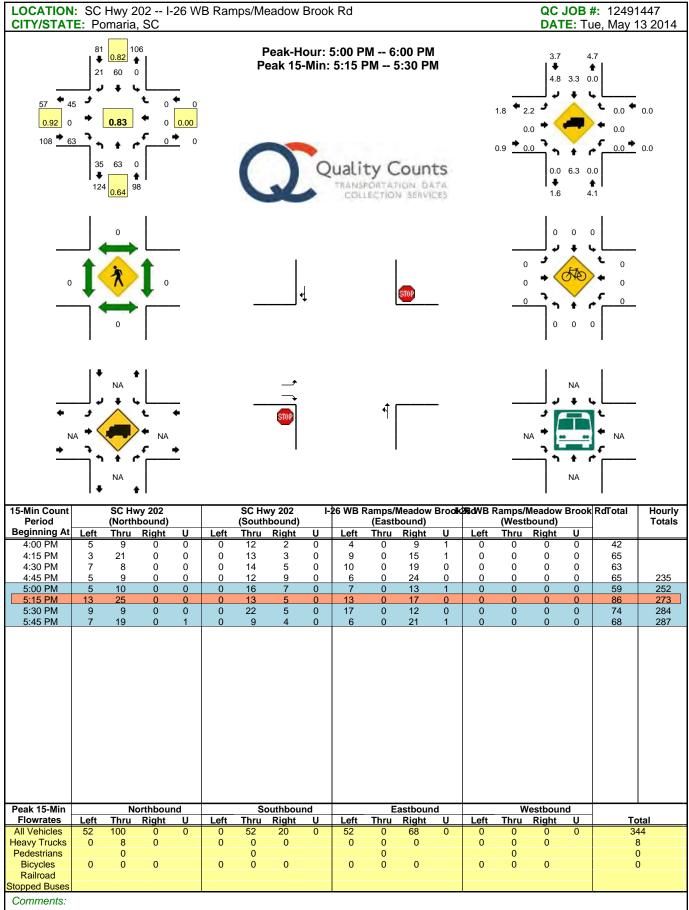
.833 .000 .875 .000 .643 .250

Site Code : 12491446 Start Date : 5/13/2014

Page No : 5

	SC Hwy 202 From North							I-26 WB Ramps From East						SC Hwy 202 From South						I-26 WB Ramps From West						Meadowbrook Rd From Northwest					
Start Time	Left	Thru	Right	Right to Meadow brook Rd	Peds	App. Total	Left	Thru	Thru to Meadow brook Rd	Right	Peds	App. Total	Left	Left to Meadow brook Rd	Thru	Right	Peds	App. Total	Left to Meadow brook Rd	Left	Thru	Right	Peds	App. Total	Left to SC Hwy 202	Thru to I-26 WB Ramps	Right to SC Hwy 202	Right to I-26 WB Ramps	Peds	App. Total	
eak Hour							Л - Реа	ak 1 o	f 1																						
eak Hour	for Ea	ch App	oroacl	h Begi	ns at:																										
	07:00 AM						07:00 AM						07:15 AM	1					07:15 AM						07:00 AM						
+0 mins.	0	23	1	0	0	24	0	0	0	0	0	0	10	0	10	0	0	20	0	2	0	7	0	9	0	0	3	0	0	3	
+15 mins.	0	30	6	0	0	36	0	0	0	0	0	0	19	1	10	0	0	30	0	1	0	6	0	7	0	0	3	0	0	3	
+30 mins.	0	30	2	0	0	32	0	0	0	0	0	0	16	0	13	0	0	29	0	2	0	2	0	4	0	0	1	0	0	1	
+45 mins.	0	31	2	0	0	33	0	0	0	0	0	0	8	1	12	0	0	21	0	2	0	3	1	6	0	0	1	0	0	1	
otal Volume	0	114	11	0	0	125	0	0	0	0	0	0	53	2	45	0	0	100	0	7	0	18	1	26	0	0	8	0	0	8	
	_	01.2	00	Λ	0			Λ	Λ	0	0		E2	2	15	0	0		_	26.0	Λ	60.2	20		۱ ۸	Λ	100	0	Λ		


.000 .697 .500 .865 .000 .000


.868 .000 .000 .000 .000 .000

920 Blairhill Rd Ste B106 Charlotte, NC 28217

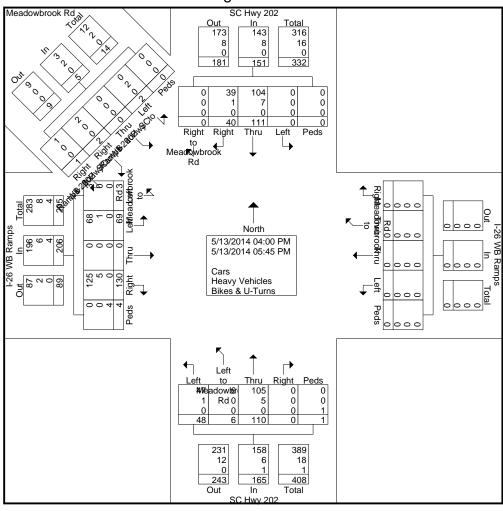
File Name: 12491446 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

Site Code : 12491446 Start Date : 5/13/2014

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name: 12491447 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

Site Code : 12491447 Start Date : 5/13/2014


Page No : 1
Groups Printed- Cars - Heavy Vehicles - Turns

												Group	5 F I II I					cies -	ullis												1
			SC H	wy 20	2			1-2	26 WE	3 Ram	ps				SC H	wy 20)2			J-3	26 WI	3 Ram	nps			Me	adow	brook	k Rd		
				North						n East	•					Sout						Wes	•				om N				
			1 1011		<u> </u>					Last						Cour					1 1011	1 4403					OIII IV	OTTITIVE	CSt		
				Right to					Thru to					Left to					Left to						Left to	Thru to	Right to	Right to			
Start Time	Left	Thru	Right	Meadow	Peds	App. Total	Left	Thru	Meadow	Right	Peds	App. Total	Left	Meadow	Thru	Right	Peds	App. Total	Meadow	Left	Thru	Right	Peds	App. Total	SC Hwy	I-26 WB	SC Hwy	I-26 WB	Peds	App. Total	Int. Total
				brook					brook					brook		1g			brook						202	Ramps	202	Ramps			
				Rd					Rd					Rd					Rd												
Factor	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		
04:00 PM	0	12	2	0	0	14	0	0	0	0	0	0	5	0	9	0	0	14	1	3	0	9	1	14	0	0	0	0	0	0	42
04:15 PM	0	13	3	0	0	16	0	0	0	0	0	0	3	0	21	0	0	24	0	9	0	15	1	25	1	0	0	0	0	1	66
04:30 PM	0	14	5	Ö	Ō	19	0	0	Ō	0	Ô	0	6	1	- 8	Ō	Ō	15	0	10	Ō	19	0	29	1	0	Ö	1	Ō	2	65
04:45 PM	0	12	q	Ö	Õ	21	0	0	Ô	0	0	0	5	0	9	0	0	14	o o	6	Ô	24	0	30	Ö	0	Õ	0	Õ	0	65
Total	0	51	19	0	0	70	0	0	0	0	0	0	19	1	47	0	0	67	1	28	0	67	2	98	2	0	0	1	0	3	238
TOtal	1 0	31	19	U	U	70	U	U	U	U	U	U	19		47	U	U	07	, ,	20	U	01		90		U	U		U	3	230
			_	_	_			_	_	_	_	_	_	_		_	_			_	_					_	_	_	_	_	ı - -
05:00 PM	0	16	7	0	0	23	0	0	0	0	0	0	5	0	10	0	0	15	0	7	0	13	1	21	0	0	0	0	0	0	59
05:15 PM	0	13	5	0	0	18	0	0	0	0	0	0	12	1	25	0	0	38	0	13	0	17	0	30	0	0	1	0	0	1	87
05:30 PM	0	22	5	0	0	27	0	0	0	0	0	0	5	4	9	0	0	18	0	17	0	12	0	29	0	0	1	0	0	1	75
05:45 PM	0	9	4	0	0	13	0	0	0	0	0	0	7	0	19	0	1	27	2	4	0	21	1	28	0	0	0	0	0	0	68
Total	0	60	21	0	0	81	0	0	0	0	0	0	29	5	63	0	1	98	2	41	0	63	2	108	0	0	2	0	0	2	289
rotar	, 0	00	- 1	U	U	01		U	U	U	U	0	20	U	00	U		50	_	71	U	00	_	100	, 0	U	_	U	U	_	200
Grand Total	١ ٥	111	40	0	0	151	_	0	0	0	0	0	48	6	110	0	4	165	3	69	0	130	4	206	2	0	2	4	0	5	527
	0		-	0	-	151	0		0	-	-	U	_	-	-	-	0.0	100	_		-		4 0	200	i	-		00	-	5	527
Apprch %	0	73.5	26.5	U	0		0	0	0	0	0		29.1	3.6	66.7	0	0.6		1.5	33.5	0	63.1	1.9		40	0	40	20	0		
Total %	0	21.1	7.6	0	0	28.7	0	0	0	0	0	0	9.1	1.1	20.9	0	0.2	31.3			0	24.7	0.8	39.1	0.4	0	0.4	0.2	0	0.9	
Cars	0	104	39	0	0	143	0	0	0	0	0	0	47	6	105	0	0	158	3	68	0	125	0	196	0	0	2	1	0	3	500
% Cars	0	93.7	97.5	0	0	94.7	0	0	0	0	0	0	97.9	100	95.5	0	0	95.8	100	98.6	0	96.2	0	95.1	0	0	100	100	0	60	94.9
Heavy Vehicles																															
% Heavy Vehicles	0	6.3	2.5	0	0	5.3	0	0	0	0	0	0	2.1	0	4.5	0	0	3.6	0	1.4	0	3.8	0	2.9	100	0	0	0	0	40	4.2
Bikes & U-Turns	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	4	4	0	0	0	0	0	0	5
% Bikes & U-Turns	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0.6	0	0	0	0	100	1.9	0	0	0	0	0	0	0.9

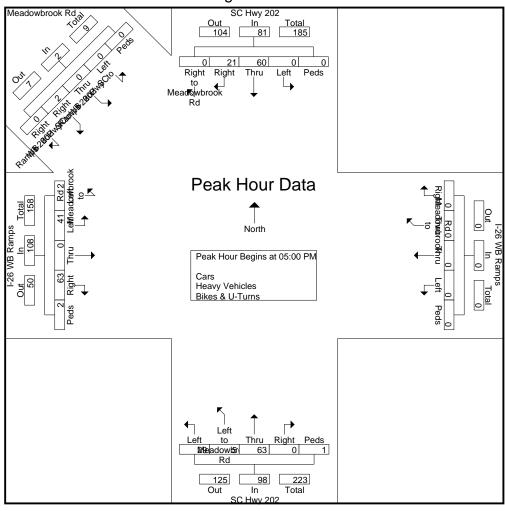
920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name: 12491447 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

Site Code : 12491447 Start Date : 5/13/2014

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name: 12491447 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd


Site Code : 12491447 Start Date : 5/13/2014

			SC H	wy 20	2			1-2	26 WE	3 Ram	nps				SC H	wy 20	2			I-2	26 WI	3 Ran	nps			Me	eadow	/brook	Rd		
			From	North	1				Fron	n East	· .				From	Sout	h				Fron	Wes	t			F	rom N	orthw	est		
Start Time	Left	Thru	Right	Right to Meadow brook Rd	Peds	App. Total	Left	Thru	Thru to Meadow brook Rd	Right	Peds	App. Total	Left	Left to Meadow brook Rd	Thru	Right	Peds	App. Total	Left to Meadow brook Rd	Left	Thru	Right	Peds	App. Total	Left to SC Hwy 202	Thru to I-26 WB Ramps	Right to SC Hwy 202	Right to I-26 WB Ramps	Peds	App. Total	Int. Total
Peak Hour	Analy	sis Fro	m 04:	00 PN	1 to 05	5:45 PN	1 - Pea	ak 1 o	f 1																						
Peak Hour f	for En	tire Int	ersec	tion B	egins	at 05:0	0 PM																								
05:00 PM	0	16	7	0	0	23	0	0	0	0	0	0	5	0	10	0	0	15	0	7	0	13	1	21	0	0	0	0	0	0	59
05:15 PM	0	13	5	0	0	18	0	0	0	0	0	0	12	1	25	0	0	38	0	13	0	17	0	30	0	0	1	0	0	1	87
05:30 PM	0	22	5	0	0	27	0	0	0	0	0	0	5	4	9	0	0	18	0	17	0	12	0	29	0	0	1	0	0	1	75
05:45 PM	0	9	4	0	0	13	0	0	0	0	0	0	7	0	19	0	1	27	2	4	0	21	1	28	0	0	0	0	0	0	68
Total Volume	0	60	21	0	0	81	0	0	0	0	0	0	29	5	63	0	1	98	2	41	0	63	2	108	0	0	2	0	0	2	289
% App. Total	0	74.1	25.9	0	0		0	0	0	0	0		29.6	5.1	64.3	0	1		1.9	38	0	58.3	1.9		0	0	100	0	0		
PHF	.000	.682	.750	.000	.000	.750	.000	.000	.000	.000	.000	.000	.604	.313	.630	.000	.250	.645	.250	.603	.000	.750	.500	.900	.000	.000	.500	.000	.000	.500	.830

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name: 12491447 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

Site Code : 12491447 Start Date : 5/13/2014

PHF .000 .716 .722 .000 .000

Quality Counts, LLC

920 Blairhill Rd Ste B106 Charlotte, NC 28217

File Name: 12491447 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd

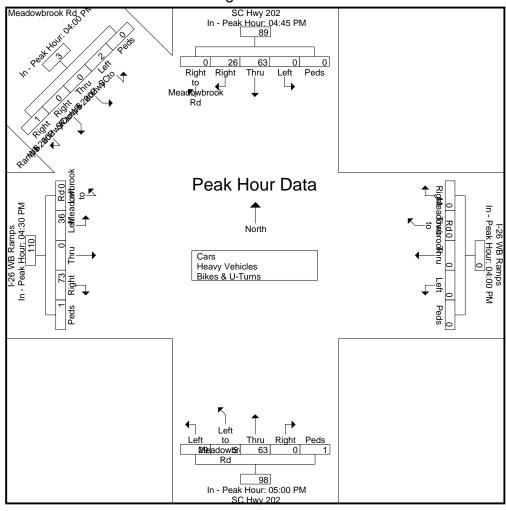
.917 .500 .000 .000 .250 .000

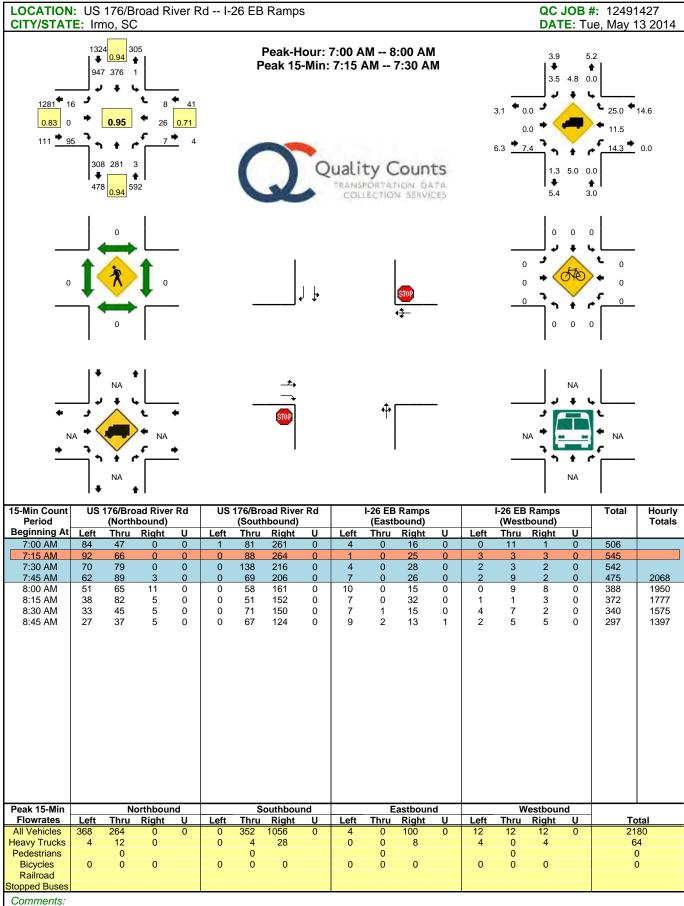
.645 .000 .692 .000 .760 .250

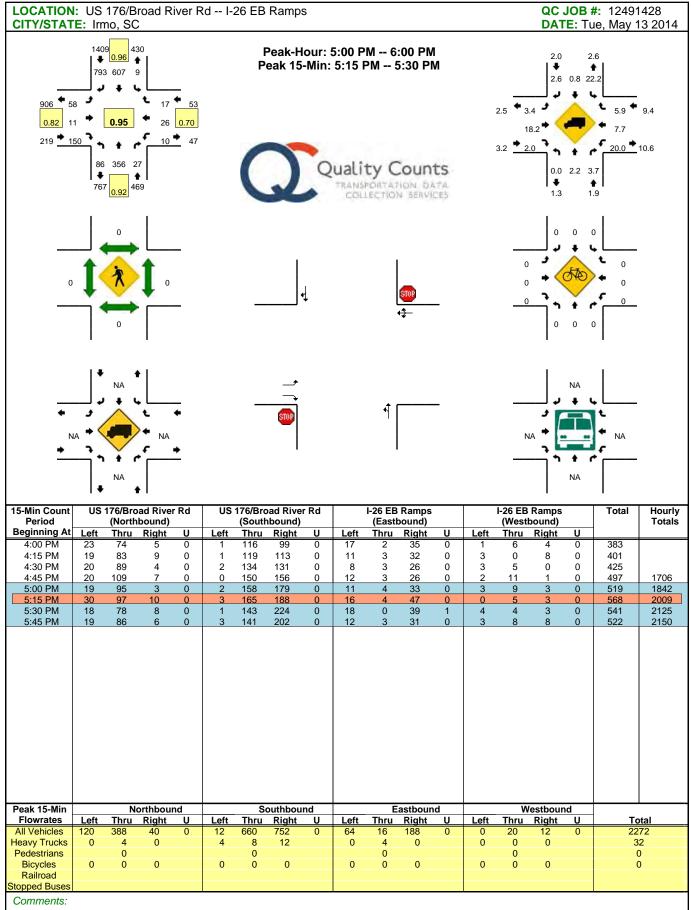
Site Code : 12491447 Start Date : 5/13/2014

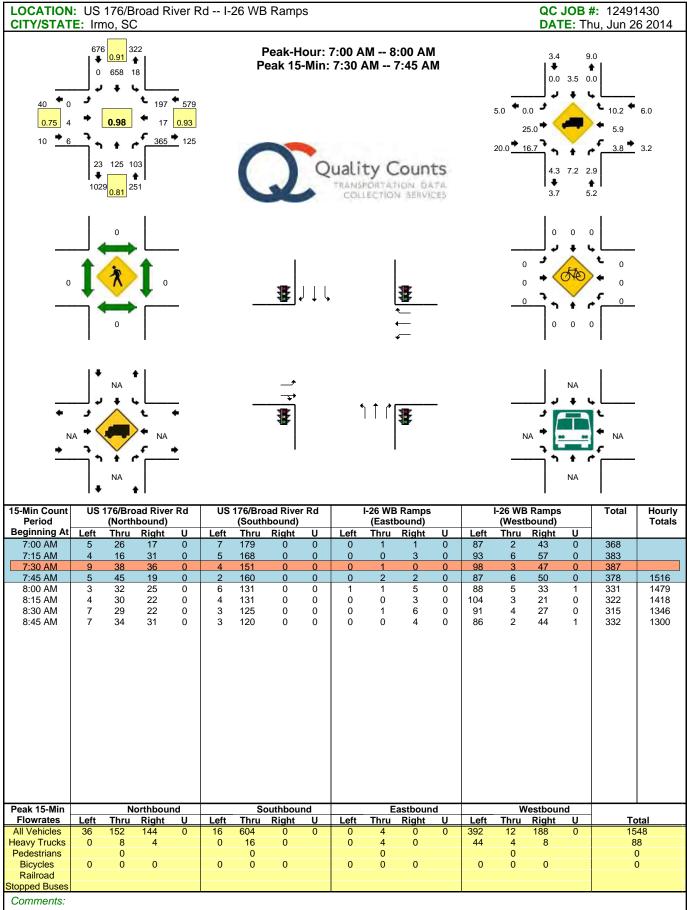
Page No : 5

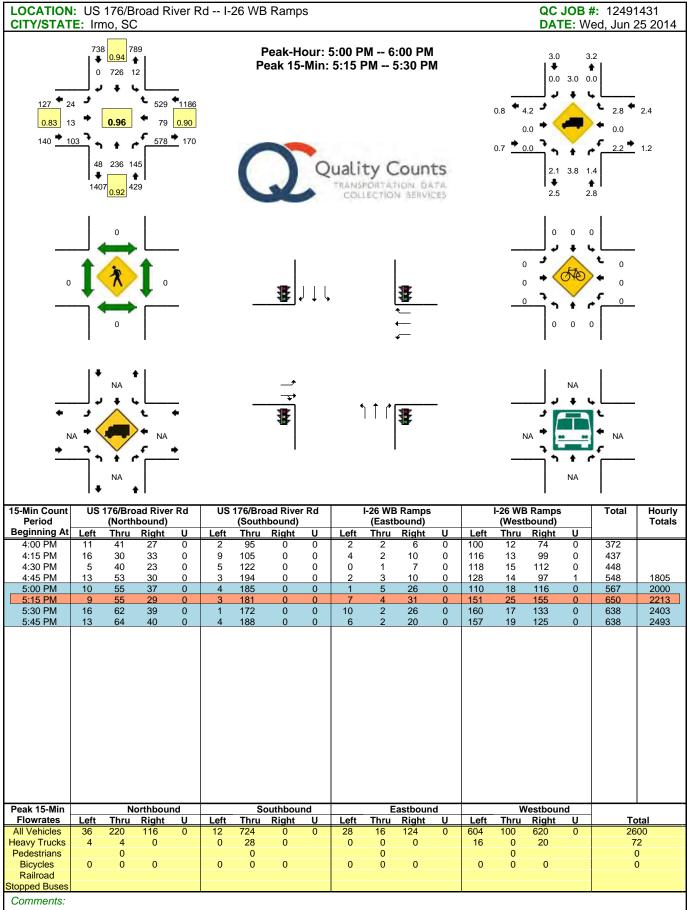
				wy 202 North				I-2	26 WE						SC H	-				l-2		Ram Wes						brook orthwe			
Start Time	Left	Thru	Right	Right to Meadow brook Rd	Peds	App. Total	Left	Thru	Thru to Meadow brook Rd	Right	Peds	App. Total	Left	Left to Meadow brook Rd	Thru	Right	Peds	App. Total	Left to Meadow brook Rd	Left	Thru	Right	Peds	App. Total	Left to SC Hwy 202	Thru to I-26 WB Ramps	Right to SC Hwy 202	Right to I-26 WB Ramps	Peds	App. Total	Int. Tota
Peak Hour	Analys	sis Fro	m 04:	:00 PM	1 to 0	5:45 PN	Л - Реа	ak 1 o	f 1																						
Peak Hour	for Ea	ch Ap	proacl	h Begi	ns at:																										_
	04:45 PM						04:00 PM						05:00 PM						04:30 PM						04:00 PM						
+0 mins.	0	12	9	0	0	21	0	0	0	0	0	0	5	0	10	0	0	15	0	10	0	19	0	29	0	0	0	0	0	0	
+15 mins.	0	16	7	0	0	23	0	0	0	0	0	0	12	1	25	0	0	38	0	6	0	24	0	30	1	0	0	0	0	1	
+30 mins.	0	13	5	0	0	18	0	0	0	0	0	0	5	4	9	0	0	18	0	7	0	13	1	21	1	0	0	1	0	2	
+45 mins.	0	22	5	0	0	27	0	0	0	0	0	0	7	0	19	0	1	27	0	13	0	17	0	30	0	0	0	0	0	0	
Total Volume	0	63	26	0	0	89	0	0	0	0	0	0	29	5	63	0	1	98	0	36	0	73	1	110	2	0	0	1	0	3	
% App. Total	0	70.8	29.2	0	0		0	0	0	0	0		29.6	5.1	64.3	0	1		0	32.7	0	66.4	0.9		66.7	0	0	33.3	0		


.000 .604 .313 .630 .000 .250


.824 .000 .000 .000 .000 .000


920 Blairhill Rd Ste B106 Charlotte, NC 28217


File Name: 12491447 - SC Hwy 202 & I-26 WB Ramps-Meadowbrook Rd


Site Code : 12491447 Start Date : 5/13/2014

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX C

CRASH DATA

Crash Summary

I- 26 (26 E) from MPT 90.557 to MPT 91.670 LEXINGTON County

01/01/2012 - 05/31/2015 (3.4 years)

Length = 1.113 miles

AADT = 43,975

Functional Class = Rural -- Principal Arterial - Interstate

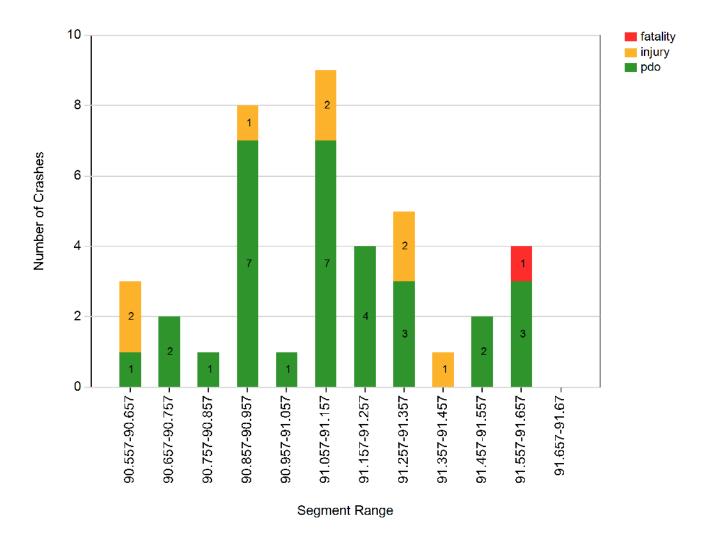
Crashes by Injury Class	
Fatality Crashes	1
Injury Crashes	8
PDO Crashes	31
Total Crashes	40
Crashes by Manner Of Collision	
Rear End	14
Angle	2
Sideswipe	4
Head On	0
Run Off Road	15
Other	5
Total Crashes	40
Special Contributing Factors	
Animal	2
Bicycle	0
Pedestrian	1

I- 26 (26 E) from MPT 90.557 to MPT 91.670

LEXINGTON County

01/01/2012 - 05/31/2015 (3.4 years)

Functional Class = Rural -- Principal Arterial - Interstate



I- 26 (26 E) from MPT 90.557 to MPT 91.670

LEXINGTON County

01/01/2012 - 05/31/2015 (3.4 years)

Functional Class = Rural -- Principal Arterial - Interstate

Section Crashes

MPT 90.557 to 90.657 (Stack #1)

Total Crashes: 3	Light: 3	Dark: 0	Dry: 1	Wet: 2	Fatalities: 0	Injuries: 2	PDO: 1
------------------	----------	---------	--------	--------	---------------	-------------	--------

 1 13535244
 90.573 INJ1
 DAY
 WET
 MOTOR VEHICLE (IN TRANSPORT)
 REAR END

 2 12573088
 90.583 INJ0
 DAY
 DRY
 MOTOR VEHICLE (IN TRANSPORT)
 REAR END

 3 13532800
 90.642 INJ1
 DAY
 WET
 MOTOR VEHICLE (STOPPED)
 REAR END

MPT 90.657 to 90.757 (Stack #2)

Total Crashes: 2 Light: 1 Dark: 1 Dry: 1 Wet: 1 Fatalities: 0 Injuries: 0 PDO: 2

 1 14623574
 90.712 INJ0
 DAY
 WET
 MEDIAN BARRIER
 NO COLLISION W/MV

 2 14606230
 90.726 INJ0
 DARK
 DRY
 ANIMAL (DEER ONLY)
 NO COLLISION W/MV

MPT 90.757 to 90.857 (Stack #3)

Total Crashes: 1 Light: 0 Dark: 1 Dry: 0 Wet: 1 Fatalities: 0 Injuries: 0 PDO: 1

1 14508930 90.773 INJ0 DARK WET MOTOR VEHICLE (IN TRANSPORT) SIDESWIPE SAME DIR

MPT 90.857 to 90.957 (Stack #4)

Total Crashes: 8	Light: 6	Dark: 2	Dry: 7	Wet: 1	Fatalities: 0	Injuries: 1	PDO: 7
------------------	----------	---------	--------	--------	---------------	-------------	--------

1 14506828	90.876 INJ0	DARK	SNOW	TREE	NO COLLISION W/MV
2 14592718	90.877 INJ0	DAY	DRY	MEDIAN BARRIER	NO COLLISION W/MV
3 13554860	90.901 INJ0	DAY	DRY	DITCH	NO COLLISION W/MV
4 14592689	90.917 INJ0	DAY	DRY	EMBANKMENT	NO COLLISION W/MV
5 12549186	90.918 INJ2	DAY	DRY	SPILL (TWO-WHEELED VEH)	NO COLLISION W/MV
6 12568711	90.920 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME DIR
7 12506514	90.921 INJ0	DARK	DRY	ANIMAL (DEER ONLY)	NO COLLISION W/MV
8 14505005	90.923 INJ0	DAY	DRY	OTHER MOVABLE OBJECT	NO COLLISION W/MV

MPT 90.957 to 91.057 (Stack #5)

Total Crashes: 1 Light: 1 Dark: 0 Dry: 0 Wet: 1 Fatalities: 0 Injuries: 0 PDO: 1

1 15527428 90.994 INJ0 DAY WET TREE NO COLLISION W/MV

MPT 91.057 to 91.157 (Stack #6)

Total Crashes: 9	Light: 6	Dark: 3	Dry: 7	Wet: 2	Fatalities: 0	Injuries: 2	PDO: 7

1 14580416	91.107 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
2 12576226	91.122 INJ0	DARK	DRY	MOTOR VEHICLE (STOPPED)	NO COLLISION W/MV
3 13509164	91.123 INJ0	DAY	WET	MOTOR VEHICLE (STOPPED)	REAR END
4 14620354	91.126 INJ0	DARK	DRY	MOTOR VEHICLE (STOPPED)	REAR END

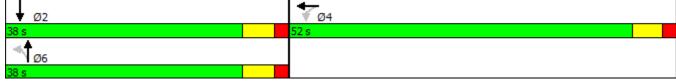
Section Crackes							
Section Crashes							
5 14560207 91.134 INJ1	DAY		DRY		HICLE (STOPPI		REAR END
6 15545968 91.138 INJ0	DAY		DRY		HICLE (STOPPI	,	REAR END
7 13621256 91.141 INJ0	DAY		WET	MOTOR VEH	HICLE (STOPPI	ED)	REAR END
8 12522173 91.151 INJ2	DARK		DRY	MOTOR VEH	HICLE (STOPPI	ED)	REAR END
9 13028770 91.151 INJ0	DAY		DRY	MOTOR VEH	HICLE (IN TRAN	NSPORT)	REAR END
MDT 04 457 (- 04 057 / 04-	-1 "7"						
MPT 91.157 to 91.257 (Sta	CK #/)						
Total Crashes: 4 Light: 2	Dark: 2	Dry: 3 W	/et: 1	Fatalities: 0	Injuries: 0	PDO: 4	
1 14512428 91.169 INJ0	DAY		DRY	MOTOR VEH	HICLE (IN TRAN	NSPORT)	ANGLE
2 13607832 91.170 INJ0	DARK		DRY	MOTOR VEH	HICLE (STOPPE	≣D)	REAR END
3 14576684 91.196 INJ0	DAY		WET	OVERHEAD	SIGN SUPPOR	RT	NO COLLISION W/MV
4 14004663 91.220 INJ0	DARK		SNOV	W MEDIAN BAR	RRIER		NO COLLISION W/MV
MPT 91.257 to 91.357 (Sta	ck #8)						
Total Crashes: 5 Light: 4	Dark: 1	Dry: 4 W	/et: 1	Fatalities: 0	Injuries: 2	PDO: 3	
1 13615213 91.291 INJ2	DAY		DRY	MOTOR VEH	HICLE (IN TRAN	NSPORT)	SIDESWIPE SAME DIR
2 13541303 91.301 INJ0	DAY		DRY	MOTOR VEH	HICLE (IN TRAN	NSPORT)	SIDESWIPE SAME DIR
3 13536711 91.310 INJ2	DAWN		WET	TREE			NO COLLISION W/MV
4 15560792 91.320 INJ0	DAY		DRY	MEDIAN BAR	RRIER		NO COLLISION W/MV
5 12565324 91.334 INJ0	DARK		DRY	OTHER NON	NCOLLISION		NO COLLISION W/MV
MPT 91.357 to 91.457 (Sta	ck #9)						
Total Crashes: 1 Light: 1	Dark: 0	Dry: 1 W	/et: 0	Fatalities: 0	Injuries: 1	PDO: 0	
1 14519195 91.381 INJ1	DAWN		DRY	OVERTURN	/ROLLOVER		NO COLLISION W/MV
MPT 91.457 to 91.557 (Sta	ck #10)						
Total Crashes: 2 Light: 2	Dark: 0	Dry: 2 W	/et: 0	Fatalities: 0	Injuries: 0	PDO: 2	
1 12589179 91.496 INJ0	DAY		DRY	MOTOR VEH	HICLE (IN TRAN	NSPORT)	REAR END
2 13523409 91.525 INJ0	DUSK		DRY	JACKKNIFE			NO COLLISION W/MV
MPT 91.557 to 91.657 (Sta	ck #11)						
Total Crashes: 4 Light: 3	Dark: 1	Dry: 3 W	/et: 1	Fatalities: 1	Injuries: 0	PDO: 3	
1 14605635 91.577 INJ4	DARK		DRY	PEDESTRIA	N		NO COLLISION W/MV
2 15536619 91.577 INJ0	DAY		WET	MOTOR VEH	HICLE (IN TRAN	NSPORT)	ANGLE
3 13551630 91.581 INJ0	DAY		DRY	MOTOR VEH	HICLE (STOPPI	ΞD)	REAR END
4 14541624 91.645 INJ0	DAY		DRY	EMBANKME	NT		NO COLLISION W/MV

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX D

EXISTING 2014 SYNCHRO AND SIM TRAFFIC REPORTS

1: Columbia Ave & I-26 EB Ramps


Intersection													
Int Delay, s/veh	1.9												
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4				4			f)			4	
Traffic Vol, veh/h	6	7	88		9	0	13	0	177	672	15	622	0
Future Vol, veh/h	6	7	88		9	0	13	0	177	672	15	622	0
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	None
Storage Length	-	-	-		-	-	-	-	-	-	-	-	_
Veh in Median Storage, #	<u>.</u>	0	-		-	0	-	-	0	-	-	0	-
Grade, %	-	0	-		-	0	-	-	0	-	-	0	_
Peak Hour Factor	90	90	90		90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow	7	8	98		10	0	14	0	197	747	17	691	0
Major/Minor	Minor2				Minor1			Major1			Major2		
Conflicting Flow All	1301	1667	691		1347	1294	570	-	0	0	943	0	0
Stage 1	724	724	-		570	570	-	-	-	-	-	-	-
Stage 2	577	943	-		777	724	-	-	-	-	-	-	_
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-	-	-	-	-	-	_
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-	-	-	-	-	-	_
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	-	-	-	2.218	-	_
Pot Cap-1 Maneuver	138	96	445		128	163	521	0	-	-	727	-	0
Stage 1	417	430	-		506	505	-	0	-	-	-	-	0
Stage 2	502	341	-		390	430	-	0	-	-	-	-	0
Platoon blocked, %									-	-		-	
Mov Cap-1 Maneuver	130	92	445		91	157	521	-	-	-	727	-	_
Mov Cap-2 Maneuver	130	92	-		91	157	-	-	-	-	-	-	-
Stage 1	417	414	-		506	505	-	-	-	-	-	-	-
Stage 2	488	341	-		287	414	-	-	-	-	-	-	-
· ·													
Approach	EB				WB			NB			SB		
HCM Control Delay, s	22.5				28.4			0			0.2		
HCM LOS	С				D								
Minor Lane/Major Mvmt	NBT	NBR	EBLn1W	/BL _{n1}	SBL	SBT							
Capacity (veh/h)	-	-	316	178	727	-							
HCM Lane V/C Ratio	-	-	0.355	0.137	0.023	-							
HCM Control Delay (s)	-	-	22.5	28.4	10.1	0							
HCM Lane LOS	-	-	С	D	В	Α							
HCM 95th %tile Q(veh)	_	-	1.6	0.5	0.1	-							

	۶	→	•	•	←	•	•	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			ર્ન			ĥ	
Traffic Volume (vph)	0	0	0	432	2	8	67	129	0	0	205	29
Future Volume (vph)	0	0	0	432	2	8	67	129	0	0	205	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	1772	0	0	1831	0	0	1831	0
Flt Permitted					0.953			0.784				
Satd. Flow (perm)	0	0	0	0	1772	0	0	1460	0	0	1831	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					2						9	
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		883			668			593			885	
Travel Time (s)		13.4			10.1			11.6			17.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)								4100				
Lane Group Flow (vph)	0	0	0	0	491	0	0	217	0	0	260	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	20.0	0	. ag.ic	LUIK	0	i tigiit	Lon	0	. agaic	20.0	0	rugiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Turn Type				Perm	NA		Perm	NA		10	NA	
Protected Phases				1 01111	4		1 01111	6			2	
Permitted Phases				4			6					
Detector Phase				4	4		6	6			2	
Switch Phase				•								
Minimum Initial (s)				10.0	10.0		10.0	10.0			10.0	
Minimum Split (s)				22.0	22.0		22.0	22.0			22.0	
Total Split (s)				52.0	52.0		38.0	38.0			38.0	
Total Split (%)				57.8%	57.8%		42.2%	42.2%			42.2%	
Maximum Green (s)				46.0	46.0		31.7	31.7			31.7	
Yellow Time (s)				4.0	4.0		4.3	4.3			4.3	
All-Red Time (s)				2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)				2.0	0.0		2.0	0.0			0.0	
Total Lost Time (s)					6.0			6.3			6.3	
Lead/Lag					0.0			0.0			0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)				4.0	4.0		3.0	3.0			3.0	
Recall Mode				None	None		Min	Min			Min	
Act Effct Green (s)				140110	19.7		IVIIII	13.6			13.6	
Actuated g/C Ratio					0.43			0.29			0.29	
v/c Ratio					0.65			0.51			0.48	
Control Delay					15.3			19.8			17.6	
Queue Delay					0.0			0.0			0.0	
Total Delay					15.3			19.8			17.6	
LOS					13.3 B			13.0 B			17.0 B	
Approach Delay					15.3			19.8			17.6	
Apploacii Delay					10.0			13.0			17.0	

S-48 IMR AECOM

2: Columbia Ave & I-26 WB Ramps

	۶	→	\rightarrow	•	←	•	4	†	/	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					В			В			В	
Queue Length 50th (ft)					88			45			52	
Queue Length 95th (ft)					211			125			137	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					1634			1053			1323	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					0.30			0.21			0.20	
Intersection Summary												
Area Type: O	ther											
Cycle Length: 90												
Actuated Cycle Length: 46.3												
Natural Cycle: 45												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 0.65												
Intersection Signal Delay: 16	.9			In	itersection	n LOS: B						
Intersection Capacity Utilizati	on 63.1%			IC	CU Level of	of Service	В					
Analysis Period (min) 15												
Splits and Phases: 2: Colu	ımbia Ave	& I-26 W	B Ramps	3								
ΓΊ				4								

HCM 2010 Signalized Intersection Summary 2: Columbia Ave & I-26 WB Ramps

	۶	→	•	•	←	•	1	†	/	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			र्स			₽	
Traffic Volume (veh/h)	0	0	0	432	2	8	67	129	0	0	205	29
Future Volume (veh/h)	0	0	0	432	2	8	67	129	0	0	205	29
Number				7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1900	1900	1863	0	0	1863	1900
Adj Flow Rate, veh/h				480	2	9	74	143	0	0	228	32
Adj No. of Lanes				0	1	0	0	1	0	0	1	0
Peak Hour Factor				0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0	2	2	0	0	2	2
Cap, veh/h				697	3	13	206	303	0	0	441	62
Arrive On Green				0.40	0.40	0.40	0.28	0.28	0.00	0.00	0.28	0.28
Sat Flow, veh/h				1731	7	32	291	1098	0	0	1599	224
Grp Volume(v), veh/h				491	0	0	217	0	0	0	0	260
Grp Sat Flow(s), veh/h/ln				1770	0	0	1389	0	0	0	0	1823
Q Serve(g_s), s				8.8	0.0	0.0	1.0	0.0	0.0	0.0	0.0	4.6
Cycle Q Clear(g_c), s				8.8	0.0	0.0	5.7	0.0	0.0	0.0	0.0	4.6
Prop In Lane				0.98		0.02	0.34		0.00	0.00		0.12
Lane Grp Cap(c), veh/h				713	0	0	509	0	0	0	0	503
V/C Ratio(X)				0.69	0.00	0.00	0.43	0.00	0.00	0.00	0.00	0.52
Avail Cap(c_a), veh/h				2129	0	0	1348	0	0	0	0	1511
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				9.4	0.0	0.0	11.6	0.0	0.0	0.0	0.0	11.7
Incr Delay (d2), s/veh				1.7	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.8
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				4.6	0.0	0.0	2.1	0.0	0.0	0.0	0.0	2.4
LnGrp Delay(d),s/veh				11.1	0.0	0.0	12.2	0.0	0.0	0.0	0.0	12.5
LnGrp LOS				В			В					В
Approach Vol, veh/h					491			217			260	
Approach Delay, s/veh					11.1			12.2			12.5	
Approach LOS					В			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	•	2		4		6	•					
Phs Duration (G+Y+Rc), s		16.8		21.4		16.8						
Change Period (Y+Rc), s		6.3		6.0		6.3						
Max Green Setting (Gmax), s		31.7		46.0		31.7						
Max Q Clear Time (g_c+l1), s		6.6		10.8		7.7						
Green Ext Time (p_c), s		2.9		4.7		2.9						
Intersection Summary												
HCM 2010 Ctrl Delay			11.7									
HCM 2010 LOS			В									
TIONI ZUTU LOO			U									

SimTraffic Simulation Summary Existing 2014 AM

Summary of All Intervals

Run Number	1	2	3	Avg	
Start Time	7:20	7:20	7:20	7:20	
End Time	8:30	8:30	8:30	8:30	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	3756	3731	3647	3712	
Vehs Exited	3764	3730	3631	3708	
Starting Vehs	102	105	86	96	
Ending Vehs	94	106	102	100	
Travel Distance (mi)	4252	4192	4111	4185	
Travel Time (hr)	94.5	100.1	87.0	93.9	
Total Delay (hr)	16.8	23.7	12.6	17.7	
Total Stops	935	948	837	907	
Fuel Used (gal)	160.6	160.5	153.3	158.2	

Interval #0 Information Seeding

Start Time	7:20
End Time	7:30
Total Time (min)	10
Volumes adjusted by Growth Fact	ore

Volumes adjusted by Growth Factors.

No data recorded this interval.

Interval #1 Information Recording

Start Time	7:30
End Time	8:30
Total Time (min)	60
Volumes adjusted by Growth F	actors.

Run Number	1	2	3	Avg	
Vehs Entered	3756	3731	3647	3712	
Vehs Exited	3764	3730	3631	3708	
Starting Vehs	102	105	86	96	
Ending Vehs	94	106	102	100	
Travel Distance (mi)	4252	4192	4111	4185	
Travel Time (hr)	94.5	100.1	87.0	93.9	
Total Delay (hr)	16.8	23.7	12.6	17.7	
Total Stops	935	948	837	907	
Fuel Used (gal)	160.6	160.5	153.3	158.2	

Queuing and Blocking Report Existing 2014 AM

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	284	47	51	438
Average Queue (ft)	97	16	12	86
95th Queue (ft)	265	40	37	321
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)		2	1	2
Queuing Penalty (veh)		0	6	12
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	343	193	204
Average Queue (ft)	119	78	81
95th Queue (ft)	279	157	153
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	1		
Queuing Penalty (veh)	5		
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

1: Columbia Ave & I-26 EB Ramps

Intersection													
Int Delay, s/veh	2.9												
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4				4			£			4	
Traffic Vol, veh/h	11	7	85		1	0	9	0	229	490	49	830	0
Future Vol, veh/h	11	7	85		1	0	9	0	229	490	49	830	0
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	· <u>-</u>	None		·-	·_	None	-	-	None	-	-	None
Storage Length	-	-	-		-	-	-	-	-	-	-	-	_
Veh in Median Storage, #	<u>-</u>	0	-		-	0	-	-	0	-	-	0	_
Grade, %	-	0	-		-	0	-	-	0	-	-	0	_
Peak Hour Factor	90	90	90		90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow	12	8	94		1	0	10	0	254	544	54	922	0
		_				-				• • • •			
Major/Minor	Minor2			١	/linor1			Major1			Major2		
Conflicting Flow All	1563	1830	922	•	1609	1558	527		0	0	799	0	0
Stage 1	1031	1031	-		527	527	-	-	-	-	755	-	_
Stage 2	532	799	_		1082	1031	_	_	_	_		_	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22			_	4.12	_	
Critical Hdwy Stg 1	6.12	5.52	0.22		6.12	5.52	0.22		_	_	7.12	_	
Critical Hdwy Stg 2	6.12	5.52	_		6.12	5.52	_	_		_		_	
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018			_	_	2.218	_	
Pot Cap-1 Maneuver	91	76	327		84	112	551	0	_	_	824	_	0
Stage 1	281	310	JZ1 -		535	528	551	0	_	_	024	_	0
Stage 2	531	398	_		263	310	_	0	_	-	-	_	0
Platoon blocked, %	JJ 1	330	_		200	310	_	U	_	_	<u>-</u>	_	U
Mov Cap-1 Maneuver	80	66	327		49	97	551	_	_	-	824	_	
Mov Cap-1 Maneuver	80	66	321		49	97	551	<u>-</u>	_	-	024	-	_
	281	268	-		535	528	-		_		-		_
Stage 1	521	398			157	268		-	-	-	=	-	-
Stage 2	521	390	-		157	200	-	-	-	-	=	-	-
Approach	EB				WB			NB			SB		
HCM Control Delay, s	42.7				18.8			0			0.5		
HCM LOS	E				С								
Minor Lane/Major Mvmt	NBT	NBR	EBLn1V		SBL	SBT							
Capacity (veh/h)	-	-	205	272	824	-							
HCM Lane V/C Ratio	-	-		0.041		-							
HCM Control Delay (s)	-	-	42.7	18.8	9.7	0							
HCM Lane LOS	-	-	Е	С	Α	Α							
HCM 95th %tile Q(veh)	-	-	3	0.1	0.2	-							

	۶	→	•	•	←	•	4	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			ર્ન			ĵ.	
Traffic Volume (vph)	0	0	0	704	2	11	109	140	0	0	175	7
Future Volume (vph)	0	0	0	704	2	11	109	140	0	0	175	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	1772	0	0	1824	0	0	1853	0
Flt Permitted					0.953			0.763	-			
Satd. Flow (perm)	0	0	0	0	1772	0	0	1421	0	0	1853	0
Right Turn on Red			Yes			Yes			Yes		.000	Yes
Satd. Flow (RTOR)			100		1	100			100		2	100
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		883			668			593			885	
Travel Time (s)		13.4			10.1			11.6			17.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0	^	^	0	700	0	^	077	^	^	000	
Lane Group Flow (vph)	0	0	0	0	796	0	0	277	0	0	202	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type				Perm	NA		Perm	NA			NA	
Protected Phases					4			6			2	
Permitted Phases				4			6					
Detector Phase				4	4		6	6			2	
Switch Phase												
Minimum Initial (s)				10.0	10.0		10.0	10.0			10.0	
Minimum Split (s)				22.0	22.0		22.0	22.0			22.0	
Total Split (s)				56.0	56.0		34.0	34.0			34.0	
Total Split (%)				62.2%	62.2%		37.8%	37.8%			37.8%	
Maximum Green (s)				50.0	50.0		27.7	27.7			27.7	
Yellow Time (s)				4.0	4.0		4.3	4.3			4.3	
All-Red Time (s)				2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)				2.0	0.0		2.0	0.0			0.0	
Total Lost Time (s)					6.0			6.3			6.3	
Lead/Lag					0.0			0.5			0.5	
•												
Lead-Lag Optimize?				4.0	4.0		2.0	2.0			2.0	
Vehicle Extension (s)				4.0	4.0		3.0	3.0			3.0	
Recall Mode				None	None		Min	Min			Min	
Act Effct Green (s)					38.1			19.9			19.9	
Actuated g/C Ratio					0.54			0.28			0.28	
v/c Ratio					0.84			0.70			0.39	
Control Delay					24.2			35.3			24.9	
Queue Delay					0.0			0.0			0.0	
Total Delay					24.2			35.3			24.9	
LOS					С			D			С	
Approach Delay					24.2			35.3			24.9	

S-48 IMR AECOM

2: Columbia Ave & I-26 WB Ramps

	۶	→	\rightarrow	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					С			D			С	
Queue Length 50th (ft)					274			111			73	
Queue Length 95th (ft)					519			217			147	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					1290			594			776	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					0.62			0.47			0.26	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 71.	.2											
Natural Cycle: 60												
Control Type: Actuated-Un	coordinated											
Maximum v/c Ratio: 0.84												
Intersection Signal Delay: 2	26.7			In	tersectior	LOS: C						
Intersection Capacity Utiliz	ation 78.3%			IC	U Level	of Service	D					
Analysis Period (min) 15												

Splits and Phases: 2: Columbia Ave & I-26 WB Ramps

HCM 2010 Signalized Intersection Summary 2: Columbia Ave & I-26 WB Ramps

Lane Configurations		۶	→	•	•	←	•	1	†	/	/		4
Traffic Volume (veh/h) 0 0 0 704 2 11 109 140 0 0 175 7 Number 7 4 14 1 6 16 16 5 2 12 Initial Q (2b), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (veh/h) O	Lane Configurations					4			र्स			₽	
Number	Traffic Volume (veh/h)	0	0	0	704		11	109	140	0	0	175	7
Initial Q (Ob), weh	Future Volume (veh/h)	0	0	0	704	2	11	109	140	0	0	175	7
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Number				7	4	14	1	6	16	5	2	12
Parking Bus, Adj Adj Sat Flow, veh/h/In Adj Sat Flow, veh/h/In Adj Flow Rate, veh/h Adj Flow	Initial Q (Qb), veh				0	0			0	0	0	0	0
Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Adj No of Lanes 0 1 0 0 1 1663 1900 Adj Flow Rate, veh/h 782 2 12 12 11 156 0 0 194 8 Adj No of Lanes 0 1 0 0 1 0 0 1 0 0 1 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, vehih	Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj No. of Lanes	Adj Sat Flow, veh/h/ln				1900	1863	1900	1900	1863	0	0	1863	1900
Peak Hour Factor	Adj Flow Rate, veh/h				782	2	12	121	156	0	0	194	8
Percent Heavy Veh, %	Adj No. of Lanes				0	1	0	0	1	0	0	1	0
Cap, veh/h On Green O.53 O.53 O.53 O.53 O.53 O.58 O.58 O.50 O.50 O.50 O.50 O.50 O.50 O.50 O.50	Peak Hour Factor				0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Arrive On Green Arrive On Green O.53 O.53 O.53 O.53 O.53 O.53 O.53 O.54 O.00 O.	Percent Heavy Veh, %				0	2	0	2	2	0	0	2	2
Sat Flow, veh/h 1740 4 27 443 821 0 0 1777 73 Gp Volume(v), veh/h 796 0 0 277 0 0 0 0 202 Gp Sat Flow(s), veh/h/ln 1771 0 0 1264 0 0 0 0 1850 Q Serve(g, s), s 25.1 0.0 0.0 8.4 0.0 <t< td=""><td>Cap, veh/h</td><td></td><td></td><td></td><td>929</td><td></td><td></td><td>202</td><td>229</td><td>0</td><td>0</td><td>497</td><td>20</td></t<>	Cap, veh/h				929			202	229	0	0	497	20
Grp Volume(v), veh/h 796 0 0 277 0 0 0 202 Grp Sat Flow(s), veh/h/ln 1771 0 0 1264 0 0 0 1850 Q Serve(g_s), s 25.1 0.0 0.0 8.4 0.0 0.0 0.0 0.5 5.8 Cycle Q Clear(g_c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 5.8 Prop In Lane 0.98 0.02 0.44 0.00 0.00 0.04 Lane Grp Cap(c), veh/h 945 0 0 432 0 0 0 0.517 V/C Ratio(X) 0.84 0.00 0.00 0.64 0.0	Arrive On Green				0.53	0.53	0.53	0.28	0.28	0.00	0.00	0.28	0.28
Grp Sat Flow(s), veh/h/ln Q Serve(g, s), s 25.1 0.0 0.0 8.4 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g, c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g, c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g, c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g, c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g, c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Sat Flow, veh/h				1740	4	27	443	821	0	0	1777	73
Grp Sat Flow(s), veh/h/ln Q Serve(g, s), s 25.1 0.0 0.0 8.4 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g, c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g, c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g, c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g, c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g, c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0					796	0	0	277	0	0	0	0	202
Q Serve(g_s), s Cycle Q Clear(g_c), s 25.1 0.0 0.0 8.4 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g_c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g_c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g_c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 5.8 Cycle Q Clear(g_c), s 25.1 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0										0			1850
Cycle Q Clear(g_c), s						0.0	0.0		0.0	0.0	0.0	0.0	5.8
Prop In Lane 0.98 0.02 0.44 0.00 0.00 0.00 0.04 Lane Grp Cap(c), veh/h 945 0 0 432 0 0 0 0 0 517 V/C Ratio(X) 0.84 0.00 0.00 0.64 0.00 0.													5.8
Lane Grp Cap(c), veh/h V/C Ratio(X) 0.84 0.00 0.00 0.64 0.00							0.02						
V/C Ratio(X) 0.84 0.00 0.00 0.64 0.00 1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td>517</td>						0			0			0	517
Avail Cap(c_a), veh/h HCM Platoon Ratio 1.00						0.00	0.00	0.64				0.00	0.39
HCM Platoon Ratio													777
Upstream Filter(I) 1.00 0.00 0.00 1.00 0.0 0							1.00					1.00	1.00
Uniform Delay (d), s/veh													1.00
Incr Delay (d2), s/veh													19.2
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0													0.5
%ile BackOfQ(55%), veh/ln 13.3 0.0 0.0 4.9 0.0 0.0 0.0 0.0 3.0 LnGrp Delay(d), s/veh 17.2 0.0 0.0 24.4 0.0 0.0 0.0 0.0 19.7 LnGrp LOS B C B C B Approach Vol, veh/h 796 277 202 Approach Delay, s/veh 17.2 24.4 19.7 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 7 8 8 8 8 8 8 8 8 8 8 8 9 8 9 <td></td> <td>0.0</td>													0.0
LnGrp Delay(d),s/veh 17.2 0.0 0.0 24.4 0.0 0.0 0.0 0.0 19.7 LnGrp LOS B C B C B B B C B B C B B C B D C B D C B D C B D C B D C B D C B D C B D C D B D C D B D C D <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.0</td></td<>													3.0
LnGrp LOS B C B Approach Vol, veh/h 796 277 202 Approach Delay, s/veh 17.2 24.4 19.7 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 24.7 41.2 24.7 Change Period (Y+Rc), s 6.3 6.0 6.3 Amax Green Setting (Gmax), s 27.7 50.0 27.7 Max Q Clear Time (g_c+l1), s 7.8 27.1 16.3 Green Ext Time (p_c), s 2.8 8.1 2.2 Intersection Summary HCM 2010 Ctrl Delay 19.1	` '												
Approach Vol, veh/h 796 277 202 Approach Delay, s/veh 17.2 24.4 19.7 Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 6 Phs Duration (G+Y+Rc), s 24.7 41.2 24.7 41.2 24.7 Change Period (Y+Rc), s 6.3 6.0 6.3 6.3 6.0 6.3 Amax Green Setting (Gmax), s 27.7 50.0 27.7 50.0 27.7 Max Q Clear Time (g_c+l1), s 7.8 27.1 16.3 3 3 3 4 6 3 4 6 6 7 8 8 1 2.2 1													
Approach Delay, s/veh						796			277			202	
Approach LOS B C B Timer 1 2 3 4 5 6 7 8 Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 24.7 41.2 24.7 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 27.7 50.0 27.7 Max Q Clear Time (g_c+I1), s 7.8 27.1 16.3 Green Ext Time (p_c), s 2.8 8.1 2.2 Intersection Summary HCM 2010 Ctrl Delay 19.1													
Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 24.7 41.2 24.7 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 27.7 50.0 27.7 Max Q Clear Time (g_c+l1), s 7.8 27.1 16.3 Green Ext Time (p_c), s 2.8 8.1 2.2 Intersection Summary HCM 2010 Ctrl Delay 19.1	Approach LOS												
Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 24.7 41.2 24.7 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 27.7 50.0 27.7 Max Q Clear Time (g_c+l1), s 7.8 27.1 16.3 Green Ext Time (p_c), s 2.8 8.1 2.2 Intersection Summary HCM 2010 Ctrl Delay 19.1	Timer	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s 24.7 41.2 24.7 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 27.7 50.0 27.7 Max Q Clear Time (g_c+I1), s 7.8 27.1 16.3 Green Ext Time (p_c), s 2.8 8.1 2.2 Intersection Summary HCM 2010 Ctrl Delay 19.1					4								
Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 27.7 50.0 27.7 Max Q Clear Time (g_c+l1), s 7.8 27.1 16.3 Green Ext Time (p_c), s 2.8 8.1 2.2 Intersection Summary HCM 2010 Ctrl Delay 19.1							-						
Max Green Setting (Gmax), s 27.7 50.0 27.7 Max Q Clear Time (g_c+l1), s 7.8 27.1 16.3 Green Ext Time (p_c), s 2.8 8.1 2.2 Intersection Summary HCM 2010 Ctrl Delay 19.1													
Max Q Clear Time (g_c+l1), s 7.8 27.1 16.3 Green Ext Time (p_c), s 2.8 8.1 2.2 Intersection Summary HCM 2010 Ctrl Delay 19.1													
Green Ext Time (p_c), s 2.8 8.1 2.2 Intersection Summary HCM 2010 Ctrl Delay 19.1	• , ,												
HCM 2010 Ctrl Delay 19.1	Green Ext Time (p_c), s												
HCM 2010 Ctrl Delay 19.1	Intersection Summary												
•				19.1									

SimTraffic Simulation Summary Existing 2014 PM

Summary of All Intervals

Run Number	_ 1	2	3	Avg	
Start Time	4:35	4:35	4:35	4:35	
End Time	5:45	5:45	5:45	5:45	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	4185	4108	4180	4157	
Vehs Exited	4182	4112	4211	4168	
Starting Vehs	110	111	108	113	
Ending Vehs	113	107	77	96	
Travel Distance (mi)	4855	4746	4877	4826	
Travel Time (hr)	112.3	114.1	111.0	112.5	
Total Delay (hr)	24.8	27.4	22.9	25.0	
Total Stops	1154	1303	1116	1191	
Fuel Used (gal)	180.7	179.3	182.6	180.9	

Interval #0 Information Seeding

Start Time	4:35
End Time	4:45
Total Time (min)	10
Maliana a a allianta di bia Onesi de E	1

Volumes adjusted by Growth Factors.

No data recorded this interval.

Interval #1 Information Recording

Start Time	4:45					
End Time	5:45					
Total Time (min)	60					
Volumes adjusted by Growth Factors.						

Run Number	1	2	3	Avg	
Vehs Entered	4185	4108	4180	4157	
Vehs Exited	4182	4112	4211	4168	
Starting Vehs	110	111	108	113	
Ending Vehs	113	107	77	96	
Travel Distance (mi)	4855	4746	4877	4826	
Travel Time (hr)	112.3	114.1	111.0	112.5	
Total Delay (hr)	24.8	27.4	22.9	25.0	
Total Stops	1154	1303	1116	1191	
Fuel Used (gal)	180.7	179.3	182.6	180.9	

Queuing and Blocking Report Existing 2014 PM

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	293	32	57	519
Average Queue (ft)	87	5	10	197
95th Queue (ft)	223	23	35	522
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)		0	1	4
Queuing Penalty (veh)		0	4	33
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	696	252	222
Average Queue (ft)	256	110	91
95th Queue (ft)	529	198	175
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	5		
Queuing Penalty (veh)	33		
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX E

EXISTING 2014 HCS REPORTS

Density, D

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: West of SC 202 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1199 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 333 V Trucks and buses 4 응 Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 Flow rate, vp 706 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ 706 Flow rate, vp pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N

9.4

Α

pc/mi/ln

free-flow speed is less than 55 mph.

Density, D

Level of service, LOS

Phone: E-mail:		Fax:					
	Operational Ana	lysis					
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: S-48 IMR		SC 202					
	Flow Inputs and	Adjustments					
Volume, V Peak-hour factor, PHF		1349 0.90	veh/h				
Peak 15-min volume, v15		375	v				
Trucks and buses		4	8				
Recreational vehicles		0	8				
Terrain type: Grade		Rolling -	%				
Segment length		_	mi				
Trucks and buses PCE, E	Т	2.5	шт				
Recreational vehicle PC		2.0					
Heavy vehicle adjustmen		0.943					
Driver population facto		1.00					
Flow rate, vp		794	pc/h/ln				
Speed Inputs and Adjustments							
Lane width		12.0	ft				
Right-side lateral clea	rance	6.0	ft				
Total ramp density, TRD)	0.33	ramps/mi				
Number of lanes, N		2					
Free-flow speed:		Base					
FFS or BFFS	CT	75.4	mi/h				
Lane width adjustment,		0.0 0.0	mi/h mi/h				
Lateral clearance adjus TRD adjustment	tillelit, ILC	1.3	mi/h				
Free-flow speed, FFS		74.1	mi/h				
LOS and Performance Measures							
Flow rate, vp		794	pc/h/ln				
Free-flow speed, FFS		74.1	mi/h				
Average passenger-car s Number of lanes, N	peea, S	75.0 2	mi/h				
Number of Talles, N		4	, , , , ,				

pc/mi/ln

10.6

Α

free-flow speed is less than 55 mph.

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1981 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 550 V Trucks and buses 4 કૃ Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 1167 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1167 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 74.7 mi/h Number of lanes, N

15.6

В

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Analy	ysis	
Analysis Time Period:	6/30/2016		
	Flow Inputs and A	Adjustments	
Volume, V	_	3315	veh/h
Peak-hour factor, PHF Peak 15-min volume, v15		0.90 921	v
Trucks and buses Recreational vehicles		4 0	% %
Terrain type:		Rolling	•
Grade		_	8
Segment length Trucks and buses PCE, E	Т	2.5	mi
Recreational vehicle PC	E, ER	2.0	
Heavy vehicle adjustmen		0.943	
Driver population facto Flow rate, vp	r, ip	1.00 1952	pc/h/ln
	Speed Inputs and	Adjustments	
Lane width		12.0	ft
Right-side lateral clea	rance	6.0	ft
Total ramp density, TRD		0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS	ST M	75.4	mi/h
Lane width adjustment,		0.0	mi/h
Lateral clearance adjus TRD adjustment	tment, ILC	0.0 1.3	mi/h mi/h
Free-flow speed, FFS		74.1	mi/h
,	LOS and Performan		
	105 did refrormat		
Flow rate, vp		1952	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	peed, S	65.0	mi/h
Number of lanes, N		2	

pc/mi/ln

30.0

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: East of US 176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ 1476 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 410 V Trucks and buses 4 응 Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 Flow rate, vp 869 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 869 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N

11.6

В

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational :	Analysis	
		and US 176	
	Flow Inputs	and Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E' Recreational vehicle PCE Heavy vehicle adjustment	E, ER	1195 0.90 332 4 0 Rolling - - 2.5 2.0 0.943	veh/h v % % % mi
Driver population factor Flow rate, vp		1.00	pc/h/ln
	Speed Inputs	and Adjustments	
Lane width Right-side lateral clear Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjustment TRD adjustment Free-flow speed, FFS	flw	12.0 6.0 0.33 2 Base 75.4 0.0 0.0	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Perf	ormance Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car sy Number of lanes, N Density, D	peed, S	704 74.1 75.0 2 9.4	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

Α

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Analys	sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: S-48 IMR		2 202	
	Flow Inputs and Ad	ljustments	
Volume, V		851	veh/h
Peak-hour factor, PHF		0.90	·
Peak 15-min volume, v15		236	V
Trucks and buses		4	%
Recreational vehicles		0	8
Terrain type:		Rolling	90
Grade		-	% mi
Segment length Trucks and buses PCE, E	T	2.5	шт
Recreational vehicle PC		2.0	
Heavy vehicle adjustmen		0.943	
Driver population facto		1.00	
Flow rate, vp	Ι, ΙΡ	501	pc/h/ln
			_
	Speed Inputs and A	Adjustments	
Lane width		12.0	ft
Right-side lateral clea		6.0	ft
Total ramp density, TRD		0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS	C	75.4	mi/h
Lane width adjustment,		0.0	mi/h
Lateral clearance adjus	tment, ILC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Performand	ce Measures	
Flow rate, vp		501	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	peed, S	75.0	mi/h
Number of lanes, N		2	

6.7

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: West of SC 202 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ 891 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 248 V Trucks and buses 4 % Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 Flow rate, vp 525 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 525 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N

7.0

Α

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Ar	nalysis	
Analysis Time Period:	6/30/2016 PM Peak I-26 EB West of SC 202		
	Flow Inputs ar	nd Adjustments	
Volume, V Peak-hour factor, PHF		1440 0.90	veh/h
Peak 15-min volume, v15 Trucks and buses		400	V %
Recreational vehicles Terrain type:		0 Rolling	8
Grade Segment length		- -	% mi
Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen	E, ER t, fHV	2.5 2.0 0.943	2
Driver population factor Flow rate, vp	or, ip	1.00 848	pc/h/ln
	Speed Inputs a	and Adjustments	
Lane width		12.0	ft
Right-side lateral clear Total ramp density, TRI Number of lanes, N)	6.0 0.33 2	ft ramps/mi
Free-flow speed: FFS or BFFS Lane width adjustment,	fLW	Base 75.4 0.0	mi/h mi/h
Lateral clearance adjus		0.0 1.3	mi/h mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perfor	rmance Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s	peed, S	848 74.1 75.0	pc/h/ln mi/h mi/h
Number of lanes, N		2	ng/mi/ln

11.3

В

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Analy	sis	
Analysis Time Period:	6/30/2016 PM Peak I-26 EB Between S-48 and S	C 202	
	Flow Inputs and A	djustments	
Volume, V	<u>-</u>	1406	veh/h
Peak-hour factor, PHF		0.90	
Peak 15-min volume, v15		391	V
Trucks and buses		4	%
Recreational vehicles		0	%
Terrain type:		Rolling	•
Grade		_	8
Segment length		- 0 F	mi
Trucks and buses PCE, E		2.5	
Recreational vehicle PC		2.0	
Heavy vehicle adjustmen		0.943 1.00	
Driver population facto Flow rate, vp	г, гр	828	pc/h/ln
riow race, vp		020	pc/11/111
	Speed Inputs and	Adjustments	
Lane width		12.0	ft
Right-side lateral clea		6.0	ft
Total ramp density, TRD		0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS	_	75.4	mi/h
Lane width adjustment,		0.0	mi/h
Lateral clearance adjus	tment, ILC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Performan	ce Measures	
Flow rate, vp		828	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	peed, S	75.0	mi/h
Number of lanes, N		2	

pc/mi/ln

11.0+

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational An	alysis	
Analysis Time Period:	6/30/2016	d US 176	
	Flow Inputs an	d Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustment Driver population factor Flow rate, vp	T E, ER t, fHV	1804 0.90 501 4 0 Rolling - - 2.5 2.0 0.943 1.00 1062	<pre>veh/h v % % % mi pc/h/ln</pre>
	Speed Inputs a	and Adjustments	
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	fLW	12.0 6.0 0.33 2 Base 75.4 0.0 0.0 1.3 74.1	<pre>ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h</pre>
	LOS and Perfor	mance Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D	peed, S	1062 74.1 75.0 2 14.2	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

В

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: East of US176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ 2404 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 668 V 4 Trucks and buses 응 Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 1416 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1416 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 73.1 mi/h Number of lanes, N Density, D 19.4 pc/mi/ln

C

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: East of US 176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ 3049 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 847 V 4 Trucks and buses 응 Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 Flow rate, vp 1796 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1796 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 68.0 mi/h Number of lanes, N

26.4

D

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ 1870 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 519 V Trucks and buses 4 ે Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 1101 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1101 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 74.9 mi/h Number of lanes, N

14.7

В

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Ar	nalysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: S-48 IMR	AECOM AECOM 6/30/2016 PM Peak I-26 WB Between S-48 ar	nd SC 202	
	Flow Inputs ar	nd Adjustments	
Volume, V Peak-hour factor, PHF		1271 0.90	veh/h
Peak 15-min volume, v15 Trucks and buses Recreational vehicles		353 4 0	V % %
Terrain type: Grade Segment length		Rolling - -	% mi
Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp	E, ER t, fHV	2.5 2.0 0.943 1.00 748	pc/h/ln
riow race, vp		740	pc/11/111
	Speed Inputs a	and Adjustments	
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus	flw	12.0 6.0 0.33 2 Base 75.4 0.0	<pre>ft ft ramps/mi mi/h mi/h mi/h</pre>
TRD adjustment Free-flow speed, FFS	,	1.3 74.1	mi/h mi/h
	LOS and Perfo	rmance Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N	peed, S	748 74.1 75.0 2	pc/h/ln mi/h mi/h
Density, D		10.0	pc/mi/ln

Α

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: West of SC 202 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1215 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 338 V Trucks and buses 4 응 Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 Flow rate, vp 716 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 716 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N

9.5

Α

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: E-mail:		Fa	x:				
	Merge	Analys	is				
Agency/Co.: AE Date performed: 6/ Analysis time period: AM Freeway/Dir of Travel: I-	26 EB -202 EB On-R	amp					
	Free	way Dat	a				
Type of analysis Number of lanes in freeway Free-flow speed on freeway Volume on freeway		2 7	erge 5.0 164		mph vph		
	On R	amp Dat	a				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/dece Length of second accel/dec		1 2 1	ight 5.0 85 00		mph vph ft ft		
A	djacent Ramp	Data (if one	e exists)		
Does adjacent ramp exist? Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ramp		3 U O	es 5 pstrea ff 050	am	vph ft		
Conver	sion to pc/h	Under	Base (Condition	ns		
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length		Freewa 1164 0.90 323 4 0 Rollin		Ramp 185 0.90 51 2 0 Rolling	% mi	Adjacent Ramp 35 0.90 10 2 0 Rolling %	_
Trucks and buses PCE, ET Recreational vehicle PCE,	ER	2.5	_	2.5		2.5	

```
1371
                                              212
                                                         40
Flow rate, vp
                                                                  pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1371 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1583
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                  12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1371
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                   1583
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 15.2 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.320
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 64.4
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

1.00

0.971

1.00

S = 64.4

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Space mean speed for all vehicles,

Phone:

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Fax:

E-mail:		rax.					
Merge Analysis							
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	AECOM AECOM 6/30/2016 AM Peak I-26 EB S-48 EB On-Ram						
	Free	way Data					
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway		Merge 2 75.0 1248		mph vph			
	On R	amp Data					
Does adjacent ramp exis	ecel lane decel lane Adjacent Ramp t?	Yes					
Volume on adjacent Ramp Position of adjacent Ra Type of adjacent Ramp	mp	101 Upstr		vph			
Distance to adjacent Ra	mp	1725 ft		ft	:t		
Con	version to pc/h	Under Base	Conditio	ns			
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E Recreational vehicle PC		Freeway 1248 0.90 347 4 0 Rolling % mi 2.5 2.0	2.5	% mi	2.5	vph v % % mi	
Length		mi				Τ.	

```
1470
                                              839
                                                         116
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1470 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2309
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1470
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2309
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 13.7 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.225
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 67.6
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

1.00

0.971

1.00

S = 67.6

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: E-mail:		Fax:				
	Merge	Analysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	I-26 EB US176 EB On-Ra	mp				
	Free	way Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way	Merge 2 75.0 1869		mph vph		
	On R	amp Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	ecel lane	Right 1 25.0 1446 1500	e exists	mph vph ft ft		
				,		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp		Yes 112 Upstre Off	am	vph		
Distance to adjacent Ra	qm	900		ft		
Con	version to pc/h	Under Base	Condition	ns		
Junction Components Volume, V (vph)		Freeway	Ramp		Adjacent Ramp 112	vph
Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade		0.90 519 4 0 Rolling	0.90 402 2 0 Rolling	୬	0.90 31 2 0 Level	V % %
Length Trucks and buses PCE, E Recreational vehicle PC		mi 2.5 2.0	2.5	mi		mi

```
Driver population factor, fP
                                                         1.00
                                   2201
                                              1655
                                                         126
Flow rate, vp
                                                                  pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2201 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        3856
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                  12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 2201
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    3856
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 25.4 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence C
                _____Speed Estimation_____
                                        M = 0.430
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 60.8
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

1.00

0.971

1.00

S = 60.8

mph

0.990

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: E-mail:			Fax:				
	M	erge Anal	ysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	I-26 WB US 176 WB	On-Ramp					
-		Freeway D	ata				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way way	On Ramp D	Merge 2 75.0 1028		mph vph		
Side of freeway Number of lanes in ramp Free-flow speed on ramp			Right 1 25.0		mph		
Volume on ramp Length of first accel/decel lane Length of second accel/decel lane			167 1425		vph ft ft		
	Adjacent	Ramp Data	(if on	e exists)		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ra Type of adjacent Ramp Distance to adjacent Ra	mp		Yes 448 Upstre Off 775	am	vph ft		
Con	version to	pc/h Unde	r Base	Condition	ns		
Junction Components		Free		Ramp		Adjacent	
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade		1028 0.90 286 4 0 Roll	ing %	167 0.90 46 2 0 Rolling	%	Ramp 448 0.90 124 2 0 Rolling	vph v % %
Length Trucks and buses PCE, E Recreational vehicle PC		2.5	mi	2.5	mi	2.5	mi

```
1211
                                              191
                                                         513
Flow rate, vp
                                                                 pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1211 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1402
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                    No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                    No
         av34
                  12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1211
        12A
                    __Flow Entering Merge Influence Area__
                   Actual Max Desirable
                                                    Violation?
                   1402
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 7.4 pc/mi/ln
                           R
                                     12
Level of service for ramp-freeway junction areas of influence A
                _____Speed Estimation_____
                                        M = 0.266
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 66.2
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

1.00

0.971

1.00

S = 66.2

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Space mean speed for all vehicles,

Phone: E-mail:		Fax:				
	Merge	Analysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	I-26 WB S-48 WB On-Ram 2014					
	Free	way Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way	Merge 2 75.0 753		mph vph		
	On R	amp Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	decel lane	Right 1 45.0 98 1225		mph vph ft ft		
	Adjacent Ramp	Data (II O.	ne exists	/		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ram	mp	Yes 442 Upstr Off 1475	eam	vph ft		
Con	version to pc/h	Under Base	Condition	ns		
Junction Components Volume, V (vph)		Freeway	Ramp		Adjacent Ramp 442	vph
Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type:		0.90 209 4 0 Rolling	0.90 27 2 0 Rolling		0.90 123 2 0 Rolling	V % %
Grade Length Trucks and buses PCE, E Recreational vehicle PC		% mi 2.5 2.0	2.5	% mi	2.5	% mi

```
887
                                              112
                                                         506
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 887 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        999
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                    12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 887
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    999
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 5.5 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence A
                _____Speed Estimation_____
                                        M = 0.221
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                         S = 67.7
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 67.7

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Space mean speed for all vehicles,

Phone: E-mail:			Fax:				
	M	lerge Anal	lysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR		On-Ramp					
		Freeway I	Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	_		Merge 2 75.0 826		mph vph		
		On Ramp I	Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/decel lane Length of second accel/decel lane			Right 1 45.0 65 525		mph vph ft ft		
	Adjacent	Ramp Data	a (if on	ne exists)		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ram	mp		Yes 25 Upstre Off 1000		vph ft		
		(1 1					
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length	version to	Free 826 0.90 229 4 0	eway	Ramp 65 0.90 18 2 0 Rolling		Adjacent Ramp 25 0.90 7 2 0 Rolling	vph v % %
Trucks and buses PCE, E Recreational vehicle PC		2.5	2	2.5		2.5	

```
973
                                              74
                                                         29
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 973 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1047
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
                > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                    12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 973
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    1047
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 10.3 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.285
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                         S = 65.6
                                                    mph
                                         R
Space mean speed in outer lanes,
                                         S = N/A
                                                    mph
```

S = 65.6

mph

.943

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Space mean speed for all vehicles,

Phone:

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Fax:

nalvsis									
p									
y Data									
Merge 2 75.0 1372	mph vph								
p Data									
Right 1 25.0 34 400 ata (if one exists) Yes 68 Upstream Off 1050	mph vph ft ft vph								
reeway Ramp 372 34 .90 0.90 81 9 2 0	Adjacent Ramp 68 vph 0.90 19 v 2 % 0 %								
	P y Data Merge 2 75.0 1372 p Data Right 1 25.0 34 400 ata (if one exists) Yes 68 Upstream Off 1050 nder Base Condition reeway Ramp 372 34 .90 0.90 81 9 0 olling Rolling % mi .5								

```
1616
                                              39
                                                         78
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1616 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1655
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
                > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1616
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    1655
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 15.9 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.321
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 64.4
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 64.4

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Space mean speed for all vehicles,

Phone: E-mail:		Fax:				
	Merge	Analysis				
Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction:		p				
	Free	way Data				
Type of analysis Number of lanes in freew Free-flow speed on freew Volume on freeway	<i>i</i> ay	Merge 2 75.0 1303 amp Data		mph vph		
	On R	amp Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/decel lane Length of second accel/decel lane		Right 1 45.0 501 1500	mph vph ft ft			
	Adjacent Ramp	Data (if or	ne exists)		
Does adjacent ramp exist Volume on adjacent Ramp Position of adjacent Ram Type of adjacent Ramp Distance to adjacent Ram	np	Yes 103 Upstre Off 1725	eam	vph ft		
Conv	version to pc/h	Under Base	Conditio	ns		
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, ET		Freeway 1303 0.90 362 4 0 Rolling % mi 2.5	Ramp 501 0.90 139 2 0 Rolling		Adjacent Ramp 103 0.90 29 2 0 Rolling	vph v % %
Recreational vehicle PCE		2.0	2.0		2.0	

```
1535
                                              573
                                                         118
Flow rate, vp
                                                                 pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1535 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2108
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
If yes, v = 1535
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2108
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 12.2 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.218
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 67.8
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 67.8

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Space mean speed for all vehicles,

Phone: E-mail:		Fax:				
	Merge	Analysis_				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	PM Peak I-26 EB US176 EB On-Ra	mp				
	Free	way Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway		Merg 2 75.0 1590		mph vph		
	On R	amp Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	ecel lane	Righ 1 25.0 814 1500		mph vph ft ft		
	Adjacent Ramp	Data (if	one exists)		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ra Type of adjacent Ramp Distance to adjacent Ra	t? mp	Yes 214 Upst Off 900	ream	vph ft		
Con	maraian ta na/h	IIndon Dog	o Conditio	n a		
Junction Components	version to pc/h	Under Bas Freeway	e Conditio Ramp	ns	Adjacen	
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length		1590 0.90 442 4 0 Rolling %		% mi	Ramp 214 0.90 59 2 0 Level	vph v % % mi
Trucks and buses PCE, E Recreational vehicle PC		2.5	2.5		1.5 1.2	

```
1873
                                              932
                                                         240
Flow rate, vp
                                                                 pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1873 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2805
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1873
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2805
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 17.5 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.310
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 64.8
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 64.8

mph

0.990

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Space mean speed for all vehicles,

Phone: E-mail:		Fax:			
	Merge Anal	ysis			
Analyst: AECO Agency/Co.: AECO Date performed: 6/30 Analysis time period: PM P Freeway/Dir of Travel: I-26 Junction: US 1 Jurisdiction: Analysis Year: 2014 Description: S-48 IMR	M /2016 eak WB 76 WB On-Ramp				
	Freeway D	ata			
Type of analysis Number of lanes in freeway Free-flow speed on freeway Volume on freeway	On Ramp D	Merge 2 75.0 1737 ata	mph vph		
	on Ramp E	a ca			
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/decel Length of second accel/decel	lane	Right 1 25.0 133 1425 (if one exists	mph vph ft ft		
Au J	acent kamp Data	(II OHE EXISCS	/		
Does adjacent ramp exist? Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ramp		Yes 1312 Upstream Off 775	vph ft		
	on to pc/h Unde	r Base Conditio	ns		
Junction Components	Free			Adjacent	
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, ET Recreational vehicle PCE, ER	1737 0.90 483 4 0 Roll	0.90 37 2 0	% mi	Ramp 1312 vp. 0.90 364 v 2 % 0 % Rolling	h

```
Driver population factor, fP
                                   1.00
                                                         1.00
                                   2046
                                              152
                                                         1502
Flow rate, vp
                                                                 pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2046 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2198
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
If yes, v = 2046
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2198
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 13.6 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.285
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 65.6
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

1.00

S = 65.6

mph

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Space mean speed for all vehicles,

Phone: E-mail:		Fax:				
	Merge	Analysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	I-26 WB S-48 WB On-Ram 2014					
	Free	way Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way	Merge 2 75.0 1153 amp Data		mph vph		
	011 10	ашр Баса				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	decel lane	Right 1 45.0 118 1225		mph vph ft ft		
	Adjacent Ramp	Data (if or	ne exists)		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ram Type of adjacent Ramp Distance to adjacent Ram	mp	Yes 717 Upstre Off 1475	eam	vph ft		
Con	version to pc/h	Under Base	Condition	ns		
Junction Components Volume, V (vph)		Freeway	Ramp		Adjacent Ramp 717	vph
Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type:		0.90 320 4 0 Rolling	0.90 33 2 0 Rolling		0.90 199 2 0 Rolling	V % %
Grade Length Trucks and buses PCE, E Recreational vehicle PC		% mi 2.5 2.0	2.5	% mi		% mi

```
1358
                                              135
                                                         821
Flow rate, vp
                                                                 pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1358 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1493
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
If yes, v = 1358
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    __Flow Entering Merge Influence Area__
                   Actual Max Desirable
                                                    Violation?
                   1493
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 9.4 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence A
                _____Speed Estimation_____
                                        M = 0.228
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 67.5
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 67.5

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Space mean speed for all vehicles,

Phone: E-mail:			Fax:				
I mair							
	Me	erge Anal	ysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	PM Peak	On-Ramp					
	E	Freeway I	Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway			Merge 2 75.0 1165		mph vph		
		On Ramp I	Oata				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/decel lane Length of second accel/decel lane			Right 1 45.0 50 525		mph vph ft ft		
	Adjacent F	Ramp Data	a (if on	e exists)		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ra Type of adjacent Ramp Distance to adjacent Ra	mp		Yes 106 Upstre Off 1000		vph ft		
Con	version to p	oc/h IInde	r Base	Condition	ns		
Junction Components	version to [er Base eway	Ramp	шö	Adjacent	
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E Recreational vehicle PC	T	1165 0.90 324 4 0 Roll		50 0.90 14 2 0 Rolling 2.5 2.0	% mi		vph v % % mi

```
1372
                                              57
                                                         121
Flow rate, vp
                                                                 pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1372 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1429
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1372
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                   1429
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 13.3 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.290
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 65.4
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 65.4

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Space mean speed for all vehicles,

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1199 vph ______Off Ramp Data______ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 35 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 185 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1199 35 185 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 333 10 51 V 2 2 0 Trucks and buses 4 ્ર Recreational vehicles 0 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
1412
                                                40
                                                           212
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1412 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         1412
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1372
                                      4800
                                                     No
     FO F R
    V
                         40
                                      2100
                                                     No
     R
                         0
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 1412
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                 Max Desirable
                                                      Violation?
                                  4400
                    1412
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 12.8 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.302
                                           S
Space mean speed in ramp influence area,
                                          S = 65.0
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 65.0
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1349 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 101 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 733 vph Position of adjacent ramp Downstream Type of adjacent ramp Distance to adjacent ramp 1725 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1349 101 733 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 375 28 204 V 2 2 0 Trucks and buses 4 ્ર Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
1589
                                                116
                                                           839
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1589 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                                      Maximum
                         Actual
                         1589
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1473
                                      4800
                                                     No
     FO F R
    V
                         116
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 1589
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    1589
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 9.1 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence A
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.308
                                           S
Space mean speed in ramp influence area,
                                          S = 64.8
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.8
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1981 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 112 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1446 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft ______Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1981 112 1446 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 550 31 402 V 2 2 0 Trucks and buses 4 ્ર 0 Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
2333
                                                128
                                                           1655
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2333 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2333
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         2205
                                      4800
                                                     No
     FO F R
    V
                         128
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2333
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                 Max Desirable
                                                      Violation?
                                  4400
                    2333
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 15.3 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.310
                                           S
Space mean speed in ramp influence area,
                                          S = 64.8
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.8
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1476 vph ______Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 448 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 167 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 775 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1476 448 167 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 410 124 46 V 4 2 0 Trucks and buses 2 ્ર 0 Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
1738
                                                513
                                                           191
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1738 pc/h
                  12 R F R FD
                       _____Capacity Checks____
                                                     LOS F?
                                      Maximum
                         Actual
                         1738
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1225
                                      4800
                                                     No
     FO F R
    V
                         513
                                      2100
                                                     No
     R
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 1738
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    1738
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 8.2 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence A
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.344
                                           S
Space mean speed in ramp influence area,
                                          S = 63.6
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 63.6
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1195 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 442 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 98 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1475 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1195 442 98 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 332 123 27 V 2 0 Trucks and buses 4 2 ્ર 0 Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
1407
                                                506
                                                           112
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1407 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         1407
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         901
                                      4800
                                                     No
     FO F R
    V
                         506
                                      2100
                                                     No
     R
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 1407
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    1407
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 5.3 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence A
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.344
                                           S
Space mean speed in ramp influence area,
                                          S = 63.7
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 63.7
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 851 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 25.0 mph Volume on ramp 25 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 65 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 851 25 65 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 236 7 18 V 2 Trucks and buses 2 4 ્ર 0 Recreational vehicles 0

 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi

 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
1002
                                                29
                                                           74
Flow rate, vp
                                                                     pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                  ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1002 pc/h
                     R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         1002
                                      4800
    v = v
                                                      No
     Fi F
    v = v - v
                         973
                                      4800
                                                      No
     FO F R
    V
                         29
                                      1900
                                                      No
     R
                         0
                                      (Equation 13-14 or 13-17)
    v or v
                              pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
           = 1002
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    1002
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 9.3 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence A
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.561
                                           S
Space mean speed in ramp influence area,
                                          S = 56.5
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 56.5
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1440 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 68 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft ______Conversion to pc/h Under Base Conditions______ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1440 34 68 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 400 19 9 V 2 0 4 2 Trucks and buses ્ર 0 Recreational vehicles
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
1696
                                                78
                                                           39
Flow rate, vp
                                                                     pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                  ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1696 pc/h
                     R F R FD
                       _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         1696
                                      4800
    v = v
                                                      No
     Fi F
    v = v - v
                         1618
                                      4800
                                                      No
     FO F R
    V
                         78
                                      2100
                                                      No
     R
                         0
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
           = 1696
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                    1696
                                  4400
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 15.2 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.305
                                           S
Space mean speed in ramp influence area,
                                          S = 64.9
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.9
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1406 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 103 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 501 vph Position of adjacent ramp Downstream Type of adjacent ramp Distance to adjacent ramp 1725 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1406 103 501 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 391 29 139 V 2 2 0 Trucks and buses 4 ્ર Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
1656
                                                118
                                                           573
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1656 pc/h
                  12 R F R FD
                       _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         1656
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1538
                                      4800
                                                     No
     FO F R
    V
                         118
                                      2100
                                                     No
     R
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
           = 1656
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    1656
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 9.7 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence A
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.309
                                           S
Space mean speed in ramp influence area,
                                          S = 64.8
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.8
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1804 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 214 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 814 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft ______Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1804 214 814 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 501 59 226 V 4 2 2 0 Trucks and buses ્ર Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
2125
                                                245
                                                           932
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2125 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2125
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1880
                                      4800
                                                     No
     FO F R
    V
                         245
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2125
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                 Max Desirable
                                                      Violation?
                    2125
                                  4400
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 13.5 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.320
                                           S
Space mean speed in ramp influence area,
                                          S = 64.4
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.4
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Phone: E-mail:		F	'ax:				
	D	iverge Ana	lysis_				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR		Off-Ramp					
		Freeway Da	ıta				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	_		Divers 2 75.0 3049		mph vph		
	0	ff Ramp Da	ta				
Side of freeway Number of lanes in ramp Free-Flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	ecel lane		Right 1 45.0 1312 1225		mph vph ft ft		
	Adjacent	Ramp Data	(if or	ne exists)		
Does adjacent ramp exis Volume on adjacent ramp Position of adjacent ra Type of adjacent ramp Distance to adjacent ra	mp		Yes 133 Downst On 775	tream	vph ft		
Con	version to	pc/h Under	Base	Conditio	ns		
Junction Components		Freev		Ramp		Adjacen Ramp	
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles		3049 0.90 847 4		1312 0.90 364 2		133 0.90 37 2	vph v %
Terrain type: Grade Length Trucks and buses PCE, E	T	Rolli 0.00 0.00 2.5	.ng % mi	Rolling 0.00	% mi	Rolling 0.00 0.00 2.5	

2.0

2.0

Recreational vehicle PCE, ER 2.0

```
3591
                                                1502
                                                           152
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                L =
                               (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 3591 pc/h
                 12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         3591
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         2089
                                      4800
                                                     No
     FO F R
    V
                         1502
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                         0 pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                > 1.5 v / 2
                                      No
          av34
     3
                       12
                                   (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v
          = 3591
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                 Max Desirable
                                                      Violation?
                    3591
                                 4400
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 24.1 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence C
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.433
                                          S
Space mean speed in ramp influence area,
                                          S = 60.7
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 60.7
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1870 vph ______Off Ramp Data______ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 717 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 118 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1475 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1870 717 118 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 519 199 33 V 2 Trucks and buses 4 2 ્ર 0 Recreational vehicles 0

 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi

 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
2202
                                                821
                                                           135
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas____
                L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2202 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2202
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1381
                                      4800
                                                     No
     FO F R
    V
                         821
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2202
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                 Max Desirable
                                                      Violation?
                                  4400
                    2202
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 12.2 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.372
                                           S
Space mean speed in ramp influence area,
                                          S = 62.7
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 62.7
                                                      mph
```

.943

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Driver population factor, fP

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2014 Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1271 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 25.0 mph Volume on ramp 106 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft ______Conversion to pc/h Under Base Conditions______ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1271 106 50 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 353 29 14 V 2 2 Trucks and buses 4 ્ર Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
1497
                                                121
                                                           57
Flow rate, vp
                                                                     pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1497 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         1497
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1376
                                      4800
                                                     No
     FO F R
    V
                         121
                                      1900
                                                     No
     R
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
           = 1497
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    1497
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 13.5 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.569
                                           S
Space mean speed in ramp influence area,
                                          S = 56.2
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 56.2
                                                      mph
```

.943

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Driver population factor, fP

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX F

NO-BUILD 2020 SYNCHRO AND SIM TRAFFIC REPORTS

No-Build 2020 AM

1: Columbia Ave & I-26 EB Ramps

Intersection												
Int Delay, s/veh	0.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			(Î			र्न	
Traffic Vol, veh/h	27	8	129	10	0	14	0		900	143	1077	0
Future Vol, veh/h	27	8	129	10	0	14	0	434	900	143	1077	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	U	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90		90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2		2	2	2	2
Mvmt Flow	30	9	143	11	0	16	0	482	1000	159	1197	0
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	2504	2996	1197	2573	2496	982		0	0	1482	0	0
Stage 1	1514	1514	-	982	982	-	-	-	-	-	-	-
Stage 2	990	1482	-	1591	1514	-	-	_	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	-	-	-	2.218	-	-
Pot Cap-1 Maneuver	~ 19	14	226	17	29	302	0	-	-	454	-	0
Stage 1	149	182	-	300	327	-	0	-	-	-	-	0
Stage 2	297	189	-	135	182	-	0	-	-	-	-	0
Platoon blocked, %								-	-		-	
Mov Cap-1 Maneuver	-	0	226	-	0	302	-	-	-	454	-	-
Mov Cap-2 Maneuver	-	0	-	-	0	-	-	-	-	-	-	-
Stage 1	149	0	-	300	327	-	-	-	-	-	-	-
Stage 2	282	189	-	-	0	-	-	-	-	-	-	-
Approach	EB			WB			NB	ı		SB		
HCM Control Delay, s							0			2		
HCM LOS	-			-								
Minor Lane/Major Mvmt	NBT	NBR	EBLn1WBL	.n1 SBL	SBT							
Capacity (veh/h)	-		_	- 454								
HCM Lane V/C Ratio	_	_	_	- 0.35	_							
HCM Control Delay (s)	-	_	-	- 17.1	0							
HCM Lane LOS	_	_	_	- C	A							
HCM 95th %tile Q(veh)	-	-	-	- 1.6	-							
Notes												
~: Volume exceeds capac	rity \$ D	elav ev	ceeds 300s	+ · Cor	nnutatio	on Not E	Defined *·	ΔII maio	r volum	e in platoon		
. Volume exceeds capac	orty Ψ. D	ciay cx	00003 000	, 001	npatati	JII INUL L	Jointou . I	an majo	VOIGITI	o in platoon		

Lanes, Volumes, Timings 2: Columbia Ave & I-26 WB Ramps

	۶	→	•	•	←	•	1	†	/	/	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			ર્ન			ĥ	
Traffic Volume (vph)	0	0	0	691	2	157	90	385	0	0	529	49
Future Volume (vph)	0	0	0	691	2	157	90	385	0	0	529	49
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	1745	0	0	1846	0	0	1842	0
Flt Permitted					0.961			0.458				
Satd. Flow (perm)	0	0	0	0	1745	0	0	853	0	0	1842	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					11						5	
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		883			668			593			885	
Travel Time (s)		13.4			10.1			11.6			17.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Lane Group Flow (vph)	0	0	0	0	944	0	0	528	0	0	642	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left											
	Leit	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left 0	Right
Median Width(ft)		0			0			0				
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	4.00	4.00	1.00	4.00	1.00	4.00	1.00	4.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type				Perm	NA		Perm	NA			NA	
Protected Phases					4			6			2	
Permitted Phases				4			6					
Detector Phase				4	4		6	6			2	
Switch Phase												
Minimum Initial (s)				10.0	10.0		10.0	10.0			10.0	
Minimum Split (s)				22.0	22.0		22.0	22.0			22.0	
Total Split (s)				59.0	59.0		71.0	71.0			71.0	
Total Split (%)				45.4%	45.4%		54.6%	54.6%			54.6%	
Maximum Green (s)				53.0	53.0		64.7	64.7			64.7	
Yellow Time (s)				4.0	4.0		4.3	4.3			4.3	
All-Red Time (s)				2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)					0.0			0.0			0.0	
Total Lost Time (s)					6.0			6.3			6.3	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)				4.0	4.0		3.0	3.0			3.0	
Recall Mode				None	None		Min	Min			Min	
Act Effct Green (s)					53.0			64.7			64.7	
Actuated g/C Ratio					0.41			0.50			0.50	
v/c Ratio					1.32			1.25			0.70	
Control Delay					185.0			159.4			30.0	
Queue Delay					0.0			0.0			0.0	
Total Delay					185.0			159.4			30.0	
LOS					F			F			C	
Approach Delay					185.0			159.4			30.0	
Approach Delay					100.0			137.4			50.0	

S-48 IMR AECOM

2: Columbia Ave & I-26 WB Ramps

	_	-	•	•	•	•	1	T		-	¥	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					F			F			С	
Queue Length 50th (ft)					~1025			~555			402	
Queue Length 95th (ft)					#1282			#780			548	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					717			424			919	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					1.32			1.25			0.70	

Intersection Summary

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 130

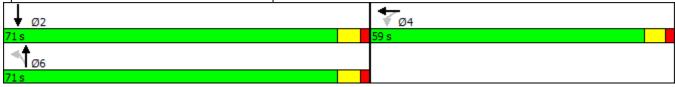
Natural Cycle: 130

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.32

Intersection Signal Delay: 131.5
Intersection Capacity Utilization 119.5%

Intersection LOS: F
ICU Level of Service H


Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Columbia Ave & I-26 WB Ramps

HCM 2010 Signalized Intersection Summary 2: Columbia Ave & I-26 WB Ramps

	۶	→	•	•	←	•	•	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			र्स			₽	
Traffic Volume (veh/h)	0	0	0	691	2	157	90	385	0	0	529	49
Future Volume (veh/h)	0	0	0	691	2	157	90	385	0	0	529	49
Number				7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1900	1900	1863	0	0	1863	1900
Adj Flow Rate, veh/h				768	2	174	100	428	0	0	588	54
Adj No. of Lanes				0	1	0	0	1	0	0	1	0
Peak Hour Factor				0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0	2	2	0	0	2	2
Cap, veh/h				576	1	130	97	379	0	0	837	77
Arrive On Green				0.41	0.41	0.41	0.50	0.50	0.00	0.00	0.50	0.50
Sat Flow, veh/h				1412	4	320	128	761	0	0	1681	154
Grp Volume(v), veh/h				944	0	0	528	0	0	0	0	642
Grp Sat Flow(s), veh/h/ln				1736	0	0	889	0	0	0	0	1836
Q Serve(g_s), s				53.0	0.0	0.0	29.6	0.0	0.0	0.0	0.0	35.1
Cycle Q Clear(g_c), s				53.0	0.0	0.0	64.7	0.0	0.0	0.0	0.0	35.1
Prop In Lane				0.81	0	0.18	0.19	0	0.00	0.00	0	0.08
Lane Grp Cap(c), veh/h				708	0	0	475	0	0	0	0	914
V/C Ratio(X)				1.33	0.00	0.00	1.11	0.00	0.00	0.00	0.00	0.70
Avail Cap(c_a), veh/h				708	1.00	1.00	475	1.00	1.00	1.00	1.00	914
HCM Platoon Ratio				1.00 1.00	1.00 0.00	1.00 0.00	1.00 1.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 0.00	1.00 1.00
Upstream Filter(I) Uniform Delay (d), s/veh				38.5	0.00	0.00	40.9	0.00	0.00	0.00	0.00	25.2
Incr Delay (d2), s/veh				159.9	0.0	0.0	75.2	0.0	0.0	0.0	0.0	23.2
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				56.8	0.0	0.0	27.0	0.0	0.0	0.0	0.0	18.3
LnGrp Delay(d),s/veh				198.4	0.0	0.0	116.1	0.0	0.0	0.0	0.0	27.7
LnGrp LOS				F	0.0	0.0	F	0.0	0.0	0.0	0.0	C
Approach Vol, veh/h				<u> </u>	944		'	528			642	
Approach Delay, s/veh					198.4			116.1			27.7	
Approach LOS					F			F			Z7.7	
	1	2	2	4	•	,	7				0	
Timer Assigned Dhe		2	3	4	5	6	7	8				
Assigned Phs Pho Duration (C. V. Pa) o				4 59.0		6 71.0						
Phs Duration (G+Y+Rc), s		71.0				6.3						
Change Period (Y+Rc), s Max Green Setting (Gmax), s		6.3		6.0		64.7						
Max Q Clear Time (q_c+l1), s		64.7 37.1		53.0 55.0		66.7						
Green Ext Time (p_c), s		9.5		0.0		0.0						
		7.0		0.0		0.0						
Intersection Summary			10/ 0									
HCM 2010 Ctrl Delay			126.0									
HCM 2010 LOS			F									

SimTraffic Simulation Summary No-Build 2020 AM

Summary of All Intervals

Run Number	1	2	3	Avg	
Start Time	7:20	7:20	7:20	7:20	
End Time	8:30	8:30	8:30	8:30	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	2991	2611	2674	2759	
Vehs Exited	2717	2371	2487	2526	
Starting Vehs	249	303	325	292	
Ending Vehs	523	543	512	525	
Travel Distance (mi)	3020	2530	2666	2738	
Travel Time (hr)	1418.0	1635.4	1594.7	1549.4	
Total Delay (hr)	1363.2	1587.9	1545.1	1498.7	
Total Stops	2362	2280	2178	2272	
Fuel Used (gal)	432.8	466.4	461.1	453.4	

Interval #0 Information Seeding

Start Time	7:20
End Time	7:30
Total Time (min)	10
Volumes adjusted by Growth Factor	ors.
No data recorded this interval.	

Interval #1 Information Recording

Start Time	7:30
End Time	8:30
Total Time (min)	60
Volumes adjusted by Growth F	actors.

Run Number	1	2	3	Avg	
Vehs Entered	2991	2611	2674	2759	
Vehs Exited	2717	2371	2487	2526	
Starting Vehs	249	303	325	292	
Ending Vehs	523	543	512	525	
Travel Distance (mi)	3020	2530	2666	2738	
Travel Time (hr)	1418.0	1635.4	1594.7	1549.4	
Total Delay (hr)	1363.2	1587.9	1545.1	1498.7	
Total Stops	2362	2280	2178	2272	
Fuel Used (gal)	432.8	466.4	461.1	453.4	

Queuing and Blocking Report No-Build 2020 AM

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	870	48	65	526
Average Queue (ft)	798	35	31	510
95th Queue (ft)	1055	51	59	517
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)	82	69	3	96
Queuing Penalty (veh)	134	16	36	1172
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	680	320	873
Average Queue (ft)	666	179	861
95th Queue (ft)	679	281	870
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	100		100
Queuing Penalty (veh)	848		0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

1: Columbia Ave & I-26 EB Ramps

Intersection												
	2.2											
Movement	EBL	EBT	EBR	WB	WBT	WBR	NB	L NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			f)			र्स	
Traffic Vol, veh/h	45	8	121		0	10		0 621	791	246	1376	0
Future Vol, veh/h	45	8	121		0	10		0 621	791	246	1376	0
Conflicting Peds, #/hr	0	0	0		0	0		0 0	0	0	0	0
Sign Control	Stop	Stop	Stop	Sto	Stop	Stop	Fre	e Free	Free	Free	Free	Free
RT Channelized	-	-	None							_	_	None
Storage Length	-	_	_			-			_	-		_
Veh in Median Storage, #	_	0	-		- 0	-		- 0	_	_	0	_
Grade, %	-	0	_		- 0	_		- 0	_	-	0	_
Peak Hour Factor	90	90	90	9		90	9		90	90	90	90
Heavy Vehicles, %	2	2	2		2 2	2		2 2	2	2	2	2
Mymt Flow	50	9	134		1 0	11		0 690	879	273	1529	0
WWITH FIOW	30	,	154		ı U	- ''		0 070	077	213	1527	U
Major/Minor	Minor2			Minor			Major	1		Major2		
Conflicting Flow All	3211	3645	1529	327	3205	1129		- 0	0	1569	0	0
Stage 1	2076	2076	-	112						-	-	_
Stage 2	1135	1569	-	214		_			_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7.1:		6.22			_	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52	-	6.1		0.22			_	1.12	_	_
Critical Hdwy Stg 2	6.12	5.52	-	6.1		_			_	-	_	_
Follow-up Hdwy	3.518	4.018	3.318	3.51		3.318			_	2.218	_	_
Pot Cap-1 Maneuver	~ 6	~ 5	144		5 10	248		0 -	_	420	_	0
Stage 1	70	95		24		2 10		0 -	_	120	_	0
Stage 2	246	171	-	6		_		0 -	_	_	_	0
Platoon blocked, %	240	171		U	75			_	_		_	U
Mov Cap-1 Maneuver	_	0	144		- 0	248		_	_	420	_	
Mov Cap-1 Maneuver	_	0	-		- 0	240			_	420	_	
Stage 1	70	0		24		-						-
•	235	171	-	24	- 0	-			-	-	-	-
Stage 2	233	1/1	-		- 0	-			-	-	-	-
Approach	EB			WI	}		N	3		SB		
HCM Control Delay, s								0		4.3		
HCM LOS	_				_			O		7.0		
TICIVI EOS												
Minor Lane/Major Mvmt	NBT	NBR	EBLn1WE	BLn1 SB	SBT							
Capacity (veh/h)	-	-	-	- 42) -							
HCM Lane V/C Ratio	-	-	-	- 0.65								
HCM Control Delay (s)	_	-	-	- 28								
HCM Lane LOS	_	_	-	- [
HCM 95th %tile Q(veh)	_	-	-	- 4.								
				1.								
Notes	situ e. D	olov o	acada 20	00 0	mnuta!	on Not F	Oofinad *	All man's	rvolus	o in plata an		
~: Volume exceeds capac	lity \$: D	eiay ex	ceeds 30	us +: C	mputati	JII NOL L	Jelinea ":	All majo	ı volum	e in platoon		

Lane Group		۶	→	•	•	←	•	•	†	/	/	↓	-√
Lane Configurations	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (γph)						43-			4			î,	
Future Volume (vph)		0	0	0	953		245	159		0	0		35
Ideal Flow (yphp)													
Satd. Flow (prom)													
File Permitted													
Satd Flow (perm) 0 0 0 1742 0 507 0 1850 0 Right Turn on Red Yes		- U	- U	U	U		U	U		0	U	1030	U
Right Turn on Red		n	0	0	0		0	0		0	0	1850	0
Said Flow (RTOR)		U	U		U	1772		U	307		U	1030	
Link Speed (mph)				103		10	103			103		3	103
Link Distance (ft)			45						25				
Travel Time (s)													
Peak Hour Factor 0.90 0.													
Shared Lane Traffic (%)		0.00		0.00	0.00		0.00	0.00		0.00	0.00		0.00
Lane Group Flow (vph)		0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Enter Blocked Intersection	` ,	^	^	0	0	1222	0	0	751	0	^	702	0
Left Left Left Right Left Right Left Right Left Right Left Right Left Right Median Width(fft) 0													
Median Width(ft) 0 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00													
Link Offset(fft) 0 0 0 0 0 Crosswalk Width(fft) 16 100 100 100 1.0		Lett		Right	Lett		Right	Lett		Right	Lett		Right
Crosswalk Width(fft) 16 16 16 16 16 Two way Left Turn Lane 1.00													
Two way Left Turn Lane Headway Factor 1.00													
Headway Factor 1.00	` '		16			16			16			16	
Turning Speed (mph) 15 9 16 10 10 10 10 10 10 10 10 10 10 10 10 10.0													
Turn Type Perm NA Perm NA Protected Phases 4 6 2 Permitted Phases 4 6 2 Detector Phase 4 4 6 6 Switch Phase 8 4 4 6 6 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0			1.00			1.00			1.00			1.00	
Protected Phases 4 6 2 Permitted Phases 4 6		15		9			9			9	15		9
Permitted Phases 4 6 6 2 Switch Phase 3 4 4 6 6 2 Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 Total Split (s) 64.0 64.0 86.0 86.0 86.0 Total Split (%) 42.7% 42.7% 57.3% 57.3% 57.3% Maximum Green (s) 58.0 58.0 79.7 79.7 79.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 6.3 Lead/Lag 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effe					Perm			Perm					
Detector Phase 4 4 6 6 2 Switch Phase Switch Phase Switch Phase Switch Phase Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Spilt (s) 22.0						4			6			2	
Switch Phase Incompanies													
Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 Total Split (s) 64.0 64.0 86.0 86.0 86.0 Total Split (%) 42.7% 42.7% 57.3% 57.3% 57.3% Maximum Green (s) 58.0 58.0 79.7 79.7 79.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag 2 0.0 6.3 6.3 Lead/Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Act Effet Green (s) 58.0 79.7 79.7 79.7 <t< td=""><td></td><td></td><td></td><td></td><td>4</td><td>4</td><td></td><td>6</td><td>6</td><td></td><td></td><td>2</td><td></td></t<>					4	4		6	6			2	
Minimum Split (s) 22.0 <td></td>													
Total Split (s) 64.0 64.0 86.0 86.0 Total Split (%) 42.7% 42.7% 57.3% 57.3% Maximum Green (s) 58.0 58.0 79.7 79.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag 8.0 8.0 8.0 8.0 Lead/Lag Optimize? 8.0 8.0 8.0 8.0 Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None Min Min Min Min Act Effct Green (s) 58.0 79.7 79.7 79.7 Actuated g/C Ratio 0.39 0.53 0.53 0.53 v/c Ratio 1.96 2.79 0.79 0.79 Control Delay <td>` '</td> <td></td>	` '												
Total Split (%) 42.7% 42.7% 57.3% 57.3% Maximum Green (s) 58.0 58.0 79.7 79.7 Yellow Time (s) 4.0 4.0 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Act Effct Green (s) 58.0 79.7 79.7 79.7 Actuated g/C Ratio 0.39 0.53 0.53 v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F D													
Maximum Green (s) 58.0 58.0 79.7 79.7 79.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 6.3 6.3 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 3.0 S.0 S.0 <td></td>													
Yellow Time (s) 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effet Green (s) 58.0 79.7 79.7 Actuated g/C Ratio 0.39 0.53 0.53 v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F F D	Total Split (%)				42.7%	42.7%		57.3%	57.3%			57.3%	
All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 58.0 79.7 79.7 Act cated g/C Ratio 0.39 0.53 0.53 v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F D									79.7				
Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 58.0 79.7 79.7 Actuated g/C Ratio 0.39 0.53 0.53 v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F F D	Yellow Time (s)				4.0	4.0		4.3	4.3			4.3	
Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Min Min Actual Min	All-Red Time (s)				2.0	2.0		2.0	2.0			2.0	
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 58.0 79.7 79.7 Actuated g/C Ratio 0.39 0.53 0.53 v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F D	Lost Time Adjust (s)					0.0			0.0			0.0	
Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 58.0 79.7 79.7 Actuated g/C Ratio 0.39 0.53 0.53 v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F F D	Total Lost Time (s)					6.0			6.3			6.3	
Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Act Effct Green (s) 58.0 79.7 79.7 79.7 Actuated g/C Ratio 0.39 0.53 0.53 v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F F D	Lead/Lag												
Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Act Effct Green (s) 58.0 79.7 79.7 79.7 Actuated g/C Ratio 0.39 0.53 0.53 v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F F D													
Recall Mode None None Min Min Min Act Effct Green (s) 58.0 79.7 79.7 Actuated g/C Ratio 0.39 0.53 0.53 v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F F D					4.0	4.0		3.0	3.0			3.0	
Act Effct Green (s) 58.0 79.7 79.7 Actuated g/C Ratio 0.39 0.53 0.53 v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F D	` ,				None	None							
Actuated g/C Ratio 0.39 0.53 0.53 v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F D													
v/c Ratio 1.96 2.79 0.79 Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F D													
Control Delay 465.5 834.9 35.8 Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F D													
Queue Delay 0.0 0.0 0.0 Total Delay 465.5 834.9 35.8 LOS F F D													
Total Delay 465.5 834.9 35.8 LOS F F D	-												
LOS F F D													
ADDIDACTI DEIAV 465 5 XXL Y 35 X	Approach Delay					465.5			834.9			35.8	

S-48 IMR AECOM

2: Columbia Ave & I-26 WB Ramps

		-	*	•	•	_		T		*	¥	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					F			F			D	
Queue Length 50th (ft)					~2026			~997			603	
Queue Length 95th (ft)					#2295			#1252			790	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					679			269			984	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					1.96			2.79			0.79	

Intersection Summary

Area Type: Other

Cycle Length: 150

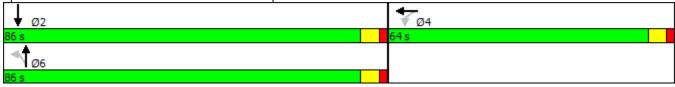
Actuated Cycle Length: 150

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 2.79

Intersection Signal Delay: 445.1 Intersection LOS: F
Intersection Capacity Utilization 156.7% ICU Level of Service H


Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Columbia Ave & I-26 WB Ramps

HCM 2010 Signalized Intersection Summary 2: Columbia Ave & I-26 WB Ramps

	۶	→	•	•	←	•	•	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			र्स			₽	
Traffic Volume (veh/h)	0	0	0	953	2	245	159	517	0	0	669	35
Future Volume (veh/h)	0	0	0	953	2	245	159	517	0	0	669	35
Number				7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1900	1900	1863	0	0	1863	1900
Adj Flow Rate, veh/h				1059	2	272	177	574	0	0	743	39
Adj No. of Lanes				0	1	0	0	1	0	0	1	0
Peak Hour Factor				0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0	2	2	0	0	2	2
Cap, veh/h				532	1	137	88	213	0	0	932	49
Arrive On Green				0.39	0.39	0.39	0.53	0.53	0.00	0.00	0.53	0.53
Sat Flow, veh/h				1376	3	353	110	401	0	0	1754	92
Grp Volume(v), veh/h				1333	0	0	751	0	0	0	0	782
Grp Sat Flow(s), veh/h/ln				1732	0	0	512	0	0	0	0	1846
Q Serve(g_s), s				58.0	0.0	0.0	28.1	0.0	0.0	0.0	0.0	51.6
Cycle Q Clear(g_c), s				58.0	0.0	0.0	79.7	0.0	0.0	0.0	0.0	51.6
Prop In Lane				0.79		0.20	0.24		0.00	0.00		0.05
Lane Grp Cap(c), veh/h				670	0	0	302	0	0	0	0	981
V/C Ratio(X)				1.99	0.00	0.00	2.49	0.00	0.00	0.00	0.00	0.80
Avail Cap(c_a), veh/h				670	0	0	302	0	0	0	0	981
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				46.0	0.0	0.0	57.3	0.0	0.0	0.0	0.0	28.6
Incr Delay (d2), s/veh				451.2	0.0	0.0	680.7	0.0	0.0	0.0	0.0	4.7
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				111.6	0.0	0.0	69.5	0.0	0.0	0.0	0.0	27.6
LnGrp Delay(d),s/veh				497.2	0.0	0.0	738.0	0.0	0.0	0.0	0.0	33.2
LnGrp LOS				F			F					С
Approach Vol, veh/h					1333			751			782	
Approach Delay, s/veh					497.2			738.0			33.2	
Approach LOS					F			F			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		86.0		64.0		86.0						
Change Period (Y+Rc), s		6.3		6.0		6.3						
Max Green Setting (Gmax), s		79.7		58.0		79.7						
Max Q Clear Time (g_c+I1), s		53.6		60.0		81.7						
Green Ext Time (p_c), s		14.0		0.0		0.0						
Intersection Summary												
HCM 2010 Ctrl Delay			433.7									
HCM 2010 LOS			F									

SimTraffic Simulation Summary No-Build 2020 PM

Summary of All Intervals

Run Number	1	2	3	Avg	
Start Time	4:35	4:35	4:35	4:35	
End Time	5:45	5:45	5:45	5:45	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	2216	2731	2347	2431	
Vehs Exited	2050	2642	2252	2314	
Starting Vehs	393	402	412	403	
Ending Vehs	559	491	507	519	
Travel Distance (mi)	2049	2828	2315	2397	
Travel Time (hr)	2471.4	2238.0	2322.1	2343.8	
Total Delay (hr)	2430.7	2186.0	2277.5	2298.1	
Total Stops	1925	2105	2187	2071	
Fuel Used (gal)	637.5	614.3	615.2	622.3	

Interval #0 Information Seeding

Start Time	4:35
End Time	4:45
Total Time (min)	10
Volumes adjusted by Growth Fact	ors.
No data recorded this interval.	

Interval #1 Information Recording

Start Time	4:45
End Time	5:45
Total Time (min)	60
Volumes adjusted by Growth Fa	actors.

Run Number	1	2	3	Avg	
Vehs Entered	2216	2731	2347	2431	
Vehs Exited	2050	2642	2252	2314	
Starting Vehs	393	402	412	403	
Ending Vehs	559	491	507	519	
Travel Distance (mi)	2049	2828	2315	2397	
Travel Time (hr)	2471.4	2238.0	2322.1	2343.8	
Total Delay (hr)	2430.7	2186.0	2277.5	2298.1	
Total Stops	1925	2105	2187	2071	
Fuel Used (gal)	637.5	614.3	615.2	622.3	

Queuing and Blocking Report No-Build 2020 PM

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	876	33	61	524
Average Queue (ft)	852	8	19	509
95th Queue (ft)	942	27	50	516
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)	94	0	1	96
Queuing Penalty (veh)	164	0	20	1565
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	680	488	874
Average Queue (ft)	666	281	860
95th Queue (ft)	681	440	872
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	100	0	100
Queuing Penalty (veh)	1198	0	0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX G

NO-BUILD 2020 HCS REPORTS

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Analy	/sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: S-48 IMR	6/30/2016 AM Peak I-26 EB West of SC 202		
	Flow Inputs and A	Adjustments	
Volume, V	-	1385	veh/h
Peak-hour factor, PHF Peak 15-min volume, v15		0.90 385	v
Trucks and buses Recreational vehicles		4 0	% %
Terrain type: Grade		Rolling -	%
Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen	E, ER t, fHV	- 2.5 2.0 0.943 1.00	mi
Driver population facto Flow rate, vp	r, rp	816	pc/h/ln
	Speed Inputs and	Adjustments	
Lane width		12.0	ft
Right-side lateral clea		6.0	ft
Total ramp density, TRD Number of lanes, N		0.33	ramps/mi
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,	fLW	0.0	mi/h
Lateral clearance adjus		0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Performan	nce Measures	
Flow rate, vp		816	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	peed, S	75.0	mi/h
Number of lanes, N	- :	2	

pc/mi/ln

10.9

Level of service, LOS

Phone: E-mail:		Fax:		
	Operational	Analysis		
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: S-48 IMR	6/30/2016 AM Peak I-26 EB Between S-48			
	Flow Inputs	and Adjustments		
Volume, V		1546	veh/h	
Peak-hour factor, PHF		0.90	V 011/ 11	
Peak 15-min volume, v1	5	429	V	
Trucks and buses		4	%	
Recreational vehicles		0	%	
Terrain type:		Rolling		
Grade		-	%	
Segment length		_	mi	
Trucks and buses PCE, 1		2.5		
Recreational vehicle Po		2.0		
Heavy vehicle adjustmen		0.943 1.00		
Driver population factor Flow rate, vp	or, rp	910	pc/h/ln	
_	_		_	
	Speed Inputs	and Adjustments		
Lane width		12.0	ft	
Right-side lateral clea		6.0	ft	
Total ramp density, TR	D	0.33	ramps/mi	
Number of lanes, N		2		
Free-flow speed:		Base		
FFS or BFFS	£T 1.1	75.4	mi/h	
Lane width adjustment, Lateral clearance adjustment		0.0 0.0	mi/h mi/h	
TRD adjustment	Stillelit, ILC	1.3	mi/h	
Free-flow speed, FFS	74.1	mi/h		
22 22 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3				
	LOS and Perf	ormance Measures		
Flow rate, vp		910	pc/h/ln	
Free-flow speed, FFS		74.1	mi/h	
Average passenger-car	speed, S	75.0	mi/h	
Number of lanes, N		2		
Donaiti D		1 () 7	20 cr / 20 r / 20	

12.1

В

pc/mi/ln

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2475 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 688 V 4 Trucks and buses કૃ Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 1458 Flow rate, vp pc/h/ln _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1458 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 72.7 mi/h Number of lanes, N Density, D 20.1 pc/mi/ln

C

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Anal	lysis	
	I-26 EB East of US176		
	Flow Inputs and	Adjustments	
Volume, V		3909	veh/h
Peak-hour factor, PHF Peak 15-min volume, v15		0.90 1086	V
Trucks and buses	,	4	v %
Recreational vehicles		0	8
Terrain type:		Rolling	
Grade		-	%
Segment length		-	mi
Trucks and buses PCE, E		2.5	
Recreational vehicle PC		2.0	
Heavy vehicle adjustment Driver population factor		0.943 1.00	
Flow rate, vp	л, гр	2302	pc/h/ln
_			_
	Speed Inputs and	d Adjustments	
Lane width		12.0	ft
Right-side lateral clea		6.0	ft
Total ramp density, TRI)	0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed: FFS or BFFS		Base 75.4	mi/h
Lane width adjustment,	f T.W	0.0	mi/h
Lateral clearance adjus		0.0	mi/h
TRD adjustment	remerie, The	1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Performa	ance Measures	
Elou make			ng/h/ln
Flow rate, vp		2302	pc/h/ln mi/h
Free-flow speed, FFS Average passenger-car s	speed S	74.1 56.2	mi/n mi/h
Number of lanes, N	peca, b	2	шт/ п
- L		-	

40.9

E

pc/mi/ln

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational An	alysis	
Analyst:	AECOM		
Agency or Company:			
	6/30/2016		
Analysis Time Period:			
<pre>Freeway/Direction: From/To:</pre>			
Jurisdiction:	East of US 176		
Analysis Year:	2020 No-Build		
Description: S-48 IMR			
	Flow Inputs an	d Adjustments	
Volume, V		2015	veh/h
Peak-hour factor, PHF		0.90	V C11, 11
Peak 15-min volume, v1	5	560	V
Trucks and buses		4	%
Recreational vehicles		0	%
Terrain type:		Rolling	
Grade		-	8
Segment length		_	mi
Trucks and buses PCE,		2.5	
Recreational vehicle P		2.0	
Heavy vehicle adjustme		0.943	
Driver population fact Flow rate, vp	or, rp	1.00 1187	pc/h/ln
	Speed Inputs a	and Adjustments	
Lane width Right-side lateral cle	arango	12.0 6.0	ft ft
Total ramp density, TR		0.33	ramps/mi
Number of lanes, N	ם	2	ramps/mr
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,	fLW	0.0	mi/h
Lateral clearance adju	stment, fLC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perfor	mance Measures	
Flow rate, vp		1187	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car	speed, S	74.6	mi/h
Number of lanes, N		2	
Donait D		7 - 0	/ / 7

15.9

В

pc/mi/ln

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1713 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 476 V Trucks and buses 4 કૃ Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 1009 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1009 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N

13.5

В

pc/mi/ln

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ 1004 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 279 V Trucks and buses 4 ક Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 Flow rate, vp 591 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 591 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N

7.9

Α

pc/mi/ln

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: West of SC 202 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ 1047 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 291 V Trucks and buses 4 응 Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 Flow rate, vp 617 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 617 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N

8.2

Α

pc/mi/ln

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: West of SC 202 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1714 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 476 V Trucks and buses 4 응 Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 1009 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1009 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N

13.5

В

pc/mi/ln

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1677 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 466 V Trucks and buses 4 કૃ Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 Flow rate, vp 988 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 988 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N Density, D 13.2 pc/mi/ln

В

free-flow speed is less than 55 mph.

Density, D

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational 2	Analysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: S-48 IMR	6/30/2016 PM Peak I-26 EB Between S-48 a	and US 176	
	Flow Inputs a	and Adjustments	
Volume, V		2499	veh/h
Peak-hour factor, PHF		0.90	. 551, 51
Peak 15-min volume, v1	5	694	V
Trucks and buses		4	%
Recreational vehicles		0	%
Terrain type:		Rolling	2
Grade		_	8
Segment length		- 2 F	mi
Trucks and buses PCE,		2.5 2.0	
Recreational vehicle Post Heavy vehicle adjustment		0.943	
Driver population fact		1.00	
Flow rate, vp	01, 12	1472	pc/h/ln
	Speed Inputs	and Adjustments	
Lane width		12.0	ft
Right-side lateral clea	arance	6.0	ft
Total ramp density, TR		0.33	ramps/mi
Number of lanes, N		2	-
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,		0.0	mi/h
Lateral clearance adju	stment, fLC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Perf	ormance Measures	
Flow rate, vp		1472	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car	speed, S	72.5	mi/h
Number of lanes, N		2	
Dongiti D		210 7	/ /

20.3

С

pc/mi/ln

free-flow speed is less than 55 mph.

Density, D

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Anal	lysis	
	I-26 EB East of US176		
	Flow Inputs and	Adjustments	
Volume, V		3144 0.90	veh/h
Peak-hour factor, PHF Peak 15-min volume, v15		873	V
Trucks and buses		4	%
Recreational vehicles		0	%
Terrain type:		Rolling	
Grade		-	8
Segment length	ı.m.	- 2 F	mi
Trucks and buses PCE, E Recreational vehicle PC		2.5 2.0	
Heavy vehicle adjustmen		0.943	
Driver population factor		1.00	
Flow rate, vp	-, - <u>-</u>	1851	pc/h/ln
	Speed Inputs and	d Adjustments	
Lane width		12.0	ft
Right-side lateral clea	rance	6.0	ft
Total ramp density, TRI		0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,		0.0	mi/h
Lateral clearance adjus	tment, fLC	0.0	mi/h
TRD adjustment Free-flow speed, FFS		1.3 74.1	mi/h mi/h
riee-liow speed, rrs		74.1	1111/11
	LOS and Performa	ance Measures	
Flow rate, vp		1851	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	peed, S	67.0	mi/h
Number of lanes, N		2	4 4 4 7

27.6

D

pc/mi/ln

free-flow speed is less than 55 mph.

Density, D

Level of service, LOS

Phone: E-mail:		Fax:		
	Operational An	alysis		
Analysis Time Period:	6/30/2016 PM Peak I-26 WB East of US 176 2020 No-Build			
	Flow Inputs an	d Adjustments		
Volume, V	:	3790	veh/h	
Peak-hour factor, PHF Peak 15-min volume, v1	5	0.90	ven/n	
Trucks and buses		4	96	
Recreational vehicles		0	%	
Terrain type:		Rolling	•	
Grade		-	8 	
Segment length Trucks and buses PCE, 1	r m	2.5	mi	
Recreational vehicle Po		2.0		
Heavy vehicle adjustmen		0.943		
Driver population factor		1.00		
Flow rate, vp	, -	2232	pc/h/ln	
	Speed Inputs a	nd Adjustments		
Lane width		12.0	ft	
Right-side lateral clea		6.0	ft	
Total ramp density, TRI	O .	0.33	ramps/mi	
Number of lanes, N		2		
Free-flow speed:		Base		
FFS or BFFS	CTT	75.4	mi/h	
Lane width adjustment,		0.0	mi/h	
Lateral clearance adjustment	stillettt, ILC	0.0 1.3	mi/h mi/h	
Free-flow speed, FFS		74.1	mi/h	
	LOS and Perfor	mance Measures		
Flow rate, vp		2232	pc/h/ln	
Free-flow speed, FFS		74.1	mi/h	
Average passenger-car :	speed. S	58.2	mi/h	
Number of lanes, N	or coa, c	2	/ 11	
		2.2	, , , ,	

38.4

Ε

pc/mi/ln

free-flow speed is less than 55 mph.

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational A	nalysis	
Analysis Time Period:	6/30/2016 PM Peak I-26 WB Between S-48 and	nd US 176	
	Flow Inputs an	nd Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length		2523 0.90 701 4 0 Rolling	veh/h v % % % mi
Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp	E, ER t, fHV r, fp	2.5 2.0 0.943 1.00 1486 and Adjustments	pc/h/ln
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS	rance	12.0 6.0 0.33 2 Base 75.4 0.0 0.0	ft ft ramps/mi mi/h mi/h mi/h mi/h mi/h mi/h
	LOS and Perfo	rmance Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N Density, D	peed, S	1486 74.1 72.4 2 20.5	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

С

free-flow speed is less than 55 mph.

Density, D

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 1519 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 422 V 4 Trucks and buses કૃ Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 Flow rate, vp 895 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ 895 Flow rate, vp pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N

11.9

В

pc/mi/ln

free-flow speed is less than 55 mph.

Density, D

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Anal	ysis	
	AECOM AECOM 6/30/2016 PM Peak I-26 WB West of SC 202 2020 No-Build		
	Flow Inputs and	Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15		1459 0.90 405	veh/h v
Trucks and buses Recreational vehicles Terrain type: Grade		4 0 Rolling	० ० ०
Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto	E, ER t, fHV	- 2.5 2.0 0.943 1.00	mi
Flow rate, vp	-	859	pc/h/ln
	Speed Inputs and	Adjustments	
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed: FFS or BFFS		12.0 6.0 0.33 2 Base 75.4	ft ft ramps/mi mi/h
Lane width adjustment, Lateral clearance adjus TRD adjustment Free-flow speed, FFS		0.0 0.0 1.3 74.1	mi/h mi/h mi/h mi/h
	LOS and Performa	nce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N	peed, S	859 74.1 75.0 2	pc/h/ln mi/h mi/h

pc/mi/ln

11.5

В

free-flow speed is less than 55 mph.

Phone: E-mail:		Fax:				
	Merge	Analysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	AECOM AECOM 6/30/2016 AM Peak I-26 EB SC-202 EB On-R					
-	Free	way Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way way	Merge 2 75.0 1347		mph vph		
	On R	.amp Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	ecel lane	Right 1 25.0 199 400	na aviete	mph vph ft ft		
	Adjacene Ramp	Data (II of	ic carbeb	/		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ra Type of adjacent Ramp Distance to adjacent Ra	mp	Yes 38 Upstre Off 1050		vph ft		
	wersion to pc/h					
Junction Components	version to perm	Freeway	Ramp		Adjacent Ramp	
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E Recreational vehicle PC		1347 0.90 374 4 0 Rolling % mi 2.5 2.0	199 0.90 55 2 0 Rolling 2.5 2.0	% mi	38 0.90 11 2 0 Rolling	vph v % % mi

```
1586
                                              228
                                                         43
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1586 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1814
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1586
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                   1814
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 17.0 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.325
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 64.3
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 64.3

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fa	x:				
	Merge	Analys	is				
Analyst:	AECOM						
Agency/Co.:	AECOM						
	6/30/2016						
Analysis time period:							
Freeway/Dir of Travel:							
Junction:	S-48 EB On-Ram	p					
Jurisdiction:		_					
Analysis Year:	2020 No-Build						
Description: S-48 IMR							
	Free	way Data	a				
Type of analysis		Me	erge				
Number of lanes in free	wav		5-				
Free-flow speed on free	_	7.	5.0		mph		
Volume on freeway	-	1	382		vph		
	On R	amp Data	a				
		D	ا مات ا				
Side of freeway			ight				
Number of lanes in ramp Free-flow speed on ramp			5.0		mnh		
Volume on ramp					mph vph		
Length of first accel/d	acal lana	1500 ft					
Length of second accel/		Δ.	300		ft		
	Adjacent Ramp	Data (:	if on	e exists)		
					,		
Does adjacent ramp exis			es		,		
Volume on adjacent Ramp			б4		vph		
Position of adjacent Ra	mp	-	pstre	am			
Type of adjacent Ramp Distance to adjacent Ra	mn		ff 725		ft.		
Con	version to pc/h	Under 1	Base (Condition	ns		
Junction Components		Freewa	У	Ramp		Adjacent Ramp	
Volume, V (vph)		1382		1093		164	vph
Peak-hour factor, PHF		0.90		0.90		0.90	
Peak 15-min volume, v15		384		304		46	v
Trucks and buses		4		2		2	%
Recreational vehicles		0		0		0	%
Terrain type:		Rolling		Rolling		Rolling	
Grade			%		%		8
Length	_	۰	mi	0 5	mi		ni
Trucks and buses PCE, E		2.5		2.5		2.5	
Recreational vehicle PC	E, EK	2.0		2.0		2.0	

```
1628
                                              1251
                                                         188
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1628 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2879
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1628
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2879
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 18.0 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.255
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 66.6
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 66.6

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fax:			
	Merge	Analysis			
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	I-26 EB US176 EB On-Ra	mp			
	Free	way Data			
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way	Merge 2 75.0 2354		mph vph	
	On R	amp Data			
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	decel lane	Right 1 25.0 1555 1500		mph vph ft ft	
	Adjacent Ramp	Data (II o	ne exists)	
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ram Type of adjacent Ramp	mp	Yes 121 Upstr Off		vph	
Distance to adjacent Ra		900		ft	
Junction Components	version to pc/h	Under Base Freeway	Condition Ramp	ns	Adjacent
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E Recreational vehicle PC		2354 0.90 654 4 0 Rolling % mi 2.5 2.0	1555 0.90 432 2 0 Rolling	% mi	Ramp 121 vph 0.90 34 v 2 % 0 % Level

```
2772
                                              1780
                                                         136
Flow rate, vp
                                                                  pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2772 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        4552
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 2772
        12A
                    __Flow Entering Merge Influence Area__
                   Actual Max Desirable
                                                    Violation?
                    4552
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 30.8 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence D
                _____Speed Estimation_____
                                        M = 0.616
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 54.7
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 54.7

mph

0.990

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fax	:				
	Merge	e Analysi	s				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	AM Peak I-26 WB US 176 WB On-F	Ramp					
	Free	eway Data					
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	_	2 75	rge .0 33		mph vph		
	On H	Ramp Data					
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	ecel lane	1 25 18	ght .0 0 25		mph vph ft ft		
	Adjacent Ramp	p Data (i	f one	exists)		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ra Type of adjacent Ramp Distance to adjacent Ra	mp	Ye 48 Up Of 77	2 strea f	m	vph ft		
Con	version to pc/l	n Under B	ase C	ondition	ıs		
Junction Components	2 - 7	Freeway		Ramp		Adjacent Ramp	
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade		1533 0.90 426 4 0 Rolling		180 0.90 50 2 0 Rolling	જ	482 0.90 134 2 0 Rolling	vph v %
Length Trucks and buses PCE, E Recreational vehicle PC		2.5	mi	2.5	mi	2.5	mi

```
1806
                                              206
                                                         552
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1806 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2012
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1806
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2012
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 12.1 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.279
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 65.8
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 65.8

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fax:				
	Merge	Analysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	I-26 WB S-48 WB On-Ram	ф				
	Free	way Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way	Merge 2 75.0 863		mph vph		
	On R	amp Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	ecel lane	Right 1 45.0 141 1225		mph vph ft ft		
	Adjacent Ramp	Data (if or	ne exists)		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ra Type of adjacent Ramp Distance to adjacent Ra	mp	Yes 850 Upstre Off 1475	eam	vph ft		
Con	version to pc/h	Under Base	Conditio	ns		
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E		Freeway 863 0.90 240 4 0 Rolling % mi	Ramp 141 0.90 39 2 0 Rolling		Adjacent Ramp 850 0.90 236 2 0 Rolling	vph v % % %
Recreational vehicle PC		2.0	2.0		2.0	

```
1016
                                              161
                                                         973
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1016 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1177
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
If yes, v = 1016
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                   1177
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 6.9 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence A
                _____Speed Estimation_____
                                        M = 0.223
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 67.6
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 67.6

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fax:				
	Merge	Analysis				
Analyst: AECC Agency/Co.: AECC Date performed: 6/30 Analysis time period: AM I Freeway/Dir of Travel: I-20 Junction: SC-2 Jurisdiction: Analysis Year: 2020 Description: S-48 IMR	OM 0/2016 Peak 6 WB 202 WB On-Ra	mp				
	Freew	ay Data				
Type of analysis Number of lanes in freeway Free-flow speed on freeway Volume on freeway	On Do	Merge 2 75.0 977		mph vph		
	On Ra	mp Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/decel Length of second accel/decel		Right 1 45.0 70 525		mph vph ft ft		
Ad	jacent Ramp	Data (if on	e exists)		
Does adjacent ramp exist? Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ramp		Yes 27 Upstre Off 1000	am	vph ft		
			a			
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length		Freeway 977 0.90 271 4 0 Rolling % mi	Ramp 70 0.90 19 2 0 Rolling		Adjacent Ramp 27 0.90 8 2 0 Rolling	vph v % %
Trucks and buses PCE, ET Recreational vehicle PCE, ER		2.5	2.5		2.5	

```
1151
                                              80
                                                         31
Flow rate, vp
                                                                  pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1151 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1231
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                  12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1151
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    1231
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 11.7 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.287
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                         S = 65.5
                                                    mph
                                         R
Space mean speed in outer lanes,
                                         S = N/A
                                                    mph
```

S = 65.5

mph

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fax:				
	Merge	Analysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	AECOM AECOM 6/30/2016 PM Peak I-26 EB SC-202 EB On-R					
	Free	way Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way	Merge 2 75.0 1640		mph vph		
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	decel lane	Right 1 25.0 37 400		mph vph ft ft		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ram	mp	Yes 74 Upstre Off 1050	eam	vph ft		
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade	version to pc/h	Freeway 1640 0.90 456 4 0 Rolling	Ramp 37 0.90 10 2 0 Rolling	8	Adjacent Ramp 74 0.90 21 2 0 Rolling	vph v %
Length Trucks and buses PCE, E Recreational vehicle PC		mi 2.5 2.0	2.5	mi	2.5	mi

```
1932
                                              42
                                                         85
Flow rate, vp
                                                                  pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1932 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1974
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1932
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                   1974
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 18.3 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.329
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 64.1
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 64.1

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fax:					
Merge Analysis							
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	I-26 EB S-48 EB On-Ram	p					
	Free	way Data					
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	_	Merge 2 75.0 1503		mph vph			
	On R	amp Data					
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/decel lane Length of second accel/decel lane		Right 1 45.0 996 1500		mph vph ft ft			
	Adjacent Ramp	Data (if or	ne exists)			
Does adjacent ramp exist? Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ramp		Yes 174 Upstream Off 1725		vph ft			
Con	version to pc/h	Under Base	Conditio	ns			
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E		Freeway 1503 0.90 418 4 0 Rolling % mi	Ramp 996 0.90 277 2 0 Rolling		Adjacent Ramp 174 0.90 48 2 0 Rolling	vph v % % %	
Recreational vehicle PC		2.0	2.0		2.0		

```
Driver population factor, fP
                                                         1.00
                                   1770
                                              1140
                                                         199
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1770 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2910
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1770
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2910
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 18.2 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.258
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                         S = 66.5
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

S = 66.5

mph

1.00

0.971

1.00

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Phone: E-mail:								
Merge Analysis								
	ncrgc	Anarybib						
Analyst:	AECOM							
Agency/Co.:	AECOM							
Date performed:								
Analysis time period:								
<pre>Freeway/Dir of Travel: Junction:</pre>								
Jurisdiction:	US176 EB On-Ramp							
	2020 No-Build							
Description: S-48 IMR	nalysis Year: 2020 No-Build escription: S-48 IMR							
	Free	way Data						
_								
Type of analysis		Merge						
Number of lanes in free	_	2		la				
Free-flow speed on free Volume on freeway	way	75.0 2269		mph				
volume on freeway		2209		vph				
	On R	amp Data						
Side of freeway		Right						
Number of lanes in ramp		1						
Free-flow speed on ramp	25.0	mph						
Volume on ramp	875	vph						
Length of first accel/d	1500	ft						
Length of second accel/			ft					
	Adjacent Ramp	Data (if on	ne exists)				
Does adjacent ramp exis	t?	Yes						
Volume on adjacent Ramp		230		vph				
Position of adjacent Ramp		Upstre	eam	_				
Type of adjacent Ramp	Off							
Distance to adjacent Ra	mp	900		ft				
Con	version to pc/h	Under Base	Condition	ns				
Junction Components		Freeway	Ramp		Adjacen	t		
_					Ramp			
Volume, V (vph)		2269	875		230	vph		
Peak-hour factor, PHF		0.90	0.90		0.90			
Peak 15-min volume, v15		630	243		64	V		
Trucks and buses		4	2		2	%		
Recreational vehicles		0	0		0	%		
Terrain type: Grade		Rolling %	Rolling	%	Level	%		
Grade Length		wi		ซ mi		ซ mi		
Trucks and buses PCE, E	Т	2.5	2.5	шт	1.5	1111		
Recreational vehicle PC		2.0	2.0		1.2			
	,	• •	= • •					

```
2672
                                              1001
                                                         258
Flow rate, vp
                                                                 pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2672 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        3673
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 2672
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    3673
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 24.3 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence C
                _____Speed Estimation_____
                                        M = 0.400
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 61.8
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 61.8

mph

0.990

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fax:				
	Mei	rge Analysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	AECOM AECOM 6/30/2016 PM Peak I-26 WB US 176 WB Or 2020 No-Buil	n-Ramp Ld				
	F1	reeway Data				
Type of analysis Number of lanes in freeway Free-flow speed on freeway Volume on freeway		Merge 2 75.0 2380		mph vph		
	OI	n Ramp Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/decel lane Length of second accel/decel lane		Right 1 25.0 143 1425		mph vph ft ft		
	Adjacent Ra	amp Data (if o	ne exists)		
Does adjacent ramp exist? Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ramp		Yes 1410 Upstream Off 775		vph ft		
		c/h Under Base	. Condition	· ~		
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15	version to be	Freeway 2380 0.90 661	Ramp 143 0.90 40	110	Adjacent Ramp 1410 0.90 392	vph v
Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E Recreational vehicle PC		4 0 Rolling % mi 2.5 2.0	2 0 Rolling 2.5 2.0	% mi		% % mi
recreational venicie PC	в, вк	۷.∪	۷.∪		۷.∪	

```
Driver population factor, fP
                                                         1.00
                                   2803
                                              164
                                                         1614
Flow rate, vp
                                                                 pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2803 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2967
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
If yes, v = 2803
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2967
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 19.6 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.326
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                         S = 64.3
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 64.3

mph

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Phone:

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Fax:

E-mail:		rax.					
Merge Analysis							
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	PM Peak I-26 WB S-48 WB On-Ram	p					
	Free	way Data					
Type of analysis Number of lanes in freeway Free-flow speed on freeway Volume on freeway		Merge 2 75.0 1323	mph vph				
	On R	amp Data					
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/decel lane Length of second accel/decel lane		Right 1 45.0 196 1225		mph vph ft ft			
	Adjacent Ramp	Data (if on	e exists)			
Does adjacent ramp exist? Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ramp		Yes 1200 Upstream Off 1475		vph ft			
Con	version to pc/h	Under Base	Condition	ns			
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E		Freeway 1323 0.90 368 4 0 Rolling % mi 2.5 2.0	Ramp 196 0.90 54 2 0 Rolling 2.5 2.0	% mi		vph v % % i	

```
1558
                                              224
                                                         1373
Flow rate, vp
                                                                 pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1558 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1782
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
If yes, v = 1558
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                   1782
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 11.6 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.234
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 67.3
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 67.3

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: E-mail:		Fax:				
	Merge	Analysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	I-26 WB SC-202 WB On-R	amp				
	Free	way Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way	Merge 2 75.0 1405		mph vph		
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	ecel lane	Right 1 45.0 54 525		mph vph ft ft		
	Adjacent Ramp	Data (if or	ne exists)		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp	mp	Yes 114 Upstre		vph		
Distance to adjacent Ra	mp	1000		ft		
Con	version to pc/h	Under Base	Condition	ns		
Junction Components		Freeway	Ramp		Adjacent Ramp	
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E Recreational vehicle PC		1405 0.90 390 4 0 Rolling % mi 2.5 2.0	54 0.90 15 2 0 Rolling 2.5 2.0	% mi	114 0.90 32 2 0 Rolling	vph v % % % ni

```
1655
                                              62
                                                         130
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1655 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1717
                                     4800
    V
                                                   No
     FΟ
                           pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1655
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    1717
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 15.5 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.295
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                         S = 65.2
                                                    mph
                                         R
Space mean speed in outer lanes,
                                         S = N/A
                                                    mph
```

0.971

1.00

S = 65.2

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1385 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 38 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 199 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1385 38 199 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 385 11 55 V 2 2 0 Trucks and buses 4 ્ર 0 Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

```
1631
                                                43
                                                           228
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1631 pc/h
                  12 R F R FD
                       _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         1631
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1588
                                      4800
                                                     No
     FO F R
    V
                         43
                                      2100
                                                     No
     R
                         0
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 1631
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    1631
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 14.7 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.302
                                           S
Space mean speed in ramp influence area,
                                          S = 65.0
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 65.0
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1546 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 164 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1093 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1725 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1546 164 1093 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 429 46 304 V 4 2 2 % % Trucks and buses Recreational vehicles 0 Rolling Rolling Rolling 0.00 % 0.00 % 0.00 % 0.00 mi Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

```
1821
                                                188
                                                           1251
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                L =
                               (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1821 pc/h
                 12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         1821
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1633
                                      4800
                                                     No
     FO F R
    V
                         188
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
         av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 1821
                                   (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                 Max Desirable
                                                      Violation?
                                 4400
                    1821
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 11.1 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.315
                                          S
Space mean speed in ramp influence area,
                                          S = 64.6
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.6
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2475 vph ______Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 121 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1555 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2475 121 1555 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 688 34 432 V 2 2 0 Trucks and buses 4 ્ર 0 Recreational vehicles

 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi

 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
Driver population factor, fP
                                                           1.00
                                     2915
                                                138
                                                           1780
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2915 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2915
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         2777
                                      4800
                                                     No
     FO F R
    V
                         138
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2915
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    2915
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 20.3 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence C
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.310
                                           S
Space mean speed in ramp influence area,
                                          S = 64.8
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.8
                                                      mph
```

1.00

0.971

1.00

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2015 vph ______Off Ramp Data______ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 482 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 775 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2015 482 180 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 560 134 50 V 2 0 Trucks and buses 4 2 ્ર 0 0 Recreational vehicles
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
2373
                                                552
                                                           206
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2373 pc/h
                  12 R F R FD
                       _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2373
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1821
                                      4800
                                                     No
     FO F R
    V
                         552
                                      2100
                                                     No
     R
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2373
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                                  Max Desirable
                    Actual
                                                      Violation?
                                  4400
                    2373
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 13.6 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.348
                                           S
Space mean speed in ramp influence area,
                                          S = 63.5
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 63.5
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1713 vph ______Off Ramp Data______ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 850 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 141 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1475 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1713 850 141 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 476 236 39 V 4 2 0 Trucks and buses 2 ્ર 0 Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

```
2018
                                                973
                                                           161
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2018 pc/h
                  12 R F R FD
                       _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2018
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1045
                                      4800
                                                     No
     FO F R
    V
                         973
                                      2100
                                                     No
     R
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2018
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    2018
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 10.6 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.386
                                           S
Space mean speed in ramp influence area,
                                          S = 62.3
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 62.3
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1004 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 25.0 mph Volume on ramp 27 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 70 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft ______Conversion to pc/h Under Base Conditions______ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1004 27 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 279 8 19 V 2 2 0 Trucks and buses 4 ્ર 0 0 Recreational vehicles

 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi

 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

```
1182
                                                31
                                                           80
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1182 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         1182
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1151
                                      4800
                                                     No
     FO F R
    V
                         31
                                      1900
                                                     No
     R
                         0
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 1182
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    1182
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 10.8 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.561
                                           S
Space mean speed in ramp influence area,
                                          S = 56.5
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 56.5
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1714 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 74 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 37 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft ______Conversion to pc/h Under Base Conditions______ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1714 74 37 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 476 21 10 V 2 4 2 0 Trucks and buses ્ર 0 Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Rolling Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
2019
                                                85
                                                           42
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2019 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2019
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1934
                                      4800
                                                     No
     FO F R
    V
                         85
                                      2100
                                                     No
     R
                         0
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2019
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    2019
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 18.0 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.306
                                           S
Space mean speed in ramp influence area,
                                          S = 64.9
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.9
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1677 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 174 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 996 vph Position of adjacent ramp Downstream Type of adjacent ramp Distance to adjacent ramp 1725 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1677 174 996 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 466 48 277 V 4 2 2 0 Trucks and buses ્ર Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

```
1.00
Driver population factor, fP
                                     1.00
                                                1.00
                                     1975
                                                199
                                                           1140
Flow rate, vp
                                                                     pcph
                   _____Estimation of V12 Diverge Areas____
                 L =
                                (Equation 13-12 or 13-13)
                  ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1975 pc/h
                  12 R F R FD
                       _____Capacity Checks____
                                                     LOS F?
                                      Maximum
                         Actual
                         1975
                                      4800
    v = v
                                                      No
     Fi F
    v = v - v
                         1776
                                      4800
                                                      No
     FO F R
    V
                         199
                                      2100
                                                      No
     R
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
           = 1975
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                                  Max Desirable
                    Actual
                                                      Violation?
                                  4400
                    1975
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 12.5 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.316
                                           S
Space mean speed in ramp influence area,
                                          S = 64.6
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.6
                                                      mph
```

0.971

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2499 vph ______Off Ramp Data______ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 230 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 875 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2499 230 875 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 694 64 243 V 4 2 0 2 % % Trucks and buses 0 Recreational vehicles Rolling Rolling Rolling
0.00 % 0.00 % 0.00 %
0.00 mi 0.00 mi 0.00 mi Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER

2.0

2.0

```
Driver population factor, fP
                                    1.00
                                    2943
                                                263
                                                           1001
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas____
                L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2943 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2943
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         2680
                                      4800
                                                     No
     FO F R
    V
                         263
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2943
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                                 Max Desirable
                    Actual
                                                      Violation?
                                  4400
                    2943
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 20.6 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence C
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.322
                                           S
Space mean speed in ramp influence area,
                                          S = 64.4
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.4
                                                      mph
```

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3790 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 1410 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 775 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 3790 1410 143 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 1053 392 40 V 2 0 Trucks and buses 4 2 ્ર 0 Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
Driver population factor, fP
                                    1.00
                                                1.00
                                                           1.00
                                    4464
                                                1614
                                                           164
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas____
                L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 4464 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         4464
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         2850
                                      4800
                                                     No
     FO F R
    V
                         1614
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                            pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 4464
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                 Max Desirable
                                                      Violation?
                    4464
                                  4400
                                                      Yes
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 31.6 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence D
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.443
                                           S
Space mean speed in ramp influence area,
                                          S = 60.4
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 60.4
                                                      mph
```

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2523 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 1200 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 196 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1475 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2523 1200 196 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 701 333 54 V 2 0 Trucks and buses 4 2 ્ર 0 Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

```
2972
                                                1373
                                                           224
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2972 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                                      Maximum
                         Actual
                         2972
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1599
                                      4800
                                                     No
     FO F R
    V
                         1373
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                         0 pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2972
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                                 Max Desirable
                    Actual
                                                      Violation?
                                  4400
                    2972
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 18.8 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.422
                                           S
Space mean speed in ramp influence area,
                                          S = 61.1
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 61.1
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2020 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1519 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 25.0 mph Volume on ramp 114 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 54 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft ______Conversion to pc/h Under Base Conditions______ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 1519 114 54 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 422 32 15 V 4 2 2 0 Trucks and buses ્ર Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Rolling Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

```
1789
                                                130
                                                           62
Flow rate, vp
                                                                     pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                  ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1789 pc/h
                     R F R FD
                       _____Capacity Checks____
                                                     LOS F?
                                      Maximum
                         Actual
                         1789
                                      4800
    v = v
                                                      No
     Fi F
    v = v - v
                         1659
                                      4800
                                                      No
     FO F R
    V
                         130
                                      1900
                                                      No
     R
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
           = 1789
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    1789
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 16.0 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.570
                                           S
Space mean speed in ramp influence area,
                                          S = 56.2
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 56.2
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX H

NO-BUILD 2040 SYNCHRO AND SIM TRAFFIC REPORTS

Intersection													
Int Delay, s/veh	0.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	N	BL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44				f)			र्स	
Traffic Vol, veh/h	29	9	185	12	0	17		0	208	1209	147	1461	0
Future Vol, veh/h	29	9	185	12	0	17		0	208	1209	147	1461	0
Conflicting Peds, #/hr	0	0	0	0	0	0		0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Fr	ee	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None		-	-	None	-	-	None
Storage Length	-	-	-	-	-	-		-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-		-	0	-	-	0	-
Grade, %	-	0	-	-	0	-		-	0	-	-	0	
Peak Hour Factor	90	90	90	90	90	90		90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2		2	2	2	2	2	2
Mvmt Flow	32	10	206	13	0	19		0	231	1343	163	1623	0
Major/Minor	Minor2			Minor1			Majo	or1			Major2		
Conflicting Flow All	2862	3524	1623	2961	2853	903		-	0	0	1574	0	0
Stage 1	1950	1950	-	903	903	-		-	-	-	-	-	-
Stage 2	912	1574	-	2058	1950	-		-	_	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22		-	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-		-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318		-	-	-	2.218	-	-
Pot Cap-1 Maneuver	~ 11	~ 6	~ 127	~ 9	17	336		0	-	-	419	-	0
Stage 1	83	111	-	332	356	-		0	-	-	-	-	0
Stage 2	328	170	-	72	111	-		0	-	-	-	-	0
Platoon blocked, %									-	-		-	
Mov Cap-1 Maneuver	-	0	~ 127	-	0	336		-	-	-	419	-	-
Mov Cap-2 Maneuver	-	0	-	-	0	-		-	-	-	-	-	-
Stage 1	83	0	-	332	356	-		-	-	-	-	-	-
Stage 2	310	170	-	-	0	-		-	-	-	-	-	-
Approach	EB			WB				VB			SB		
HCM Control Delay, s								0			1.7		
HCM LOS	-			-									
Minor Lane/Major Mvmt	NBT	MRD	EBLn1WBL	11 SBL	SBT								
Capacity (veh/h)	NDT	NUN	LDLIIIVVDLI	- 419	-								
HCM Lane V/C Ratio	-	-	-	- 0.39	-								
HCM Control Delay (s)	<u> </u>	-		- 19	0								
HCM Lane LOS	_	_	_	- C	A								
HCM 95th %tile Q(veh)	_		-	- 1.8	-								
` '				1.0									
Notes	H., A.D.	olov: -	200 do 200 c		المليوس	n Nat P) of in o d	*. AU	mac!s		in plate er		
~: Volume exceeds capac	ıty \$: D	eiay ex	ceeds 300s	+: C0r	nputatio	on Not C	rennea	: All	majol	voiume	in platoon		

Figure F		۶	→	•	•	←	•	4	†	/	>	ţ	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations					4			ર્ન			f)	
Fulture Volume (viph)		0	0	0	1026		159	125		0	0		56
Satist Flow (prior) 0		0	0	0	1026	3	159	125	129	0	0	582	56
File Permitted		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Fil Permitted	Satd. Flow (prot)	0	0	0	0	1754	0	0	1818	0	0	1840	0
Pight Turn on Red Fight Fight						0.959			0.190				
Said, Flow (RTOR)	Satd. Flow (perm)	0	0	0	0	1754	0	0	354	0	0	1840	0
Link Speed (mph)	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (ft)	Satd. Flow (RTOR)					7						4	
Link Distance (ft)	` ,		45			45			35			35	
Travel Time (s)						668			593				
Peak Hour Factor 0.90 0.			13.4			10.1			11.6				
Shared Lane Traffic (%) Lane Group Flow (vph) 0 0 0 0 1320 0 0 282 0 0 709 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 709 0 0 709 0 709 0 709 0 709 0 709 0 709 0 0 709 0 709 0 709 0 709 0 709 0 709 0 0 709 0 709 0 709 0 709 0 709 0 709 0 0 709 0 709 0 709 0 709 0 709 0 709 0 0 709 0 709 0 709 0 709 0 709 0 709 0 0 709 0 709 0 709 0 709 0 709 0 709 0 0 0 0 0 0 0 0 0	, ,	0.90		0.90	0.90		0.90	0.90		0.90	0.90		0.90
Lame Group Flow (vph)													
Enter Blocked Intersection		0	0	0	0	1320	0	0	282	0	0	709	0
Left Left Right Median Width(ft) 0													
Median Width(ft) 0 1.00													
Link Offset(fft)													
Crosswalk Width(ff) 16 16 16 16 16 Two way Left Turn Lane 1.00 1													
Two way Left Turn Lane Headway Factor 1.00	` '												
Headway Factor	, ,		10			10			10			10	
Turning Speed (mph) 15 9 16 10		1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Turn Type Perm NA Perm NA Protected Phases 4 6 2 Permitted Phases 4 6 2 Detector Phase 4 4 6 6 Switch Phase 8 4 4 6 6 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 23.3 51.3% 51.			1.00			1.00			1.00			1.00	
Protected Phases 4 6 2 Permitted Phases 4 6		.0		,		NA	,		NA	,		NA	,
Permitted Phases 4 6 6 2 Switch Phase 4 4 6 6 2 Switch Phase 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 20.0													
Detector Phase 4 4 6 6 2 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 Total Split (%) 73.0 73.0 77.0 77.0 77.0 Total Split (%) 48.7% 48.7% 51.3% 51.3% 51.3% Maximum Green (s) 67.0 67.0 70.7 70.7 70.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time (s) 2.0 2.0 2.0 2.0 2.0 Lead/Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Act Effet Green (s) 67.0 70.7 70.7 70.7 70.7 70.7 70.7 <t< td=""><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td>6</td><td></td><td></td><td></td><td>_</td><td></td></t<>					4			6				_	
Switch Phase Incompanies						4			6			2	
Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 Total Split (s) 73.0 73.0 77.0 77.0 77.0 Total Split (%) 48.7% 48.7% 51.3% 51.3% 51.3% Maximum Green (s) 67.0 67.0 70.7 70.7 70.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag 2 2.0 2.0 2.0 Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effet Green (s) 67.0 70.7 70.7 70.7 70.7 70.7 70.7												_	
Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 27.0 77.0 77.0 77.0 77.0 77.0 70.7 70.0 90.0 <td></td> <td></td> <td></td> <td></td> <td>10.0</td> <td>10.0</td> <td></td> <td>10.0</td> <td>10.0</td> <td></td> <td></td> <td>10.0</td> <td></td>					10.0	10.0		10.0	10.0			10.0	
Total Split (s) 73.0 73.0 77.0 77.0 Total Split (%) 48.7% 48.7% 51.3% 51.3% Maximum Green (s) 67.0 67.0 70.7 70.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effet Green (s) 67.0 70.7 70.7 70.7 Actuated g/C Ratio 0.45 0.47 0.47 0.47 v/c Ratio 1.68 1.70 0.82 0.0 0.0 0.0 Control Delay 339.4	, ,												
Total Split (%) 48.7% 48.7% 51.3% 51.3% Maximum Green (s) 67.0 67.0 70.7 70.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9													
Maximum Green (s) 67.0 67.0 70.7 70.7 70.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.0 6.0 6.0 6.0 6													
Yellow Time (s) 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 67.0 70.7 70.7 Actuated g/C Ratio 0.45 0.47 0.47 v/c Ratio 1.68 1.70 0.82 Control Delay 339.4 367.1 43.0 Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F F D													
All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 67.0 70.7 70.7 Actuated g/C Ratio 0.45 0.47 0.47 v/c Ratio 1.68 1.70 0.82 Control Delay 339.4 367.1 43.0 Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F D													
Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Act Effct Green (s) 67.0 70.7 70.7 70.7 70.7 Actuated g/C Ratio 0.45 0.47 0.47 0.47 0.47 0.47 v/c Ratio 1.68 1.70 0.82 0.02 0.02 0.02 0.02 0.0													
Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 67.0 70.7 70.7 Actuated g/C Ratio 0.45 0.47 0.47 v/c Ratio 1.68 1.70 0.82 Control Delay 339.4 367.1 43.0 Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F F D													
Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 67.0 70.7 70.7 Actuated g/C Ratio 0.45 0.47 0.47 v/c Ratio 1.68 1.70 0.82 Control Delay 339.4 367.1 43.0 Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F D													
Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 67.0 70.7 70.7 Actuated g/C Ratio 0.45 0.47 0.47 v/c Ratio 1.68 1.70 0.82 Control Delay 339.4 367.1 43.0 Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F D						0.0			0.0			0.0	
Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 67.0 70.7 70.7 Actuated g/C Ratio 0.45 0.47 0.47 v/c Ratio 1.68 1.70 0.82 Control Delay 339.4 367.1 43.0 Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F D													
Recall Mode None None Min Min Min Act Effct Green (s) 67.0 70.7 70.7 Actuated g/C Ratio 0.45 0.47 0.47 v/c Ratio 1.68 1.70 0.82 Control Delay 339.4 367.1 43.0 Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F D					4.0	4.0		3.0	3.0			3.0	
Act Effct Green (s) 67.0 70.7 70.7 Actuated g/C Ratio 0.45 0.47 0.47 v/c Ratio 1.68 1.70 0.82 Control Delay 339.4 367.1 43.0 Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F D													
Actuated g/C Ratio 0.45 0.47 0.47 v/c Ratio 1.68 1.70 0.82 Control Delay 339.4 367.1 43.0 Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F D					140110								
v/c Ratio 1.68 1.70 0.82 Control Delay 339.4 367.1 43.0 Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F D													
Control Delay 339.4 367.1 43.0 Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F D													
Queue Delay 0.0 0.0 0.0 Total Delay 339.4 367.1 43.0 LOS F F D													
Total Delay 339.4 367.1 43.0 LOS F F D													
LOS F F D	•												
MUNUQUU UEQN 307 1 /1311	Approach Delay					339.4			367.1			43.0	

S-48 IMR AECOM

Lanes, Volumes, Timings

2: Columbia Ave & I-26 WB Ramps

No-Build 2040 AM

		→	*	•	•	_	7	ı		*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					F			F			D	
Queue Length 50th (ft)					~1890			~399			584	
Queue Length 95th (ft)					#2161			#421			769	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					787			166			869	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					1.68			1.70			0.82	

Intersection Summary

Area Type: Other

Cycle Length: 150

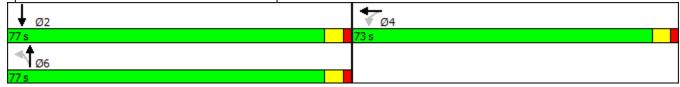
Actuated Cycle Length: 150

Natural Cycle: 150

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.70

Intersection Signal Delay: 251.8 Intersection LOS: F
Intersection Capacity Utilization 129.9% ICU Level of Service H


Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Columbia Ave & I-26 WB Ramps

HCM 2010 Signalized Intersection Summary 2: Columbia Ave & I-26 WB Ramps

	ၨ	→	•	•	—	•	•	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			र्स			f)	
Traffic Volume (veh/h)	0	0	0	1026	3	159	125	129	0	0	582	56
Future Volume (veh/h)	0	0	0	1026	3	159	125	129	0	0	582	56
Number				7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1900	1900	1863	0	0	1863	1900
Adj Flow Rate, veh/h				1140	3	177	139	143	0	0	647	62
Adj No. of Lanes				0	1	0	0	1	0	0	1	0
Peak Hour Factor				0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0	2	2	0	0	2	2
Cap, veh/h				674	2	105	108	100	0	0	789	76
Arrive On Green				0.45	0.45	0.45	0.47	0.47	0.00	0.00	0.47	0.47
Sat Flow, veh/h				1508	4	234	154	212	0	0	1674	160
Grp Volume(v), veh/h				1320	0	0	282	0	0	0	0	709
Grp Sat Flow(s), veh/h/ln				1746	0	0	366	0	0	0	0	1834
Q Serve(g_s), s				67.0	0.0	0.0	20.7	0.0	0.0	0.0	0.0	50.0
Cycle Q Clear(g_c), s				67.0	0.0	0.0	70.7	0.0	0.0	0.0	0.0	50.0
Prop In Lane				0.86		0.13	0.49		0.00	0.00		0.09
Lane Grp Cap(c), veh/h				780	0	0	208	0	0	0	0	865
V/C Ratio(X)				1.69	0.00	0.00	1.35	0.00	0.00	0.00	0.00	0.82
Avail Cap(c_a), veh/h				780	0	0	208	0	0	0	0	865
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				41.5	0.0	0.0	59.1	0.0	0.0	0.0	0.0	34.2
Incr Delay (d2), s/veh				317.2	0.0	0.0	187.3	0.0	0.0	0.0	0.0	6.3
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				101.0	0.0	0.0	19.5	0.0	0.0	0.0	0.0	26.7
LnGrp Delay(d),s/veh				358.7	0.0	0.0	246.4	0.0	0.0	0.0	0.0	40.5
LnGrp LOS				F			F					D
Approach Vol, veh/h					1320			282			709	
Approach Delay, s/veh					358.7			246.4			40.5	
Approach LOS					F			F			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		77.0		73.0		77.0						
Change Period (Y+Rc), s		6.3		6.0		6.3						
Max Green Setting (Gmax), s		70.7		67.0		70.7						
Max Q Clear Time (q_c+l1), s		52.0		69.0		72.7						
Green Ext Time (p_c), s		7.1		0.0		0.0						
Intersection Summary												
HCM 2010 Ctrl Delay			247.4									
HCM 2010 LOS			F									

SimTraffic Simulation Summary No-Build 2040 AM

Summary of All Intervals

Run Number	1	2	3	Avg	
Start Time	7:20	7:20	7:20	7:20	
End Time	8:30	8:30	8:30	8:30	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	2588	2719	2674	2659	
Vehs Exited	2569	2612	2593	2591	
Starting Vehs	459	438	425	437	
Ending Vehs	478	545	506	510	
Travel Distance (mi)	2864	2890	2921	2891	
Travel Time (hr)	2438.5	2434.2	2281.7	2384.8	
Total Delay (hr)	2386.1	2381.0	2227.9	2331.7	
Total Stops	2344	2247	2116	2236	
Fuel Used (gal)	659.2	659.7	627.3	648.7	

Interval #0 Information Seeding

Start Time	7:20
End Time	7:30
Total Time (min)	10
Volumes adjusted by Growth Factor	S.
No data recorded this interval.	

Interval #1 Information Recording

Start Time	7:30
End Time	8:30
Total Time (min)	60
Volumes adjusted by Growth	Factors.

Run Number	1	2	3	Avg	
Vehs Entered	2588	2719	2674	2659	
Vehs Exited	2569	2612	2593	2591	
Starting Vehs	459	438	425	437	
Ending Vehs	478	545	506	510	
Travel Distance (mi)	2864	2890	2921	2891	
Travel Time (hr)	2438.5	2434.2	2281.7	2384.8	
Total Delay (hr)	2386.1	2381.0	2227.9	2331.7	
Total Stops	2344	2247	2116	2236	
Fuel Used (gal)	659.2	659.7	627.3	648.7	

Queuing and Blocking Report No-Build 2040 AM

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	870	48	70	524
Average Queue (ft)	837	34	40	511
95th Queue (ft)	985	50	64	522
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)	91	62	5	87
Queuing Penalty (veh)	204	18	76	1406
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	704	193	889
Average Queue (ft)	675	81	861
95th Queue (ft)	691	161	883
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	98		87
Queuing Penalty (veh)	1166		0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

No-Build 2040 PM

Intersection												
Int Delay, s/veh	6.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NE	L NB1	NBR	SBL	SBT	SBR
Lane Configurations		4			4			1	•		र्स	
Traffic Vol, veh/h	48	9	173	1	0	12		0 71		245	1793	0
Future Vol, veh/h	48	9	173	1	0	12		0 71	1168	245	1793	0
Conflicting Peds, #/hr	0	0	0	0	0	0		0 (0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Fre	e Free	Free	Free	Free	Free
RT Channelized	-	-	None	·-	-	None		-	- None	-	-	None
Storage Length	-	-	-	-	-	-		-		-	-	-
Veh in Median Storage, #	ŧ -	0	-	-	0	-		- () -	-	0	-
Grade, %	-	0	-	-	0	-		- () -	-	0	
Peak Hour Factor	90	90	90	90	90	90	ç	0 90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2		2 2	2 2	2	2	2
Mvmt Flow	53	10	192	1	0	13		0 790	1298	272	1992	0
Major/Minor	Minor2			Minor1			Majo	1		Major2		
Conflicting Flow All	3983	4625	1992	4077	3976	1439		- () 0	2088	0	0
Stage 1	2537	2537	-	1439	1439	-				-	-	_
Stage 2	1446	2088	_	2638	2537	_		_		_		_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22		_		4.12	-	_
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-		_		1.12		_
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-		_		_	-	_
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318		_		2.218	_	
Pot Cap-1 Maneuver	~ 2	~ 1	~ 76	~ 1	3	163		0		~ 264	-	0
Stage 1	~ 37	55	-	165	198	-		0		201	_	0
Stage 2	164	94	-	32	55	-		^		-	-	0
Platoon blocked, %	104	7-7		32	33			U			_	U
Mov Cap-1 Maneuver	-	0	~ 76	-	0	163		_		~ 264	_	_
Mov Cap-1 Maneuver	_	0	- 70	_	0	103		_		204	_	
Stage 1	~ 37	0	-	165	198	-		_		_	_	
Stage 2	151	94	_	103	0	_		_		_		
Stage 2	131	74	-		U	-		-		-	-	_
Approach	EB			WB			N	D		SB		
	LD			VVD			IV					
HCM Control Delay, s								0		12.7		
HCM LOS	-			-								
Minor Long/Major Muset	NDT	NDD	FDI n1M/DI .	1 CDI	CDT							
Minor Lane/Major Mvmt	NBT	NDR	EBLn1WBLr		SBT							
Capacity (veh/h)	-	-	-	- ~ 264	-							
HCM Lane V/C Ratio	-	-	-	- 1.031	-							
HCM Control Delay (s)	-	-	-	- 105.5	0							
HCM Lane LOS	-	-	-	- F	Α							
HCM 95th %tile Q(veh)	-	-	-	- 10.6	-							
Notes												
~: Volume exceeds capa	city \$: D	elay ex	ceeds 300s	+: Cor	nputatio	on Not D	efined *	All maj	or volum	e in platoon		

Figure F		۶	→	•	•	←	•	4	†	/	/	ţ	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations					4			ની			î,	
Fulliary Volume (viph)		0	0	0	1325		248	228		0	0		36
Ideal Flow (yphpt)		0	0	0		3	248	228	543	0	0		
Satd Flow (pron) 0			1900	1900		1900							
File Permitted	`	0	0	0	0	1751	0	0	1835	0	0	1852	0
Pight Turn on Red Fight Fight													
Satis Sati	Satd. Flow (perm)	0	0	0	0	1751	0	0	170	0	0	1852	0
Satisfy Sati	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (ft)	Satd. Flow (RTOR)					8						2	
Link Distance (ft)			45			45			35			35	
Travel Time (s)						668			593				
Peak Hour Factor 0.90 0.			13.4			10.1			11.6				
Shared Lane Traffic (%) Lane Group Flow (vph) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	` ,	0.90		0.90	0.90		0.90	0.90		0.90	0.90		0.90
Composition													
Enter Blocked Intersection No No <th< td=""><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>1751</td><td>0</td><td>0</td><td>856</td><td>0</td><td>0</td><td>832</td><td>0</td></th<>		0	0	0	0	1751	0	0	856	0	0	832	0
Left Left Left Right Median Width(fft) 0 0 0 0 0 0 0 0 0													
Median Width(ft) 0 10 </td <td></td>													
Link Offset(ff) 0 0 0 0 0 0 Crosswalk Width(ff) 16 100 <td></td>													
Crosswalk Width(ft) 16 16 16 16 16 16 Two way Left Turn Lane 100 1.00 1													
Two way Left Turn Lane Headway Factor 1.00	` '												
Headway Factor 1.00	` ,		10			10			10			10	
Turning Speed (mph) 15 9 16 10 10 10 10 Permitted Phases 4 4 6 6 2 2 2 Description 2		1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Turn Type Perm NA Color of the perm C			1.00			1.00			1.00			1.00	
Protected Phases 4 6 2 Permitted Phases 4 6				,		NA	,		NA	,		NA	
Permitted Phases 4 6 6 2 Switch Phase 4 4 6 6 2 Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 22.0 Total Split (s) 72.0 72.0 78.0 78.0 Total Split (%) 48.0% 48.0% 52.0% 52.0% Maximum Green (s) 66.0 66.0 71.7 71.7 71.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag 8 6.0 6.3 6.3 Lead/Lag 90timize? 8 6.0 71.7 71.7 Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None <td></td>													
Detector Phase 4					4			6				_	
Switch Phase Incompanies						4			6			2	
Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 Total Split (s) 72.0 72.0 78.0 78.0 78.0 Total Split (%) 48.0% 48.0% 52.0% 52.0% 52.0% Maximum Green (s) 66.0 66.0 71.7 71.7 71.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.0 6.3 6.3 Lead/Lag Ead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Act Effet Green (s) 66.0 71.7 71.7 71.7 71.7 71.7 71.7 71.7								Ü				_	
Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 78.0 79.1 71.7 <td></td> <td></td> <td></td> <td></td> <td>10.0</td> <td>10.0</td> <td></td> <td>10.0</td> <td>10.0</td> <td></td> <td></td> <td>10.0</td> <td></td>					10.0	10.0		10.0	10.0			10.0	
Total Split (s) 72.0 72.0 78.0 78.0 Total Split (%) 48.0% 48.0% 52.0% 52.0% Maximum Green (s) 66.0 66.0 71.7 71.7 71.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Vehicle Extension (s) 8.0 8.0 8.0 Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effet Green (s) 66.0 71.7 71.7 71.7 Act Leaded g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 <td>, ,</td> <td></td>	, ,												
Total Split (%) 48.0% 48.0% 52.0% 52.0% Maximum Green (s) 66.0 66.0 71.7 71.7 71.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 6.3 Lead/Lag Ead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Act Effct Green (s) 66.0 71.7 71.7 71.7 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Maximum Green (s) 66.0 66.0 71.7 71.7 71.7 Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.0 6.0 7.1 7.1 7.1 7													
Yellow Time (s) 4.0 4.0 4.3 4.3 4.3 All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F F E													
All-Red Time (s) 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F F													
Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Act Effct Green (s) 66.0 71.7 71.7 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 0.48 0.48 0.48 0.44 0.08 0.94 Control Delay 595.1 4335.5 56.0 56.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 56.0 E													
Total Lost Time (s) 6.0 6.3 6.3 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F F													
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E													
Lead-Lag Optimize? Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F F E						0.0			0.0			0.0	
Vehicle Extension (s) 4.0 4.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F F E													
Recall Mode None None Min Min Min Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E					4.0	4.0		3.0	3.0			3.0	
Act Effct Green (s) 66.0 71.7 71.7 Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E													
Actuated g/C Ratio 0.44 0.48 0.48 v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E					140110								
v/c Ratio 2.26 10.57 0.94 Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E													
Control Delay 595.1 4335.5 56.0 Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E													
Queue Delay 0.0 0.0 0.0 Total Delay 595.1 4335.5 56.0 LOS F F E													
Total Delay 595.1 4335.5 56.0 LOS F F E	3												
LOS F F E	•												
AUUUAUU DEAV 1/555 5 56 11	Approach Delay					595.1			4335.5			56.0	

S-48 IMR AECOM

2: Columbia Ave & I-26 WB Ramps

	_	-	•	•	•	_		T		-	¥	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					F			F			Ε	
Queue Length 50th (ft)					~2788			~1597			757	
Queue Length 95th (ft)					#3051			#1865			#1045	
Internal Link Dist (ft)		803			588			513			805	
Turn Bay Length (ft)												
Base Capacity (vph)					774			81			886	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					2.26			10.57			0.94	

Intersection Summary

Area Type: Other

Cycle Length: 150

Actuated Cycle Length: 150

Natural Cycle: 45

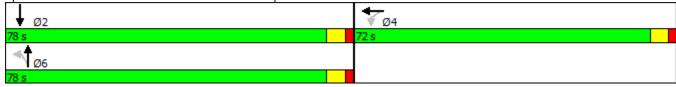
Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 10.57

Intersection Signal Delay: 1395.7

Intersection LOS: F ICU Level of Service H

Intersection Capacity Utilization 185.1%


Analysis Period (min) 15

 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Columbia Ave & I-26 WB Ramps

HCM 2010 Signalized Intersection Summary 2: Columbia Ave & I-26 WB Ramps

	۶	→	•	•	←	•	1	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			र्स			₽	
Traffic Volume (veh/h)	0	0	0	1325	3	248	228	543	0	0	713	36
Future Volume (veh/h)	0	0	0	1325	3	248	228	543	0	0	713	36
Number				7	4	14	1	6	16	5	2	12
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				1900	1863	1900	1900	1863	0	0	1863	1900
Adj Flow Rate, veh/h				1472	3	276	253	603	0	0	792	40
Adj No. of Lanes				0	1	0	0	1	0	0	1	0
Peak Hour Factor				0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0	2	2	0	0	2	2
Cap, veh/h				644	1	121	49	43	0	0	840	42
Arrive On Green				0.44	0.44	0.44	0.48	0.48	0.00	0.00	0.48	0.48
Sat Flow, veh/h				1464	3	274	37	89	0	0	1758	89
Grp Volume(v), veh/h				1751	0	0	856	0	0	0	0	832
Grp Sat Flow(s), veh/h/ln				1741	0	0	127	0	0	0	0	1847
Q Serve(g_s), s				66.0	0.0	0.0	7.5	0.0	0.0	0.0	0.0	64.2
Cycle Q Clear(g_c), s				66.0	0.0	0.0	71.7	0.0	0.0	0.0	0.0	64.2
Prop In Lane				0.84		0.16	0.30		0.00	0.00		0.05
Lane Grp Cap(c), veh/h				766	0	0	92	0	0	0	0	883
V/C Ratio(X)				2.29	0.00	0.00	9.34	0.00	0.00	0.00	0.00	0.94
Avail Cap(c_a), veh/h				766	0	0	92	0	0	0	0	883
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				42.0	0.0	0.0	72.5	0.0	0.0	0.0	0.0	37.2
Incr Delay (d2), s/veh				582.7	0.0	0.0	3774.8	0.0	0.0	0.0	0.0	17.9
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				155.7	0.0	0.0	99.9	0.0	0.0	0.0	0.0	37.0
LnGrp Delay(d),s/veh				624.7	0.0	0.0	3847.3	0.0	0.0	0.0	0.0	55.1
LnGrp LOS				F			F					Е
Approach Vol, veh/h					1751			856			832	
Approach Delay, s/veh					624.7			3847.3			55.1	
Approach LOS					F			F			Е	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		78.0		72.0		78.0						
Change Period (Y+Rc), s		6.3		6.0		6.3						
Max Green Setting (Gmax), s		71.7		66.0		71.7						
Max Q Clear Time (g_c+I1), s		66.2		68.0		73.7						
Green Ext Time (p_c), s		4.6		0.0		0.0						
Intersection Summary												
HCM 2010 Ctrl Delay			1289.0									
HCM 2010 LOS			F									

SimTraffic Simulation Summary No-Build 2040 PM

Summary of All Intervals

Run Number	1	2	3	Avg	
Start Time	4:35	4:35	4:35	4:35	
End Time	5:45	5:45	5:45	5:45	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	2911	2325	2458	2563	
Vehs Exited	2864	2264	2432	2520	
Starting Vehs	445	470	463	460	
Ending Vehs	492	531	489	504	
Travel Distance (mi)	3117	2359	2559	2678	
Travel Time (hr)	3248.8	3755.9	3657.5	3554.1	
Total Delay (hr)	3192.0	3710.8	3609.3	3504.0	
Total Stops	2591	2078	2604	2426	
Fuel Used (gal)	857.4	946.0	931.4	911.6	

Interval #0 Information Seeding

Start Time 4:35
End Time 4:45
Total Time (min) 10
Volumes adjusted by Growth Factors.

No data recorded this interval.

Interval #1 Information Recording

Start Time 4:45
End Time 5:45
Total Time (min) 60
Volumes adjusted by Growth Factors.

Run Number	1	2	3	Avg	
Vehs Entered	2911	2325	2458	2563	
Vehs Exited	2864	2264	2432	2520	
Starting Vehs	445	470	463	460	
Ending Vehs	492	531	489	504	
Travel Distance (mi)	3117	2359	2559	2678	
Travel Time (hr)	3248.8	3755.9	3657.5	3554.1	
Total Delay (hr)	3192.0	3710.8	3609.3	3504.0	
Total Stops	2591	2078	2604	2426	
Fuel Used (gal)	857.4	946.0	931.4	911.6	

Queuing and Blocking Report No-Build 2040 PM

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	TR	LT
Maximum Queue (ft)	882	47	55	525
Average Queue (ft)	863	10	28	510
95th Queue (ft)	942	32	56	516
Link Distance (ft)	743	38	20	508
Upstream Blk Time (%)	97	1	2	95
Queuing Penalty (veh)	224	0	41	1934
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	LTR	LT	TR
Maximum Queue (ft)	692	420	873
Average Queue (ft)	667	249	859
95th Queue (ft)	683	391	874
Link Distance (ft)	537	508	858
Upstream Blk Time (%)	100		100
Queuing Penalty (veh)	1573		0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX I

NO-BUILD 2040 HCS REPORTS

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: West of SC 202 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ 2003 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 556 V 4 Trucks and buses 응 Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 1180 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1180 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 74.6 mi/h Number of lanes, N

15.8

В

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2202 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 612 V 4 Trucks and buses કૃ Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 1297 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1297 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 74.0 mi/h Number of lanes, N

17.5

В

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 3396 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 943 V 4 Trucks and buses કૃ Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 2000 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 2000 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 63.9 mi/h Number of lanes, N

31.3

D

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Anal	lysis	
	I-26 EB East of US176		
	Flow Inputs and	Adjustments	
Volume, V		5164	veh/h
Peak-hour factor, PHF Peak 15-min volume, v15		0.90 1434	V
Trucks and buses		4	٧ وه
Recreational vehicles		0	%
Terrain type:		Rolling	
Grade		-	8
Segment length		-	mi
Trucks and buses PCE, E		2.5	
Recreational vehicle PC		2.0	
Heavy vehicle adjustmen		0.943	
Driver population factor Flow rate, vp	or, ip	1.00 3041	pc/h/ln
Trow race, vp		3011	pc/ II/ III
	Speed Inputs and	d Adjustments	
Lane width		12.0	ft
Right-side lateral clea		6.0	ft
Total ramp density, TRI)	0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed: FFS or BFFS		Base 75.4	mi/h
Lane width adjustment,	f T.W	0.0	mi/h
Lateral clearance adjus		0.0	mi/h
TRD adjustment	remerie, The	1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Performa	ance Measures	
Flow rate, vp		3041	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	speed, S	28.9	mi/h
Number of lanes, N	<u> </u>	2	· ,
			4 1 45

105.3

F

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM 6/30/2016 Date Performed: Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: East of US 176 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ 2790 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 775 V Trucks and buses 응 Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 1643 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1643 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 70.4 mi/h Number of lanes, N

23.3

C

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2418 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 672 V 4 Trucks and buses કૃ Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 1424 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1424 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 73.0 mi/h Number of lanes, N

19.5

C

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational	Analysis	
Analysis Time Period:	I-26 WB Between S-48		
	Flow Inputs	and Adjustments	
Volume, V Peak-hour factor, PHF		1414	veh/h
Peak 15-min volume, v15 Trucks and buses Recreational vehicles		393 4 0	V % %
Terrain type: Grade		Rolling -	8
Segment length Trucks and buses PCE, ET Recreational vehicle PCE, ER Heavy vehicle adjustment, fHV Driver population factor, fp		- 2.5 2.0 0.943 1.00	mi
Flow rate, vp		833	pc/h/ln
	Speed Inputs	and Adjustments	
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N Free-flow speed:		12.0 6.0 0.33 2 Base	ft ft ramps/mi
FFS or BFFS Lane width adjustment, Lateral clearance adjus		75.4 0.0 0.0	mi/h mi/h mi/h
TRD adjustment Free-flow speed, FFS		1.3 74.1	mi/h mi/h
	LOS and Perf	ormance Measures	
Flow rate, vp		833	pc/h/ln
Free-flow speed, FFS Average passenger-car s Number of lanes, N	peed, S	74.1 75.0 2	mi/h mi/h
Density, D		11.1	pc/mi/ln

В

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: AM Peak Freeway/Direction: I-26 WB From/To: West of SC 202 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ 1467 Volume, V veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 408 V 4 Trucks and buses 응 Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 Flow rate, vp 864 pc/h/ln _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ 864 Flow rate, vp pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 75.0 mi/h Number of lanes, N

11.5

В

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Anal	ysis	
	AECOM AECOM 6/30/2016 PM Peak I-26 EB West of SC 202 2040 No-Build		
	Flow Inputs and	Adjustments	
Volume, V Peak-hour factor, PHF		2415 0.90	veh/h
Peak 15-min volume, v15 Trucks and buses Recreational vehicles		671 4 0	V % %
Terrain type: Grade		Rolling -	%
Segment length Trucks and buses PCE, ET Recreational vehicle PCE, ER Heavy vehicle adjustment, fHV Driver population factor, fp		- 2.5 2.0 0.943 1.00	mi
Flow rate, vp	-, - _F	1422	pc/h/ln
	Speed Inputs and	Adjustments	
Lane width Right-side lateral clea Total ramp density, TRD Number of lanes, N		12.0 6.0 0.33 2	ft ft ramps/mi
Free-flow speed: FFS or BFFS Lane width adjustment, fLW		Base 75.4 0.0	mi/h mi/h
Lateral clearance adjus TRD adjustment Free-flow speed, FFS	tment, ilc	0.0 1.3 74.1	mi/h mi/h mi/h
	LOS and Performa	nce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car s Number of lanes, N	peed, S	1422 74.1 73.0 2	pc/h/ln mi/h mi/h

19.5

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and SC 202 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 2370 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 658 V Trucks and buses 4 કૃ Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 1396 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 1396 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 73.3 mi/h Number of lanes, N

19.1

C

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 EB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 3502 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 973 V 4 Trucks and buses કૃ Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 2062 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 2062 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 62.5 mi/h Number of lanes, N Density, D 33.0 pc/mi/ln

D

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Analy	sis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: S-48 IMR	I-26 EB East of US176		
	Flow Inputs and A	Adjustments	
Volume, V Peak-hour factor, PHF Peak 15-min volume, v15		4257 0.90 1183	veh/h
Trucks and buses Recreational vehicles Terrain type:		4 0 Rolling	V % %
Grade Segment length		- - 2.5	% mi
Trucks and buses PCE, ET Recreational vehicle PCE, ER Heavy vehicle adjustment, fHV Driver population factor, fp Flow rate, vp		2.5 2.0 0.943 1.00 2507	pc/h/ln
	Speed Inputs and	Adjustments	
Lane width Right-side lateral clear Total ramp density, TRD Number of lanes, N Free-flow speed:	rance	12.0 6.0 0.33 2 Base	ft ft ramps/mi
FFS or BFFS Lane width adjustment, fLW Lateral clearance adjustment, fLC TRD adjustment Free-flow speed, FFS		75.4 0.0 0.0 1.3 74.1	mi/h mi/h mi/h mi/h mi/h
	LOS and Performan	nce Measures	
Flow rate, vp Free-flow speed, FFS Average passenger-car sp Number of lanes, N Density, D	peed, S	2507 74.1 49.9 2 50.3	<pre>pc/h/ln mi/h mi/h pc/mi/ln</pre>

F

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: East of US 176 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 5028 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 1397 V Trucks and buses ે Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 2961 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 2961 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 32.4 mi/h Number of lanes, N

91.3

Level of service, LOS

Phone: Fax: E-mail: _____Operational Analysis_____ Analyst: AECOM Agency or Company: AECOM Date Performed: 6/30/2016 Analysis Time Period: PM Peak Freeway/Direction: I-26 WB From/To: Between S-48 and US 176 Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Flow Inputs and Adjustments_____ Volume, V 3467 veh/h Peak-hour factor, PHF 0.90 Peak 15-min volume, v15 963 V Trucks and buses 4 કૃ Recreational vehicles Terrain type: Rolling Grade Segment length mi Trucks and buses PCE, ET 2.5 Recreational vehicle PCE, ER 2.0 Heavy vehicle adjustment, fHV 0.943 Driver population factor, fp 1.00 pc/h/ln Flow rate, vp 2042 _____Speed Inputs and Adjustments_____ Lane width 12.0 ft Right-side lateral clearance 6.0 ft Total ramp density, TRD 0.33 ramps/mi Number of lanes, N 2 Free-flow speed: Base FFS or BFFS 75.4 mi/h Lane width adjustment, fLW 0.0 mi/h Lateral clearance adjustment, fLC 0.0 mi/h TRD adjustment 1.3 mi/h Free-flow speed, FFS 74.1 mi/h _____LOS and Performance Measures_____ Flow rate, vp 2042 pc/h/ln Free-flow speed, FFS 74.1 mi/h Average passenger-car speed, S 63.0 mi/h Number of lanes, N Density, D 32.4 pc/mi/ln

D

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational	Analysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: S-48 IMR	6/30/2016 PM Peak I-26 WB Between S-48 2040 No-Build		
	Flow Inputs	and Adjustments	
Volume, V		2158	veh/h
Peak-hour factor, PHF		0.90	,
Peak 15-min volume, v1	5	599	V
Trucks and buses		4	8
Recreational vehicles		0	%
Terrain type:		Rolling	
Grade		-	8
Segment length		-	mi
Trucks and buses PCE, I		2.5	
Recreational vehicle Po		2.0	
Heavy vehicle adjustmen		0.943	
Driver population factor Flow rate, vp	ы, гр	1.00 1271	pc/h/ln
_			_
	Speed Inputs	and Adjustments	
Lane width		12.0	ft
Right-side lateral clea		6.0	ft
Total ramp density, TRI)	0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS	CTT	75.4	mi/h
Lane width adjustment, Lateral clearance adjus		0.0 0.0	mi/h mi/h
TRD adjustment	stillerit, ILC	1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
22 22 Sp 3 3 4 7 2 5			
	LOS and Pert	ormance Measures	
Flow rate, vp		1271	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car	speed, S	74.2	mi/h
Number of lanes, N		2	
Damait D		7 7 1	/ / 1

17.1

В

Level of service, LOS

Phone: E-mail:		Fax:	
	Operational Anal	ysis	
Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: S-48 IMR	6/30/2016 PM Peak I-26 WB West of SC 202		
	Flow Inputs and	Adjustments	
Volume, V	<u>-</u>	2084	veh/h
Peak-hour factor, PHF		0.90	
Peak 15-min volume, v15		579	V 0.
Trucks and buses Recreational vehicles		4 0	%
Terrain type:		Rolling	6
Grade		-	8
Segment length		_	mi
Trucks and buses PCE, E	Т	2.5	
Recreational vehicle PC		2.0	
Heavy vehicle adjustmen		0.943	
Driver population factor	r, fp	1.00	
Flow rate, vp		1227	pc/h/ln
	Speed Inputs and	l Adjustments	
Lane width		12.0	ft
Right-side lateral clea	rance	6.0	ft
Total ramp density, TRD		0.33	ramps/mi
Number of lanes, N		2	
Free-flow speed:		Base	
FFS or BFFS		75.4	mi/h
Lane width adjustment,		0.0	mi/h
Lateral clearance adjus	tment, fLC	0.0	mi/h
TRD adjustment		1.3	mi/h
Free-flow speed, FFS		74.1	mi/h
	LOS and Performa	ance Measures	
Flow rate, vp		1227	pc/h/ln
Free-flow speed, FFS		74.1	mi/h
Average passenger-car s	peed, S	74.4	mi/h
Number of lanes, N		2	

pc/mi/ln

16.5

Phone: E-mail:		Fax	ς:						
	Mer	ge Analysi	Ls						
Analyst:	AECOM								
Agency/Co.:	AECOM								
	6/30/2016								
Analysis time period:	AM Peak								
Freeway/Dir of Travel:	I-26 EB								
Junction:	SC-202 EB On	-Ramp							
Jurisdiction:									
Analysis Year: Description: S-48 IMR	2040 No-Buil	d							
_	Fr	eeway Data	a.						
		7							
Type of analysis		M∈	erge						
Number of lanes in free	way	2							
Free-flow speed on free	way		5.0		mph				
Volume on freeway		19	957		vph				
	On	Ramp Data	à						
Side of freeway		Ri	lght						
Number of lanes in ramp		1							
Free-flow speed on ramp		25	5.0		mph				
Volume on ramp		24	245			vph			
Length of first accel/d		40	0 0		ft				
Length of second accel/	decel lane				ft				
	Adjacent Ra	mp Data (i	f on	e exists)				
Does adjacent ramp exis	t?	Υe	es						
Volume on adjacent Ramp		46	5		vph				
Position of adjacent Ra	mp	Up	stre	am					
Type of adjacent Ramp		Of							
Distance to adjacent Ra	mp	10)50		ft				
Con	version to pc	/h Under E	Base (Condition	ns				
Junction Components		Freeway	7	Ramp		Adjacent Ramp			
Volume, V (vph)		1957		245		46	vph		
Peak-hour factor, PHF		0.90		0.90		0.90			
Peak 15-min volume, v15		544		68		13	V		
Trucks and buses		4		2		2	%		
Recreational vehicles		0		0		0	%		
Terrain type:		Rolling	3	Rolling		Rolling			
Grade			왕		%	:	Ó		
Length			mi	_	mi		ni		
Trucks and buses PCE, E		2.5		2.5		2.5			
Recreational vehicle PC	E, ER	2.0		2.0		2.0			

```
2305
                                              280
                                                         53
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2305 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2585
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 2305
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2585
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 23.0 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence C
                _____Speed Estimation_____
                                        M = 0.353
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 63.4
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 63.4

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fa	ıx:				
	Merge	Analys	is				
Total Total	7 E COM						
Analyst:	AECOM						
Agency/Co.:	AECOM						
Date performed: Analysis time period:	6/30/2016						
Freeway/Dir of Travel:							
Junction:	S-48 EB On-Ram	n					
Jurisdiction:	b 10 db on Ram	۲					
Analysis Year:	2040 No-Build						
Description: S-48 IMR							
	Free	way Dat	.a				
Type of analysis		ī.v	lorgo				
Type of analysis Number of lanes in free	7.7 C 7.7		lerge				
Free-flow speed on free	=		5.0		mph		
Volume on freeway	way		.979		vph		
-	0 7	5 .			_		
	On R	amp Dat	.a				
Side of freeway		R	ight				
Number of lanes in ramp		1					
Free-flow speed on ramp		4	5.0		mph		
Volume on ramp		1	417		vph		
Length of first accel/d		1	500		ft		
Length of second accel/	decel lane				ft		
	Adjacent Ramp	Data (if on	e exists)		
Does adjacent ramp exis	t?	Y	es				
Volume on adjacent Ramp			23		vph		
Position of adjacent Ra	mp	U	pstre	am			
Type of adjacent Ramp		0	ff				
Distance to adjacent Ra	mp	1	.725		ft		
Con	version to pc/h	Under	Base	Conditio	ns		
Junction Components		Freewa	У	Ramp		Adjacent	
						Ramp	_
Volume, V (vph)		1979		1417		223	vph
Peak-hour factor, PHF		0.90		0.90		0.90	
Peak 15-min volume, v15 Trucks and buses		550 4		394 2		62 2	V %
		4 0		0		0	%
Recreational vehicles Terrain type:		u Rollin	ıa	0 Rolling		Rolling	6
Grade		KOTTTII	.g %	KOTITIIG	%	ROTITING	%
Length			mi		mi		mi
Trucks and buses PCE, E	Т	2.5		2.5		2.5	
Recreational vehicle PC		2.0		2.0		2.0	

```
Driver population factor, fP
                                   1.00
                                                         1.00
                                   2331
                                              1622
                                                         255
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2331 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        3953
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                  12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 2331
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    3953
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 26.2 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence C
                _____Speed Estimation_____
                                        M = 0.389
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                         S = 62.2
                                                    mph
                                         R
Space mean speed in outer lanes,
                                         S = N/A
                                                    mph
```

1.00

S = 62.2

mph

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Phone: E-mail:		Fax:				
	Merge	Analysis_				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	AM Peak I-26 EB US176 EB On-Ra	mp				
	Free	way Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway		Merg 2 75.0 3248		mph vph		
	On R	amp Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/decel lane Length of second accel/decel lane		Righ 1 25.0 1916 1500		mph vph ft ft		
	Adjacent Ramp	Data (if	one exists)		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ra Type of adjacent Ramp Distance to adjacent Ra	mp	Yes 148 Upst Off 900	ream	vph ft		
Con	wordion to na/h	Under Pag	o Conditio	n a		
Junction Components	version to pc/h	Under Bas Freeway	e Conditio	ns	Adjacen	
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length			i	% mi	Ramp 148 0.90 41 2 0 Level	vph v % % mi
Trucks and buses PCE, E Recreational vehicle PC		2.5	2.5 2.0		1.5	

```
3825
                                              2193
                                                         166
Flow rate, vp
                                                                 pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 3825 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        6018
                                     4800
    V
                                                   Yes
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                  12
     3
If yes, v = 3825
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    6018
                                4600
                                                    Yes
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 42.0 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence F
                _____Speed Estimation_____
                                        M = 1.848
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 14.0
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 14.0

mph

0.990

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone:		Fa	ax:				
E-mail:							
	Merge	e Analys	sis				
	7.7.6014						
Analyst:	AECOM						
Agency/Co.:	AECOM						
Date performed: Analysis time period:							
-							
Freeway/Dir of Travel: Junction:		omn.					
Jurisdiction:	US 176 WB On-F	Kamp					
Analysis Year:	2040 No-Build						
Description: S-48 IMR	Z010 NO Bullu						
	Free	eway Dat	:a				
Type of analysis			ſerge				
Number of lanes in free			2				
Free-flow speed on free	way		75.0		mph		
Volume on freeway		2	2196		vph		
	On F	Ramp Dat	a				
Side of freeway		R	Right				
Number of lanes in ramp							
Free-flow speed on ramp		2	25.0		mph		
Volume on ramp			222				
Length of first accel/d	ecel lane	1425 ft					
Length of second accel/					ft		
	Adjacent Ramp	Data (if one	e exists)		
Door odicant name onia	± 0	37	700				
Does adjacent ramp exis			es 594		rmh		
Volume on adjacent Ramp Position of adjacent Ra			oga Jpstrea	a m	vph		
Type of adjacent Ramp	шр)ff	aiii			
Distance to adjacent Ra	mn		775		ft		
Con	version to pc/h	n Under	Base (Conditio	ns		
Junction Components		Freewa	ay	Ramp		Adjacent Ramp	
Volume, V (vph)		2196		222		594	vph
Peak-hour factor, PHF		0.90		0.90		0.90	_
Peak 15-min volume, v15		610		62		165	v
Trucks and buses		4		2		2	%
Recreational vehicles		0		0		0	%
Terrain type:		Rollin	ıg	Rolling		Rolling	
Grade			%		%		%
Length			mi		mi		mi
Trucks and buses PCE, E		2.5		2.5		2.5	
Recreational vehicle PC	E, ER	2.0		2.0		2.0	

```
2586
                                              254
                                                         680
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2586 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2840
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 2586
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2840
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 18.6 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.317
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 64.6
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 64.6

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone:

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Fax:

E-mail:		rax.				
	Merge	Analysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	AM Peak I-26 WB S-48 WB On-Ram	p				
	Free	way Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway		Merge 2 75.0 1230		mph vph		
	On R	amp Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/decel lane Length of second accel/decel lane		Right 1 45.0 184 1225 Data (if on		mph vph ft ft		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp Distance to adjacent Ram	t? mp	Yes 1188 Upstre Off 1475	eam	vph ft		
Con	version to pc/h	Under Base	Condition	ns		
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E Recreational vehicle PC		Freeway 1230 0.90 342 4 0 Rolling % mi 2.5 2.0	Ramp 184 0.90 51 2 0 Rolling 2.5 2.0	% mi	Adjacent Ramp 1188 0.90 330 2 0 Rolling 2.5 2.0	vph v % %

```
Driver population factor, fP
                                   1.00
                                              1.00
                                                         1.00
                                   1449
                                              211
                                                         1360
Flow rate, vp
                                                                pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1449 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1660
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                  12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1449
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                   1660
                                4600
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 10.6 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.231
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 67.4
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

S = 67.4

mph

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Phone: E-mail:		Fax:				
	Merge	Analysis				
Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel:	AECOM AECOM 6/30/2016 AM Peak I-26 WB SC-202 WB On-R					
	Free	way Data				
Type of analysis Number of lanes in freew Free-flow speed on freew Volume on freeway	ray	Merge 2 75.0 1381 amp Data		mph vph		
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/de Length of second accel/d	lecel lane	Right 1 45.0 86 525		mph vph ft ft		
Does adjacent ramp exist Volume on adjacent Ramp Position of adjacent Ram Type of adjacent Ramp Distance to adjacent Ram	np	Yes 33 Upstr Off 1000	eam	vph ft		
Junction Components Volume, V (vph) Peak-hour factor, PHF	ersion to pc/h	Freeway 1381 0.90	Ramp 86 0.90	ns	Adjacent Ramp 33 0.90	vph
Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, ET Recreational vehicle PCE		384 4 0 Rolling % mi 2.5 2.0	24 2 0 Rolling 2.5 2.0	% mi	9 2 0 Rolling 2.5 2.0	V % % mi

```
1627
                                              98
                                                         38
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 1627 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        1725
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
                > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 1627
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    1725
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 15.6 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.296
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 65.2
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

S = 65.2

mph

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fax:				
	Merge	e Analysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	I-26 EB SC-202 EB On-I	Ramp				
	Free	eway Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way	Merge 2 75.0 2325		mph vph		
	On I	Ramp Data				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/	ecel lane	Right 1 25.0 45 400		mph vph ft ft		
		P 2000 (22 0)		,		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp		Yes 90 Upstre Off	eam	vph		
Distance to adjacent Ran	mp	1050		ft		
Con	version to pc/l	h Under Base	Condition	ns		
Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles		Freeway 2325 0.90 646 4 0	Ramp 45 0.90 13 2		Adjacent Ramp 90 0.90 25 2	vph v % %
Terrain type: Grade Length Trucks and buses PCE, E Recreational vehicle PC		Rolling % mi 2.5 2.0	Rolling 2.5 2.0	% mi		t ni

```
2738
                                              52
                                                         103
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2738 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2790
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 2738
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2790
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 24.7 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence C
                _____Speed Estimation_____
                                        M = 0.364
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 63.0
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

S = 63.0

mph

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: Fax: E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Merge Number of lanes in freeway mph Free-flow speed on freeway 75.0 Volume on freeway 2140 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-flow speed on ramp 45.0 mph Volume on ramp 1362 vph Length of first accel/decel lane 1500 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 230 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1725 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2140 1362 230 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 594 378 64 V 2 2 0 Trucks and buses 4 ્ર 0 Recreational vehicles Rolling Terrain type: Rolling Rolling % mi Grade Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
Driver population factor, fP
                                                         1.00
                                   2520
                                              1559
                                                         263
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2520 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        4079
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 2520
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    4079
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 27.2 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence C
                _____Speed Estimation_____
                                        M = 0.416
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                         S = 61.3
                                                    mph
                                         R
Space mean speed in outer lanes,
                                         S = N/A
                                                    mph
```

0.971

1.00

S = 61.3

mph

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Phone: E-mail:		Fax:						
	Merge	Analysis						
Analyst:	AECOM							
Agency/Co.:	AECOM							
	6/30/2016							
Analysis time period:								
Freeway/Dir of Travel:	I-26 EB							
Junction:	US176 EB On-Ra	mp						
Jurisdiction:								
Analysis Year:	2040 No-Build							
Description: S-48 IMR								
	Free	way Data						
Type of analysis		Merge	9					
Number of lanes in free	way	2						
Free-flow speed on free	way	75.0		mph				
Volume on freeway		3218		vph				
	On R	amp Data						
Side of freeway		Right	.					
Number of lanes in ramp		1	-					
Free-flow speed on ramp		25.0		mph				
Volume on ramp			1079					
Length of first accel/d	ecel lane				vph ft			
Length of second accel/				ft				
	Adjacent Ramp	Data (if o	one exists)				
Does adjacent ramp exis	t?	Yes						
Volume on adjacent Ramp		284		vph				
Position of adjacent Ra		Upstı	ceam	_				
Type of adjacent Ramp		Off						
Distance to adjacent Ra	qm	900		ft				
Con	version to pc/h	Under Base	e Conditio	ns				
Junction Components		Freeway	Ramp		Adjacent			
		_	_		Ramp			
Volume, V (vph)		3218	1079		284	vph		
Peak-hour factor, PHF		0.90	0.90		0.90			
Peak 15-min volume, v15		894	300		79	V %		
Trucks and buses		4	2		2	% %		
Recreational vehicles		0 Rolling	0 Rolling		0	б		
Terrain type: Grade		ROIIING %	KOTITIIG	%	Level	%		
Length		m i	i	mi		∾ mi		
Trucks and buses PCE, E	Т	2.5	2.5		1.5			
Recreational vehicle PC		2.0	2.0		1.2			
	, =		•		–			

```
3790
                                              1235
                                                         319
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                               (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 3790 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        5025
                                     4800
    V
                                                    Yes
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
If yes, v = 3790
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    5025
                                4600
    V
                                                    Yes
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 34.7 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence F
                _____Speed Estimation____
                                        M = 0.839
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                         S = 47.3
                                                    mph
                                         R
Space mean speed in outer lanes,
                                         S = N/A
                                                    mph
```

0.971

1.00

S = 47.3

mph

0.990

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fax:				
	Merg	ge Analysis	3			
Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year:	I-26 WB US 176 WB On-	_				
Description: S-48 IMR	Er.o	oway Data				
	rre	eway Data_				
Type of analysis Number of lanes in freew Free-flow speed on freew Volume on freeway	_		_	mph vph		
	On	Ramp Data_				
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/de Length of second accel/d	ecel lane	177 142	0 2 2.5	mph vph ft ft		
	_Adjacent Ram	ıp Data (11	one exis	ts)		
Does adjacent ramp exist Volume on adjacent Ramp Position of adjacent Ramp Type of adjacent Ramp	Þ	Yes 173 Ups Off 775	88 stream	vph		
Distance to adjacent Ram				ft		
Junction Components	ersion to pc/	h Under Ba Freeway	se Condit Ramp	ions	Adjacent	
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, ET Recreational vehicle PCE		3290 0.90 914 4 0 Rolling	177 0.90 49 2 0 Rolli % mi 2.5 2.0	ng % mi	Ramp 1738 0.90 483 2 0 Rolling	vph v % % mi

```
3875
                                              203
                                                         1989
Flow rate, vp
                                                                 pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 3875 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        4078
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
If yes, v = 3875
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    4078
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 28.3 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence D
                _____Speed Estimation_____
                                        M = 0.480
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 59.2
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 59.2

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: E-mail:		Fax:				
	Merge	Analysis				
Analyst: Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: S-48 IMR	I-26 WB S-48 WB On-Ram	Þ				
	Free	way Data				
Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway	way	Merge 2 75.0 1891 amp Data		mph vph		
Side of freeway Number of lanes in ramp Free-flow speed on ramp Volume on ramp Length of first accel/d Length of second accel/		Right 1 45.0 267 1225	no exists	mph vph ft ft		
Does adjacent ramp exis Volume on adjacent Ramp Position of adjacent Ram Type of adjacent Ramp Distance to adjacent Ram	t? mp	Yes 1576 Upstre Off 1475	eam	vph ft		
Junction Components	version to pc/h	Under Base Freeway	Condition	ns	Adjacent Ramp	
Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E		1891 0.90 525 4 0 Rolling % mi 2.5 2.0	267 0.90 74 2 0 Rolling 2.5 2.0	% mi	1576 0.90 438 2 0 Rolling	vph v % % ani

```
2227
                                              306
                                                         1804
Flow rate, vp
                                                                 pcph
                 _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2227 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2533
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
    3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 2227
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2533
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 17.4 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence B
                _____Speed Estimation_____
                                        M = 0.260
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                        S = 66.4
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

0.971

1.00

S = 66.4

mph

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone:

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Fax:

E-mail: Merge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 6/30/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: SC-202 WB On-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Merge Number of lanes in freeway mph Free-flow speed on freeway 75.0 Volume on freeway 2018 vph _____On Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-flow speed on ramp 45.0 mph Volume on ramp 66 vph Length of first accel/decel lane 525 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent Ramp 140 vph Position of adjacent Ramp Upstream Type of adjacent Ramp Off Distance to adjacent Ramp 1000 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2018 66 140 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 561 18 39 V 2 2 0 Trucks and buses 4 ્ર 0 Recreational vehicles Rolling Terrain type: Rolling Rolling % mi Grade Length mi mi mi Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
2377
                                              76
                                                         160
Flow rate, vp
                                                                  pcph
                  _____Estimation of V12 Merge Areas_____
                L =
                              (Equation 13-6 or 13-7)
                 ΕO
                       1.000 Using Equation 0
                P =
                 FM
                v = v (P) = 2377 pc/h
                 12 F FM
                     _____Capacity Checks_____
                                                  LOS F?
                        Actual
                                     Maximum
                        2453
                                     4800
    V
                                                   No
     FΟ
                        0 pc/h (Equation 13-14 or 13-17)
    v or v
     3 av34
Is
    v or v
               > 2700 pc/h?
                                     No
     3
          av34
                > 1.5 v /2
Is
    v or v
                                     No
         av34
                   12
     3
                                  (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v = 2377
        12A
                    __Flow Entering Merge Influence Area__
                    Actual Max Desirable
                                                    Violation?
                    2453
                                4600
    V
     R12
            ____Level of Service Determination (if not F)_____
Density, D = 5.475 + 0.00734 v + 0.0078 v - 0.00627 L = 21.3 pc/mi/ln
                           R
                                      12
Level of service for ramp-freeway junction areas of influence C
                _____Speed Estimation_____
                                        M = 0.319
Intermediate speed variable,
                                         S
Space mean speed in ramp influence area,
                                         S = 64.5
                                                    mph
                                         R
Space mean speed in outer lanes,
                                        S = N/A
                                                    mph
```

S = 64.5

mph

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 . 9 4 3

Driver population factor, fP

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2003 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 46 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 245 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2003 46 245 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 556 13 68 V 2 4 2 0 Trucks and buses ્ર 0 Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
2359
                                                53
                                                           280
Flow rate, vp
                                                                     pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                  ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2359 pc/h
                  12 R F R FD
                       _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2359
                                      4800
    v = v
                                                      No
     Fi F
    v = v - v
                         2306
                                      4800
                                                      No
     FO F R
    V
                         53
                                      2100
                                                      No
     R
                         0
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
           = 2359
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                    2359
                                  4400
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 20.9 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence C
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.303
                                           S
Space mean speed in ramp influence area,
                                          S = 65.0
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 65.0
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Driver population factor, fP

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2202 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 223 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1417 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1725 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2202 223 1417 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 612 62 394 V 4 2 2 0 Trucks and buses ્ર Recreational vehicles 0 Rolling Rolling Rolling 0.00 % 0.00 % 0.00 % 0.00 mi Rolling Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
Driver population factor, fP
                                    1.00
                                                           1.00
                                    2593
                                                255
                                                           1622
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2593 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2593
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         2338
                                      4800
                                                     No
     FO F R
    V
                         255
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2593
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                                  Max Desirable
                    Actual
                                                      Violation?
                    2593
                                  4400
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 17.8 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.321
                                           S
Space mean speed in ramp influence area,
                                          S = 64.4
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.4
                                                      mph
```

0.971

1.00

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3396 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 148 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1916 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 3396 148 1916 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 943 41 532 V 2 0 2 0 Trucks and buses 4 ્ર 0 Recreational vehicles Rolling Rolling Rolling
0.00 % 0.00 % 0.00 %
0.00 mi 0.00 mi 0.00 mi Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
4000
                                                169
                                                           2193
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 4000 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         4000
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         3831
                                      4800
                                                     No
     FO F R
    V
                         169
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 4000
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                    4000
                                  4400
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 29.7 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence D
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.313
                                           S
Space mean speed in ramp influence area,
                                          S = 64.7
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.7
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Driver population factor, fP

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2790 vph ______Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 594 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 222 vph Position of adjacent ramp Downstream Type of adjacent ramp Distance to adjacent ramp 775 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2790 594 222 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 775 165 62 V 2 0 Trucks and buses 4 2 ્ર 0 0 Recreational vehicles Rolling Rolling Rolling 0.00 % 0.00 % 0.00 % 0.00 mi Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
3286
                                                680
                                                           254
Flow rate, vp
                                                                     pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 3286 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         3286
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         2606
                                      4800
                                                     No
     FO F R
    V
                         680
                                      2100
                                                     No
     R
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
           = 3286
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    3286
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 21.5 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence C
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.359
                                           S
Space mean speed in ramp influence area,
                                          S = 63.1
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 63.1
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Driver population factor, fP

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2418 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 1188 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp vph Position of adjacent ramp Downstream Type of adjacent ramp Distance to adjacent ramp 1475 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2418 1188 184 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 672 330 51 V 4 2 0 Trucks and buses 2 ્ર 0 Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
Driver population factor, fP
                                    1.00
                                                           1.00
                                    2848
                                                1360
                                                           211
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2848 pc/h
                  12 R F R FD
                       _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2848
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         1488
                                      4800
                                                     No
     FO F R
    V
                         1360
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                         0 pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v
          = 2848
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                 Max Desirable
                                                      Violation?
                                  4400
                    2848
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 17.7 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.420
                                           S
Space mean speed in ramp influence area,
                                          S = 61.1
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 61.1
                                                      mph
```

0.971

1.00

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: AM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 1414 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 25.0 mph Volume on ramp 33 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 86 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 1414 33 86 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 393 9 24 V 2 0 2 0 Trucks and buses 4 ્ર 0 Recreational vehicles

 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi

 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
1665
                                                38
                                                           98
Flow rate, vp
                                                                     pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                  ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 1665 pc/h
                     R F R FD
                       _____Capacity Checks____
                                                      LOS F?
                         Actual
                                      Maximum
                         1665
                                       4800
    v = v
                                                      No
     Fi F
    v = v - v
                         1627
                                      4800
                                                      No
     FO F R
    V
                         38
                                      1900
                                                      No
     R
                         0
                                      (Equation 13-14 or 13-17)
    v or v
                              pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
           = 1665
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    1665
                                                      No
     12
              ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 15.0 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.561
                                           S
Space mean speed in ramp influence area,
                                          S = 56.5
                                                      mph
                                           R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 56.5
                                                      mph
```

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Driver population factor, fP

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: SC 202 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2415 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 90 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 45 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1050 ft ______Conversion to pc/h Under Base Conditions______ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 2415 90 45 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 671 25 13 V 4 2 2 0 Trucks and buses ્ર Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Rolling Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
2844
                                                103
                                                           52
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2844 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2844
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         2741
                                      4800
                                                     No
     FO F R
    V
                         103
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2844
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                 Max Desirable
                                                      Violation?
                                  4400
                    2844
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 25.1 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence C
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.307
Space mean speed in ramp influence area,
                                          S = 64.9
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.9
                                                      mph
```

.943

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Driver population factor, fP

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: S-48 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2370 vph ______Off Ramp Data______ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 230 vph Length of first accel/decel lane 975 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1362 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1725 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 2370 230 1362 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 658 64 378 V 2 2 0 Trucks and buses 4 ્ર 0 Recreational vehicles
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
1559
                                    2791
                                                263
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2791 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                                      Maximum
                         Actual
                         2791
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         2528
                                      4800
                                                     No
     FO F R
    V
                         263
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 2791
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                                  Max Desirable
                    Actual
                                                      Violation?
                                  4400
                    2791
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 19.5 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence B
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.322
                                           S
Space mean speed in ramp influence area,
                                          S = 64.4
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.4
                                                      mph
```

.943

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Driver population factor, fP

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 EB Junction: US 176 EB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3502 vph ______Off Ramp Data______ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 284 vph Length of first accel/decel lane 1000 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 1079 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 900 ft ______Conversion to pc/h Under Base Conditions______ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 3502 284 1079 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 973 79 300 V 2 0 2 % % Trucks and buses 4 0 Recreational vehicles

 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi

 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
Driver population factor, fP
                                                           1.00
                                    4125
                                                325
                                                           1235
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 4125 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         4125
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         3800
                                      4800
                                                     No
     FO F R
    V
                         325
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 4125
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                 Max Desirable
                                                      Violation?
                    4125
                                  4400
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 30.7 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence D
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.327
                                           S
Space mean speed in ramp influence area,
                                          S = 64.2
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 64.2
                                                      mph
```

.943

1.00

0.971

1.00

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: US 176 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 5028 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 1738 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft _____Adjacent Ramp Data (if one exists)_____ Does adjacent ramp exist? Yes Volume on adjacent ramp 177 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 775 ft ______Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 5028 1738 177 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 1397 483 49 V 2 0 Trucks and buses 4 2 ્ર 0 Recreational vehicles 0

 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 0.00
 mi

 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER 2.0 2.0 2.0

```
Driver population factor, fP
                                                           1.00
                                    5922
                                                1989
                                                           203
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 5922 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         5922
                                      4800
    v = v
                                                     Yes
     Fi F
    v = v - v
                         3933
                                      4800
                                                     No
     FO F R
    V
                         1989
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                         0 pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
          = 5922
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                 Max Desirable
                                                      Violation?
                                  4400
                    5922
                                                      Yes
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 44.2 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence F
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.477
                                           S
Space mean speed in ramp influence area,
                                          S = 59.3
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 59.3
                                                      mph
```

.943

1.00

0.971

1.00

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Recreational vehicle PCE, ER

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: S-48 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR _____Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 3467 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 45.0 mph Volume on ramp 1576 vph Length of first accel/decel lane 1225 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 267 vph Position of adjacent ramp Downstream Type of adjacent ramp Distance to adjacent ramp 1475 ft _____Conversion to pc/h Under Base Conditions_____ Junction Components Freeway Ramp Adjacent Ramp Volume, V (vph) 3467 1576 267 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 963 438 74V 4 2 0 Trucks and buses 2 ્ર 0 Recreational vehicles 0
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5

2.0

2.0

2.0

```
Driver population factor, fP
                                                           1.00
                                    4083
                                                1804
                                                           306
Flow rate, vp
                                                                    pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 4083 pc/h
                  12 R F R FD
                       _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         4083
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         2279
                                      4800
                                                     No
     FO F R
    V
                         1804
                                      2100
                                                     No
     R
                                     (Equation 13-14 or 13-17)
    v or v
                            pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
If yes, v
          = 4083
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    4083
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 28.3 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence D
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.460
                                           S
Space mean speed in ramp influence area,
                                          S = 59.8
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 59.8
                                                      mph
```

.943

1.00

0.971

1.00

0.971

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

HCS 2010: Freeway Merge and Diverge Segments Release 6.80

Phone: Fax: E-mail: Diverge Analysis Analyst: AECOM Agency/Co.: AECOM Date performed: 7/1/2016 Analysis time period: PM Peak Freeway/Dir of Travel: I-26 WB Junction: SC 202 WB Off-Ramp Jurisdiction: Analysis Year: 2040 No-Build Description: S-48 IMR ______Freeway Data______ Type of analysis Diverge Number of lanes in freeway 2 mph Free-flow speed on freeway 75.0 Volume on freeway 2158 vph _____Off Ramp Data_____ Side of freeway Right Number of lanes in ramp Free-Flow speed on ramp 25.0 mph Volume on ramp 140 vph Length of first accel/decel lane 400 ft Length of second accel/decel lane ft ______Adjacent Ramp Data (if one exists)______ Does adjacent ramp exist? Yes Volume on adjacent ramp 66 vph Position of adjacent ramp Downstream Type of adjacent ramp On Distance to adjacent ramp 1000 ft _____Conversion to pc/h Under Base Conditions_____ Adjacent Junction Components Freeway Ramp Ramp Volume, V (vph) 140 2158 66 vph Peak-hour factor, PHF 0.90 0.90 0.90 Peak 15-min volume, v15 599 39 18 V 4 2 0 2 0 Trucks and buses ્ર 0 Recreational vehicles
 Rolling
 Rolling
 Rolling

 0.00
 %
 0.00
 %

 0.00
 mi
 0.00
 mi
 Terrain type: Grade Length Trucks and buses PCE, ET 2.5 2.5 2.5 Recreational vehicle PCE, ER

2.0

2.0

2.0

```
2542
                                                160
                                                           76
Flow rate, vp
                                                                     pcph
                   _____Estimation of V12 Diverge Areas___
                 L =
                                (Equation 13-12 or 13-13)
                 ΕO
                        1.000 Using Equation 0
                 P =
                 FD
                 v = v + (v - v) P = 2542 pc/h
                  12 R F R FD
                      _____Capacity Checks____
                                                     LOS F?
                         Actual
                                      Maximum
                         2542
                                      4800
    v = v
                                                     No
     Fi F
    v = v - v
                         2382
                                      4800
                                                     No
     FO F R
    V
                         160
                                      1900
                                                     No
     R
                                      (Equation 13-14 or 13-17)
    v or v
                             pc/h
          av34
     3
                > 2700 pc/h?
Is
    v or v
                                      No
     3
          av34
Is
    v or v
                 > 1.5 v / 2
                                      No
          av34
     3
                       12
If yes, v
           = 2542
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area__
                    Actual
                                  Max Desirable
                                                      Violation?
                                  4400
                    2542
                                                      No
     12
             ___Level of Service Determination (if not F)______
                     D = 4.252 + 0.0086 v - 0.009 L = 22.5 pc/mi/ln
Density,
Level of service for ramp-freeway junction areas of influence C
              _____Speed Estimation____
Intermediate speed variable,
                                          D = 0.572
                                           S
Space mean speed in ramp influence area,
                                          S = 56.1
                                                      mph
                                          R
Space mean speed in outer lanes,
                                          S = N/A
                                                      mph
                                           0
Space mean speed for all vehicles,
                                          S = 56.1
                                                      mph
```

.943

1.00

0.971

1.00

0.971

1.00

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Driver population factor, fP

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX J

BUILD ALT 1 2020 SYNCHRO AND SIM TRAFFIC REPORTS

1: Columbia Ave & I-26 EB Ramps

	۶	→	•	•	+	•	•	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					^						ተተተ	
Traffic Volume (vph)	0	0	0	0	433	0	0	0	0	0	1077	0
Future Volume (vph)	0	0	0	0	433	0	0	0	0	0	1077	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	3539	0	0	0	0	0	5085	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	3539	0	0	0	0	0	5085	0
Right Turn on Red			Yes	Yes		Yes			Yes			Yes
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		153			109			130			161	
Travel Time (s)		3.0			2.1			2.5			3.1	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	481	0	0	0	0	0	1197	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type					NA						NA	
Protected Phases					4						6	
Permitted Phases												
Detector Phase					4						6	
Switch Phase												
Minimum Initial (s)					10.0						10.0	
Minimum Split (s)					22.0						22.0	
Total Split (s)					26.0						34.0	
Total Split (%)					43.3%						56.7%	
Maximum Green (s)					20.0						28.0	
Yellow Time (s)					4.0						4.0	
All-Red Time (s)					2.0						2.0	
Lost Time Adjust (s)					0.0						0.0	
Total Lost Time (s)					6.0						6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)					3.0						3.0	
Recall Mode					Min						C-Max	
Act Effct Green (s)					13.9						34.1	
Actuated g/C Ratio					0.23						0.57	
v/c Ratio					0.59						0.41	
Control Delay					18.1						6.1	
Queue Delay					0.0						0.0	
Total Delay					18.1						6.1	
LOS					В						Α	
Approach Delay					18.1						6.1	

S-48 IMR AECOM

1: Columbia Ave & I-26 EB Ramps

	۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					В						Α	
Queue Length 50th (ft)					60						42	
Queue Length 95th (ft)					59						114	
Internal Link Dist (ft)		73			29			50			81	
Turn Bay Length (ft)												
Base Capacity (vph)					1179						2893	
Starvation Cap Reductn					0						0	
Spillback Cap Reductn					0						0	
Storage Cap Reductn					0						0	
Reduced v/c Ratio					0.41						0.41	
Intersection Summary												
Area Type: Ot	her											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 48 (80%), Referenced	to phase	6:SBT, S	Start of G	reen								
Natural Cycle: 45												
Control Type: Actuated-Coord	linated											
Maximum v/c Ratio: 0.59												
Intersection Signal Delay: 9.6					ntersection							
Intersection Capacity Utilization	on 46.0%			I(CU Level	of Service	Α					
Analysis Period (min) 15												
Splits and Phases: 1: Colur	mbia Ave	& I-26 EI	3 Ramps									
			•			←	0 4					
						26 s	77					
1												
▼ Ø6 (R)						_						

HCM 2010 Signalized Intersection Summary 1: Columbia Ave & I-26 EB Ramps

	۶	→	•	✓	←	•	1	†	<i>></i>	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					^↑						^	
Traffic Volume (veh/h)	0	0	0	0	433	0	0	0	0	0	1077	0
Future Volume (veh/h)	0	0	0	0	433	0	0	0	0	0	1077	0
Number				7	4	14				1	6	16
Initial Q (Qb), veh				0	0	0				0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00				1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				0	1863	0				0	1863	0
Adj Flow Rate, veh/h				0	481	0				0	1197	0
Adj No. of Lanes				0	2	0				0	3	0
Peak Hour Factor				0.90	0.90	0.90				0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0				0	2	0
Cap, veh/h				0	696	0				0	2373	0
Arrive On Green				0.00	0.20	0.00				0.00	0.15	0.00
Sat Flow, veh/h				0	3725	0				0	5421	0
Grp Volume(v), veh/h				0	481	0				0	1197	0
Grp Sat Flow(s), veh/h/ln				0	1770	0				0	1695	0
Q Serve(g_s), s				0.0	7.6	0.0				0.0	13.0	0.0
Cycle Q Clear(g_c), s				0.0	7.6	0.0				0.0	13.0	0.0
Prop In Lane				0.00		0.00				0.00		0.00
Lane Grp Cap(c), veh/h				0	696	0				0	2373	0
V/C Ratio(X)				0.00	0.69	0.00				0.00	0.50	0.00
Avail Cap(c_a), veh/h				0	1180	0				0	2373	0
HCM Platoon Ratio				1.00	1.00	1.00				1.00	0.33	1.00
Upstream Filter(I)				0.00	1.00	0.00				0.00	1.00	0.00
Uniform Delay (d), s/veh				0.0	22.4	0.0				0.0	19.0	0.0
Incr Delay (d2), s/veh				0.0	1.2	0.0				0.0	0.8	0.0
Initial Q Delay(d3),s/veh				0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.0	3.8	0.0				0.0	6.2	0.0
LnGrp Delay(d),s/veh				0.0	23.7	0.0				0.0	19.8	0.0
LnGrp LOS				0.0	C	0.0				0.0	В	0.0
Approach Vol, veh/h					481						1197	
Approach Delay, s/veh					23.7						19.8	
Approach LOS					23.7 C						В	
											D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs				4		6						
Phs Duration (G+Y+Rc), s				17.8		34.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				20.0		28.0						
Max Q Clear Time (g_c+I1), s				9.6		15.0						
Green Ext Time (p_c), s				2.2		6.6						
Intersection Summary												
HCM 2010 Ctrl Delay			20.9									
HCM 2010 LOS			С									

	۶	→	*	•	-	•	1	†	/	/	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^									† †	
Traffic Volume (vph)	0	370	0	0	0	0	0	0	0	0	529	0
Future Volume (vph)	0	370	0	0	0	0	0	0	0	0	529	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	3539	0	0	0	0	0	0	0	0	3539	0
Flt Permitted												
Satd. Flow (perm)	0	3539	0	0	0	0	0	0	0	0	3539	0
Right Turn on Red			Yes			Yes			Yes	Yes		Yes
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		147			115			170			129	
Travel Time (s)		2.9			2.2			3.3			2.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.70	0.70	0.70	0.70	0170	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Lane Group Flow (vph)	0	411	0	0	0	0	0	0	0	0	588	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	20.0	0		20.0	0		20.0	0	····g···	20.1	0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Turn Type	10	NA	,	10		,	10		,	10	NA	,
Protected Phases		4									6	
Permitted Phases		•										
Detector Phase		4									6	
Switch Phase		•										
Minimum Initial (s)		10.0									10.0	
Minimum Split (s)		22.0									22.0	
Total Split (s)		28.0									32.0	
Total Split (%)		46.7%									53.3%	
Maximum Green (s)		22.0									26.0	
Yellow Time (s)		4.0									4.0	
All-Red Time (s)		2.0									2.0	
Lost Time Adjust (s)		0.0									0.0	
Total Lost Time (s)		6.0									6.0	
Lead/Lag		0.0									0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0									3.0	
Recall Mode		None									C-Max	
Act Effct Green (s)		12.6									35.4	
Actuated g/C Ratio		0.21									0.59	
v/c Ratio		0.55									0.28	
Control Delay		5.2									6.9	
Queue Delay		0.0									0.9	
Total Delay		5.2									6.9	
LOS		3.2 A									0.9 A	
Approach Delay		5.2									6.9	
лиргоасті петау		٥.۷									0.9	

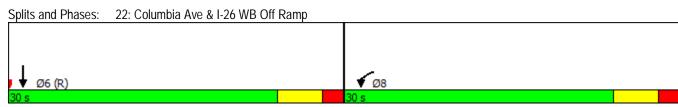
S-48 IMR AECOM

21: Columbia Ave & I-26 WB Ramps

	•	→	\rightarrow	•	←	•	•	†	/	>	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		А									А	
Queue Length 50th (ft)		4									46	
Queue Length 95th (ft)		10									85	
Internal Link Dist (ft)		67			35			90			49	
Turn Bay Length (ft)												
Base Capacity (vph)		1297									2088	
Starvation Cap Reductn		0									0	
Spillback Cap Reductn		0									7	
Storage Cap Reductn		0									0	
Reduced v/c Ratio		0.32									0.28	
Intersection Summary												
JI	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 3 (5%), Referenced	to phase 6:	SBT, Sta	rt of Gree	en								
Natural Cycle: 45												
Control Type: Actuated-Coo	ordinated											
Maximum v/c Ratio: 0.55	_											
Intersection Signal Delay: 6					ntersection		_					
Intersection Capacity Utiliza	ition 34.9%			IC	CU Level	of Service	Α					
Analysis Period (min) 15												
Splits and Phases: 21: Co	olumbia Av	e & I-26 V	VB Ram	os								
						→ Ø4						
					2	8 s						
Ø6 (R)												
32 s												

HCM 2010 Signalized Intersection Summary 21: Columbia Ave & I-26 WB Ramps

	۶	→	•	•	←	•	1	†	<i>></i>	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^									^	
Traffic Volume (veh/h)	0	370	0	0	0	0	0	0	0	0	529	0
Future Volume (veh/h)	0	370	0	0	0	0	0	0	0	0	529	0
Number	7	4	14							1	6	16
Initial Q (Qb), veh	0	0	0							0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00							1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00							1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1863	0							0	1863	0
Adj Flow Rate, veh/h	0	411	0							0	588	0
Adj No. of Lanes	0	2	0							0	2	0
Peak Hour Factor	0.90	0.90	0.90							0.90	0.90	0.90
Percent Heavy Veh, %	0	2	0							0	2	0
Cap, veh/h	0	625	0							0	1534	0
Arrive On Green	0.00	0.18	0.00							0.00	0.43	0.00
Sat Flow, veh/h	0	3725	0							0	3725	0
Grp Volume(v), veh/h	0	411	0							0	588	0
Grp Sat Flow(s), veh/h/ln	0	1770	0							0	1770	0
Q Serve(g_s), s	0.0	6.5	0.0							0.0	6.8	0.0
Cycle Q Clear(g_c), s	0.0	6.5	0.0							0.0	6.8	0.0
Prop In Lane	0.00	/ 25	0.00							0.00	1524	0.00
Lane Grp Cap(c), veh/h	0.00	625 0.66	0.00							0.00	1534 0.38	0 00
V/C Ratio(X)	0.00	1298	0.00							0.00	1534	0.00
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00							1.00	1.00	0 1.00
Upstream Filter(I)	0.00	1.00	0.00							0.00	1.00	0.00
Uniform Delay (d), s/veh	0.00	23.0	0.00							0.00	11.6	0.00
Incr Delay (d2), s/veh	0.0	1.2	0.0							0.0	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0							0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	3.2	0.0							0.0	3.4	0.0
LnGrp Delay(d),s/veh	0.0	24.2	0.0							0.0	12.3	0.0
LnGrp LOS	0.0	C	0.0							0.0	В	0.0
Approach Vol, veh/h		411									588	
Approach Delay, s/veh		24.2									12.3	
Approach LOS		C									В	
	1		2	4	_	,	7	0				
Timer	1	2	3	4	5	6	7	8				
Assigned Phs				4		6						
Phs Duration (G+Y+Rc), s				16.6		32.0						
Change Period (Y+Rc), s Max Green Setting (Gmax), s				6.0 22.0		6.0 26.0						
Max Q Clear Time (q_c+l1), s				8.5		8.8						
Green Ext Time (p_c), s				2.1		3.6						
4 – .				۷.۱		3.0						
Intersection Summary			17.0									
HCM 2010 Ctrl Delay			17.2									
HCM 2010 LOS			В									


Lanes, Volumes, Timings 22: Columbia Ave & I-26 WB Off Ramp

	•	•	†	<i>></i>	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ					^
Traffic Volume (vph)	691	0	0	0	0	529
Future Volume (vph)	691	0	0	0	0	529
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
	3433		1900	1900		3539
Satd. Flow (prot)		0	U	U	0	3339
Flt Permitted	0.950	0	0	0	0	0500
Satd. Flow (perm)	3433	0	0	0	0	3539
Right Turn on Red	Yes	Yes		Yes		
Satd. Flow (RTOR)	306					
Link Speed (mph)	30		35			35
Link Distance (ft)	161		300			170
Travel Time (s)	3.7		5.8			3.3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	2.70					
Lane Group Flow (vph)	768	0	0	0	0	588
Enter Blocked Intersection	No	No	No	No	No	No
	Left		Left		Left	Left
Lane Alignment		Right		Right	Leit	
Median Width(ft)	24		0			0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot					NA
Protected Phases	8					6
Permitted Phases						
Detector Phase	8					6
Switch Phase						
Minimum Initial (s)	7.0					10.0
	15.0					22.0
Minimum Split (s)						
Total Split (s)	30.0					30.0
Total Split (%)	50.0%					50.0%
Maximum Green (s)	24.0					24.0
Yellow Time (s)	4.0					4.0
All-Red Time (s)	2.0					2.0
Lost Time Adjust (s)	0.0					0.0
Total Lost Time (s)	6.0					6.0
Lead/Lag	2.2					
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0					3.0
Recall Mode	Min					C-Max
Act Effct Green (s)	14.8					33.2
Actuated g/C Ratio	0.25					0.55
v/c Ratio	0.71					0.30
Control Delay	15.6					2.7
Queue Delay	0.0					0.2
Total Delay	15.6					2.9
LOS	В					A
Approach Delay	15.6					2.9
лиргоасті петау	13.0					2.9

S-48 IMR AECOM

22: Columbia Ave & I-26 WB Off Ramp

	€	•	†	~	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Approach LOS	В					А
Queue Length 50th (ft)	74					11
Queue Length 95th (ft)	108					15
Internal Link Dist (ft)	81		220			90
Turn Bay Length (ft)						
Base Capacity (vph)	1556					1960
Starvation Cap Reductn	0					621
Spillback Cap Reductn	0					0
Storage Cap Reductn	0					0
Reduced v/c Ratio	0.49					0.44
Intersection Summary						
Area Type:	Other					
Cycle Length: 60						
Actuated Cycle Length: 60						
Offset: 3 (5%), Referenced	d to phase 6:	SBT, Sta	rt of Gree	en		
Natural Cycle: 40						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.71	10.1					100 0
Intersection Signal Delay:					tersection	
Intersection Capacity Utiliz	zation 44.3%			IC	U Level o	of Service A
Analysis Period (min) 15						

HCM 2010 Signalized Intersection Summary 22: Columbia Ave & I-26 WB Off Ramp

	•	•	Ť	_	-	¥
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ					† †
Traffic Volume (veh/h)	691	0	0	0	0	529
Future Volume (veh/h)	691	0	0	0	0	529
Number	3	18			1	6
Initial Q (Qb), veh	0	0			0	0
Ped-Bike Adj(A_pbT)	1.00	1.00			1.00	
Parking Bus, Adj	1.00	1.00			1.00	1.00
Adj Sat Flow, veh/h/ln	1863	0			0	1863
Adj Flow Rate, veh/h	768	0			0	588
Adj No. of Lanes	2	0			0	2
Peak Hour Factor	0.90	0.90			0.90	0.90
Percent Heavy Veh, %	2	0.70			0.70	2
Cap, veh/h	0	0			0	1416
Arrive On Green	0.00	0.00			0.00	0.13
Sat Flow, veh/h	0.00	0.00			0.00	3725
Grp Volume(v), veh/h	0.0				0	588
Grp Sat Flow(s), veh/h/ln					0	1770
Q Serve(g_s), s					0.0	9.2
Cycle Q Clear(g_c), s					0.0	9.2
Prop In Lane					0.00	1/1/
Lane Grp Cap(c), veh/h					0	1416
V/C Ratio(X)					0.00	0.42
Avail Cap(c_a), veh/h					0	1416
HCM Platoon Ratio					1.00	0.33
Upstream Filter(I)					0.00	0.97
Uniform Delay (d), s/veh					0.0	19.6
Incr Delay (d2), s/veh					0.0	0.9
Initial Q Delay(d3),s/veh					0.0	0.0
%ile BackOfQ(50%),veh/ln					0.0	4.7
LnGrp Delay(d),s/veh					0.0	20.5
LnGrp LOS						С
Approach Vol, veh/h						588
Approach Delay, s/veh						20.5
Approach LOS						С
Timer	1	2	3	4	5	6
Assigned Phs						6
Phs Duration (G+Y+Rc), s						30.0
Change Period (Y+Rc), s						6.0
Max Green Setting (Gmax), s						24.0
Max Q Clear Time (g_c+l1), s						11.2
Green Ext Time (p_c), s						3.1
						
Intersection Summary			00.5			
HCM 2010 Ctrl Delay			20.5			
HCM 2010 LOS			С			

SimTraffic Simulation Summary 2020 Build AM DDI

Summary of All Intervals

Start Time	7:20
End Time	8:30
Total Time (min)	70
Time Recorded (min)	60
# of Intervals	2
# of Recorded Intervals	1
Vehs Entered	5184
Vehs Exited	5189
Starting Vehs	139
Ending Vehs	134
Travel Distance (mi)	5590
Travel Time (hr)	141.0
Total Delay (hr)	37.8
Total Stops	2324
Fuel Used (gal)	222.9

Interval #0 Information Seeding

Start Time	7:20
End Time	7:30
Total Time (min)	10
Volumes adjusted by Growth Fac	ctors.
No data recorded this interval.	

Interval #1 Information Recording

Start Time	7:30	
End Time	8:30	
Total Time (min)	60	
Volumes adjusted by Grov	vth Factors.	

Vehs Entered	5184
Vehs Exited	5189
Starting Vehs	139
Ending Vehs	134
Travel Distance (mi)	5590
Travel Time (hr)	141.0
Total Delay (hr)	37.8
Total Stops	2324
Fuel Used (gal)	222.9

Queuing and Blocking Report 2020 Build AM DDI

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	WB	WB	SB	SB	SB
Directions Served	T	T	T	Т	Т
Maximum Queue (ft)	144	113	98	120	55
Average Queue (ft)	102	54	54	95	16
95th Queue (ft)	144	99	100	110	46
Link Distance (ft)	57	57	13	13	13
Upstream Blk Time (%)	32	7	16	33	5
Queuing Penalty (veh)	69	14	56	120	19
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 21: Columbia Ave & I-26 WB Ramps

Movement	EB	EB	SB	SB
Directions Served	T	T	T	Т
Maximum Queue (ft)	93	92	75	153
Average Queue (ft)	48	62	24	117
95th Queue (ft)	90	108	61	170
Link Distance (ft)	13	13	16	16
Upstream Blk Time (%)	39	43	6	31
Queuing Penalty (veh)	72	79	17	81
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 22: Columbia Ave & I-26 WB Off Ramp

Movement	WB	WB	SB	SB
Directions Served	L	L	Т	T
Maximum Queue (ft)	165	160	51	73
Average Queue (ft)	113	111	12	37
95th Queue (ft)	156	153	40	60
Link Distance (ft)	103	103	30	30
Upstream Blk Time (%)	8	9	5	23
Queuing Penalty (veh)	26	30	14	60
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

	۶	→	•	•	-	•	1	†	/	/	↓	-✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					^						ተተተ	
Traffic Volume (vph)	0	0	0	0	624	0	0	0	0	0	1376	0
Future Volume (vph)	0	0	0	0	624	0	0	0	0	0	1376	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	3539	0	0	0	0	0	5085	0
Flt Permitted					0007						0000	
Satd. Flow (perm)	0	0	0	0	3539	0	0	0	0	0	5085	0
Right Turn on Red			Yes	Yes	0007	Yes			Yes		0000	Yes
Satd. Flow (RTOR)			103	103		103			103			103
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		135			109			140			150	
Travel Time (s)		2.6			2.1			2.7			2.9	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0	^	^	0	(02	0	0	0	^	0	1520	0
Lane Group Flow (vph)	0	0	0	0	693	0	0	0	0	0	1529	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type					NA						NA	
Protected Phases					4						6	
Permitted Phases												
Detector Phase					4						6	
Switch Phase												
Minimum Initial (s)					10.0						10.0	
Minimum Split (s)					22.0						22.0	
Total Split (s)					26.0						34.0	
Total Split (%)					43.3%						56.7%	
Maximum Green (s)					20.0						28.0	
Yellow Time (s)					4.0						4.0	
All-Red Time (s)					2.0						2.0	
Lost Time Adjust (s)					0.0						0.0	
Total Lost Time (s)					6.0						6.0	
Lead/Lag					0.0						0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)					3.0						3.0	
Recall Mode					Min						C-Max	
Act Effct Green (s)					17.3						30.7	
Actuated g/C Ratio					0.29						0.51	
v/c Ratio					0.68						0.51	
Control Delay					19.2						10.2	
_					0.0						0.0	
Queue Delay												
Total Delay					19.2						10.2	
LOS					B						B	
Approach Delay					19.2						10.2	

S-48 IMR AECOM

2020 Build DDI PM

1: I-26 EB Ramps & Columbia Ave

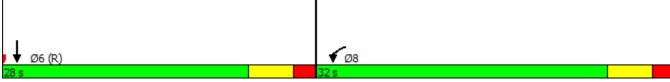
	۶	→	•	•	←	•	•	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					В						В	
Queue Length 50th (ft)					113						125	
Queue Length 95th (ft)					84						221	
Internal Link Dist (ft)		55			29			60			70	
Turn Bay Length (ft)												
Base Capacity (vph)					1179						2598	
Starvation Cap Reductn					0						0	
Spillback Cap Reductn					0						0	
Storage Cap Reductn					0						0	
Reduced v/c Ratio					0.59						0.59	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 48 (80%), Reference	ced to phase	6:SBT, S	Start of G	reen								
Natural Cycle: 45												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.68												
Intersection Signal Delay:					ntersection							
Intersection Capacity Utiliz	ation 53.8%			I(CU Level	of Service	A					
Analysis Period (min) 15												
Splits and Phases: 1: I-2	26 EB Ramp	s & Colui	mbia Ave									
	•					→	34					
						26 s	74					
1												
24 c												

HCM 2010 Signalized Intersection Summary 1: I-26 EB Ramps & Columbia Ave

	۶	→	•	✓	←	•	1	†	<i>></i>	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					^↑						^	
Traffic Volume (veh/h)	0	0	0	0	624	0	0	0	0	0	1376	0
Future Volume (veh/h)	0	0	0	0	624	0	0	0	0	0	1376	0
Number				7	4	14				1	6	16
Initial Q (Qb), veh				0	0	0				0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00				1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				0	1863	0				0	1863	0
Adj Flow Rate, veh/h				0	693	0				0	1529	0
Adj No. of Lanes				0	2	0				0	3	0
Peak Hour Factor				0.90	0.90	0.90				0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0				0	2	0
Cap, veh/h				0	911	0				0	2373	0
Arrive On Green				0.00	0.26	0.00				0.00	0.15	0.00
Sat Flow, veh/h				0	3725	0				0	5421	0
Grp Volume(v), veh/h				0	693	0				0	1529	0
Grp Sat Flow(s), veh/h/ln				0	1770	0				0	1695	0
Q Serve(g_s), s				0.0	10.8	0.0				0.0	16.9	0.0
Cycle Q Clear(g_c), s				0.0	10.8	0.0				0.0	16.9	0.0
Prop In Lane				0.00		0.00				0.00		0.00
Lane Grp Cap(c), veh/h				0	911	0				0	2373	0
V/C Ratio(X)				0.00	0.76	0.00				0.00	0.64	0.00
Avail Cap(c_a), veh/h				0	1180	0				0	2373	0
HCM Platoon Ratio				1.00	1.00	1.00				1.00	0.33	1.00
Upstream Filter(I)				0.00	1.00	0.00				0.00	1.00	0.00
Uniform Delay (d), s/veh				0.0	20.6	0.0				0.0	20.7	0.0
Incr Delay (d2), s/veh				0.0	2.2	0.0				0.0	1.4	0.0
Initial Q Delay(d3),s/veh				0.0	0.0	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.0	5.6	0.0				0.0	8.2	0.0
LnGrp Delay(d),s/veh				0.0	22.8	0.0				0.0	22.1	0.0
LnGrp LOS					С						С	
Approach Vol, veh/h					693						1529	
Approach Delay, s/veh					22.8						22.1	
Approach LOS					C						C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	•			4		6	•					
Phs Duration (G+Y+Rc), s				21.4		34.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				20.0		28.0						
Max Q Clear Time (g_c+l1), s				12.8		18.9						
Green Ext Time (p_c), s				2.6		6.3						
4 – <i>7</i>				2.0		0.0						
Intersection Summary			20.0									
HCM 2010 Ctrl Delay			22.3									
HCM 2010 LOS			С									

Lanes, Volumes, Timings

21: Columbia Ave/I-26 WB Ramps & I-26 WB Off Ramp


Lane Group		•	•	†	/	>	↓
Lane Configurations	Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Traffic Volume (vph) 953 0 0 0 0 669 Future Volume (vph) 953 0 0 0 0 0 669 Future Volume (vph) 1900 1900 1900 1900 1900 1900 Satd. Flow (prot) 3433 0 0 0 0 0 3539 Fit Permitted 0.950 Satd. Flow (perm) 3433 0 0 0 0 0 3539 Fit Permitted 0.950 Satd. Flow (perm) 3433 0 0 0 0 0 3539 Fit Permitted Yes Yes Yes							
Future Volume (vph)			0	0	0	0	
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 3339 1910 1900 3433 0 0 0 0 3539 1911 1910 1910 3433 0 0 0 0 3539 1911 1911 1910 1910 3433 0 0 0 0 3539 1911 1							
Satd. Flow (prot) 3433 0 0 0 3539 Fit Permitted 0,950 Satd. Flow (perm) 3433 0 0 0 3539 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 142 Link Distance (ft) 149 327 152 Link Distance (ft) 149 327 152 152 Travel Time (s) 3.4 6.4 3.0 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 Shared Lane Traffic (%) Lane Group Flow (vph) 1059 0 0 0 0 743 Enter Blocked Intersection No 10 0							
Fit Permitted Satd. Flow (perm) 3433 0 0 0 0 3539 Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 142 Link Speed (mph) 30 35 35 Link Distance (ft) 149 327 152 Travel Time (s) 3.4 6.4 3.0 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 Shared Lane Traffic (%) Lane Group Flow (vph) 1059 0 0 0 0 0 743 Enter Blocked Intersection No No No No No No Lane Alignment Left Right Left Right Left Left Median Width(ft) 24 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 9 15 Turn Type Prot NA Protected Phases 8 6 Permitted Phases 8 6 Permitted Phases 8 6 Switch Phase Minimum Initial (s) 7.0 1.00 1.00 1.00 Minimum Split (s) 32.0 22.0 Total Split (%) 53.3% 46.7% Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 Recall Mode Min C-Max Act Effect Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 V/C Ratio 0.77 0.49 Control Delay 18.2 6.1 Los Total Lolay 18.2 6.3 Los Los Los Los 18.2 6.1 Queue Delay 0.0 0.0 0.0 Los 100 0.0 0.0 0.0							
Satd. Flow (perm) 3433 0 0 0 3539 Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 142 142 Link Speed (mph) 30 35 35 Link Distance (ft) 149 327 152 Travel Time (s) 3.4 6.4 3.0 Peak Hour Factor 0.90 <td< td=""><td></td><td></td><td>U</td><td>U</td><td>U</td><td>U</td><td>3337</td></td<>			U	U	U	U	3337
Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 142 142 142 Link Speed (mph) 30 35 35 Link Distance (ft) 149 327 152 Travel Time (s) 3.4 6.4 3.0 Peak Hour Factor 0.90 0			Λ	Λ	Λ	Λ	2520
Satd. Flow (RTOR) 142 Link Speed (mph) 30 35 35 Link Distance (ft) 149 327 152 Travel Time (s) 3.4 6.4 3.0 Peak Hour Factor 0.90 </td <td></td> <td></td> <td></td> <td>U</td> <td></td> <td>U</td> <td>3339</td>				U		U	3339
Link Speed (mph) 30 35 35 35 152 152 1512 1512 17avel Time (s) 3.4 6.4 3.0 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9			162		162		
Link Distance (ft) 149 327 152 Travel Time (s) 3.4 6.4 3.0 Peak Hour Factor 0.90				٦F			25
Travel Time (s) 3.4 6.4 3.0 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 Shared Lane Traffic (%) Same Group Flow (vph) 1059 0 0 0 743 Enter Blocked Intersection Lane Group Flow (vph) 1059 0 0 0 743 Enter Blocked Intersection Lane Headwal Width(ft) 1<							
Peak Hour Factor 0.90							
Shared Lane Traffic (%) Lane Group Flow (vph) 1059 0 0 0 0 0 743	` ,						
Lane Group Flow (vph) 1059 0 0 0 743 Enter Blocked Intersection No N		0.90	0.90	0.90	0.90	0.90	0.90
Enter Blocked Intersection No Deter Center Left	` ,						
Lane Alignment Left Median Width(ft) 24 0 0 0 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.00					0		
Median Width(ff) 24 0 0 Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane 1.00 1.00 1.00 1.00 1.00 Headway Factor 1.00 1.00 1.00 1.00 1.00 Turn Type Prot NA NA NA Protected Phases 8 6 6 Permitted Phases 8 6 6 Detector Phase 8 6 6 Switch Phase 8 6 6 Minimum Initial (s) 7.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 Total Split (s) 32.0 28.0 20.0 Total Split (s) 53.3% 46.7% 40.0 Maximum Green (s) 26.0 22.0 22.0 Yellow Time (s) 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 </td <td>Enter Blocked Intersection</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td>	Enter Blocked Intersection	No	No	No	No	No	No
Median Width(ff) 24 0 0 Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane 1.00 1.00 1.00 1.00 1.00 Headway Factor 1.00 1.00 1.00 1.00 1.00 Turn Type Prot NA NA NA Protected Phases 8 6 6 Permitted Phases 8 6 6 Detector Phase 8 6 6 Switch Phase 8 6 6 Minimum Initial (s) 7.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 Total Split (s) 32.0 28.0 20.0 Total Split (s) 53.3% 46.7% 40.0 Maximum Green (s) 26.0 22.0 22.0 Yellow Time (s) 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 </td <td>Lane Alignment</td> <td>Left</td> <td>Right</td> <td>Left</td> <td>Right</td> <td>Left</td> <td>Left</td>	Lane Alignment	Left	Right	Left	Right	Left	Left
Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane 1.00 NA Protected Phase 8 6 6 Permitted Phases 6 8 6 8 6 Permitted Phases 8 6 8 6 8 6 8 8 6 8 8 6 8 8 9 8 8 6 8 9 8 9 9 15 1.00							
Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane 1.00 NA Protected Phases 8 6 6 6 Permitted Phases 6 6 8 6 8 6 6 8 6 8 6 8 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 <td>` '</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	` '						
Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 9 15 Turn Type Prot NA Protected Phases 8 6 Permitted Phases Detector Phase 8 6 Switch Phase Minimum Initial (s) 7.0 10.0 Minimum Split (s) 22.0 22.0 Total Split (s) 32.0 28.0 Total Split (%) 53.3% 46.7% Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 All-Red Time (s) 2.0 Lost Time Adjust (s) 0.0 Total Lost Time (s) 6.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 Actuated g/C Ratio 0.37 V/C Ratio 0.77 Outuble Delay 18.2 Cout Total Delay 18.2 Cout Total Delay 18.2 Cout Cout Total Del							
Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 NA Protected Phases 8 6 6 Permitted Phases 6 6 Switch Phase 6 Switch Phase 6 Switch Phase 6 Switch Phase 7.0 10.0 10.0 Minimum Initial (s) 7.0 10.0 10.0 Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 28.0 26.0 22.0 <td< td=""><td>, ,</td><td></td><td></td><td>- 10</td><td></td><td></td><td></td></td<>	, ,			- 10			
Turning Speed (mph) 15 9 9 15 Turn Type Prot NA Protected Phases 8 6 Permitted Phases 8 6 Detector Phase 8 6 Switch Phase 8 6 Minimum Initial (s) 7.0 10.0 Minimum Split (s) 22.0 22.0 Total Split (s) 32.0 28.0 Total Split (%) 53.3% 46.7% Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 6.0 6.0 Lead/Lag 4 4.0 Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.49 Control Delay 18.2 6.1		1 00	1.00	1.00	1.00	1.00	1 00
Turn Type Prot NA Protected Phases 8 6 Permitted Phases 8 6 Detector Phase 8 6 Switch Phase 8 6 Minimum Initial (s) 7.0 10.0 Minimum Split (s) 22.0 22.0 Minimum Split (s) 32.0 28.0 Total Split (%) 53.3% 46.7% Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 6.0 6.0 Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2<				1.00			1.00
Protected Phases 8 6 Permitted Phases 8 6 Detector Phase 8 6 Switch Phase 10.0 Minimum Initial (s) 7.0 10.0 Minimum Split (s) 22.0 22.0 Minimum Split (s) 32.0 28.0 Total Split (%) 53.3% 46.7% Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 6.0 6.0 Lead/Lag 6.0 6.0 Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 Los B A <td></td> <td></td> <td>7</td> <td></td> <td>7</td> <td>13</td> <td>NΙΛ</td>			7		7	13	NΙΛ
Permitted Phases 8 6 Switch Phase 8 6 Switch Phase 10.0 10.0 Minimum Initial (s) 7.0 10.0 Minimum Split (s) 22.0 22.0 Total Split (s) 32.0 28.0 Total Split (%) 53.3% 46.7% Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 6.0 6.0 Lead/Lag 6.0 6.0 Lead/Lag 8 2.0 Lead/Lag Optimize? Vehicle Extension (s) 3.0 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Oueue Delay 18.2 6.3 LoS<							
Detector Phase 8 6 Switch Phase 10.0 Minimum Initial (s) 7.0 10.0 Minimum Split (s) 22.0 22.0 Total Split (s) 32.0 28.0 Total Split (%) 53.3% 46.7% Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 6.0 6.0 Lead/Lag 56.0 6.0 Lead/Lag Optimize? Vehicle Extension (s) 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A		Ö					0
Switch Phase Minimum Initial (s) 7.0 10.0 Minimum Split (s) 22.0 22.0 Total Split (s) 32.0 28.0 Total Split (%) 53.3% 46.7% Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 6.0 6.0 Lead/Lag 4.0 6.0 Lead-Lag Optimize? 2.0 2.0 Vehicle Extension (s) 3.0 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A		0					,
Minimum Initial (s) 7.0 10.0 Minimum Split (s) 22.0 22.0 Total Split (s) 32.0 28.0 Total Split (%) 53.3% 46.7% Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 6.0 6.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A		8					6
Minimum Split (s) 22.0 Total Split (s) 32.0 Total Split (%) 53.3% Maximum Green (s) 26.0 Yellow Time (s) 4.0 All-Red Time (s) 2.0 Lost Time Adjust (s) 0.0 Total Lost Time (s) 6.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Recall Mode Min Act Effct Green (s) 22.4 Actuated g/C Ratio 0.37 v/c Ratio 0.77 Control Delay 18.2 Control Delay 18.2 Total Delay 18.2 Tot							
Total Split (s) 32.0 28.0 Total Split (%) 53.3% 46.7% Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 6.0 6.0 Lead/Lag 2 2 Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A							
Total Split (%) 53.3% 46.7% Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 6.0 6.0 Lead/Lag Ead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A							
Maximum Green (s) 26.0 22.0 Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 6.0 6.0 Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A	Total Split (s)	32.0					28.0
Yellow Time (s) 4.0 All-Red Time (s) 2.0 Lost Time Adjust (s) 0.0 Total Lost Time (s) 6.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Recall Mode Min Act Effct Green (s) 22.4 Actuated g/C Ratio 0.37 v/c Ratio 0.77 Control Delay 18.2 Control Delay 0.2 Total Delay 18.2 LOS B	Total Split (%)	53.3%					46.7%
Yellow Time (s) 4.0 4.0 All-Red Time (s) 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 Total Lost Time (s) 6.0 6.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A	Maximum Green (s)	26.0					22.0
All-Red Time (s) 2.0 Lost Time Adjust (s) 0.0 Total Lost Time (s) 6.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Recall Mode Min Act Effct Green (s) 22.4 Actuated g/C Ratio 0.37 v/c Ratio 0.77 Control Delay 18.2 Queue Delay 0.0 Total Delay 18.2 LOS B							
Lost Time Adjust (s) 0.0 Total Lost Time (s) 6.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A							
Total Lost Time (s) 6.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A							
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A	, , ,						
Lead-Lag Optimize? Vehicle Extension (s) 3.0 Recall Mode Min Act Effct Green (s) 22.4 Actuated g/C Ratio 0.37 v/c Ratio 0.77 Control Delay 18.2 Queue Delay 0.0 Total Delay 18.2 LOS B		0.0					0.0
Vehicle Extension (s) 3.0 Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A							
Recall Mode Min C-Max Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A		2.0					2.0
Act Effct Green (s) 22.4 25.6 Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A							
Actuated g/C Ratio 0.37 0.43 v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A							
v/c Ratio 0.77 0.49 Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A							
Control Delay 18.2 6.1 Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A							
Queue Delay 0.0 0.2 Total Delay 18.2 6.3 LOS B A							
Total Delay 18.2 6.3 LOS B A	_						
LOS B A	Queue Delay						
LOS B A	Total Delay	18.2					6.3
πρριουσι μοιαγ Ιυ.Δ 0.3	Approach Delay	18.2					6.3

S-48 IMR AECOM

2020 Build DDI PM

21: Columbia Ave/I-26 WB Ramps & I-26 WB Off Ramp

	•	•	†	/	-	↓	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Approach LOS	В					А	
Queue Length 50th (ft)	141					24	
Queue Length 95th (ft)	189					32	
Internal Link Dist (ft)	69		247			72	
Turn Bay Length (ft)							
Base Capacity (vph)	1568					1510	
Starvation Cap Reductn	0					215	
Spillback Cap Reductn	0					0	
Storage Cap Reductn	0					0	
Reduced v/c Ratio	0.68					0.57	
Intersection Summary							
Area Type:	Other						
Cycle Length: 60							
Actuated Cycle Length: 6							
Offset: 0 (0%), Reference	ed to phase 6	:SBT, Sta	rt of Gree	en			
Natural Cycle: 45							
Control Type: Actuated-C							
Maximum v/c Ratio: 0.77							
Intersection Signal Delays				In	tersection	LOS: B	
Intersection Capacity Utili	ization 55.7%)		IC	:U Level o	of Service E	3
Analysis Period (min) 15							
Splits and Phases: 21:	Columbia Av	/e/I-26 WE	3 Ramps	& I-26 W	B Off Rar	mp	
				- 1			

HCM 2010 Signalized Intersection Summary 21: Columbia Ave/I-26 WB Ramps & I-26 WB Off Ramp

		•	•		$\overline{}$	1
	•	_	T		*	+
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	44					^
Traffic Volume (veh/h)	953	0	0	0	0	669
Future Volume (veh/h)	953	0	0	0	0	669
Number	3	18			1	6
Initial Q (Qb), veh	0	0			0	0
Ped-Bike Adj(A_pbT)	1.00	1.00			1.00	
Parking Bus, Adj	1.00	1.00			1.00	1.00
Adj Sat Flow, veh/h/ln	1863	0			0	1863
Adj Flow Rate, veh/h	1059	0			0	743
Adj No. of Lanes	2	0			0	2
Peak Hour Factor	0.90	0.90			0.90	0.90
Percent Heavy Veh, %	2	0			0	2
Cap, veh/h	0	0			0	1298
Arrive On Green	0.00	0.00			0.00	0.12
Sat Flow, veh/h	0				0	3725
Grp Volume(v), veh/h	0.0				0	743
Grp Sat Flow(s), veh/h/ln	0.0				0	1770
Q Serve(g_s), s					0.0	11.9
Cycle Q Clear(g_c), s					0.0	11.9
Prop In Lane					0.00	11.7
Lane Grp Cap(c), veh/h					0.00	1298
V/C Ratio(X)					0.00	0.57
Avail Cap(c_a), veh/h					0.00	1298
HCM Platoon Ratio					1.00	0.33
Upstream Filter(I)					0.00	0.53
					0.00	21.9
Uniform Delay (d), s/veh						
Incr Delay (d2), s/veh					0.0	1.7
Initial Q Delay(d3),s/veh					0.0	0.0
%ile BackOfQ(50%),veh/ln					0.0	6.1
LnGrp Delay(d),s/veh					0.0	23.6
LnGrp LOS						<u>C</u>
Approach Vol, veh/h						743
Approach Delay, s/veh						23.6
Approach LOS						С
Timer	1	2	3	4	5	6
Assigned Phs						6
Phs Duration (G+Y+Rc), s						28.0
Change Period (Y+Rc), s						6.0
Max Green Setting (Gmax), s						22.0
Max Q Clear Time (g_c+l1), s						13.9
Green Ext Time (p_c), s						3.0
						3.0
Intersection Summary						
HCM 2010 Ctrl Delay			23.6			
HCM 2010 LOS			С			

	۶	→	•	•	•	•	1	†	/	/	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† †									† †	
Traffic Volume (vph)	0	510	0	0	0	0	0	0	0	0	669	0
Future Volume (vph)	0	510	0	0	0	0	0	0	0	0	669	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	3539	0	0	0	0	0	0	0	0	3539	0
Flt Permitted /												
Satd. Flow (perm)	0	3539	0	0	0	0	0	0	0	0	3539	0
Right Turn on Red			Yes			Yes			Yes	Yes		Yes
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		159			115			152			129	
Travel Time (s)		3.1			2.2			3.0			2.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	567	0	0	0	0	0	0	0	0	743	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	J		0	J		0	J		0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type		NA									NA	
Protected Phases		4									6	
Permitted Phases												
Detector Phase		4									6	
Switch Phase												
Minimum Initial (s)		10.0									10.0	
Minimum Split (s)		22.0									22.0	
Total Split (s)		27.0									33.0	
Total Split (%)		45.0%									55.0%	
Maximum Green (s)		21.0									27.0	
Yellow Time (s)		4.0									4.0	
All-Red Time (s)		2.0									2.0	
Lost Time Adjust (s)		0.0									0.0	
Total Lost Time (s)		6.0									6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0									3.0	
Recall Mode		None									C-Max	
Act Effct Green (s)		15.4									32.6	
Actuated g/C Ratio		0.26									0.54	
v/c Ratio		0.63									0.39	
Control Delay		5.5									9.3	
Queue Delay		0.0									0.0	
Total Delay		5.5									9.3	
LOS		A									A	
Approach Delay		5.5									9.3	
F F												

S-48 IMR AECOM

Lanes, Volumes, Timings 22: I-26 WB Ramps & Columbia Ave

2020 Build DDI PM

	ၨ	→	\rightarrow	•	•	•	•	†	~	-	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α									А	
Queue Length 50th (ft)		11									74	
Queue Length 95th (ft)		9									128	
Internal Link Dist (ft)		79			35			72			49	
Turn Bay Length (ft)												
Base Capacity (vph)		1238									1924	
Starvation Cap Reductn		0									0	
Spillback Cap Reductn		0									19	
Storage Cap Reductn		0									0	
Reduced v/c Ratio		0.46									0.39	
Intersection Summary												
J1	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 1 (2%), Referenced	to phase 6:	:SBT, Sta	rt of Gree	en								
Natural Cycle: 45												
Control Type: Actuated-Coo	rdinated											
Maximum v/c Ratio: 0.63	_											
Intersection Signal Delay: 7					ntersection		_					
Intersection Capacity Utiliza	ition 42.6%)		I(CU Level	of Service	A A					
Analysis Period (min) 15												
Splits and Phases: 22: I-2	26 WB Ran	nps & Col	umbia Av	<i>v</i> e								
			_	_		→ ø4						
						27 s						
Ø6 (R)												
33 e						1						

HCM 2010 Signalized Intersection Summary 22: I-26 WB Ramps & Columbia Ave

	۶	→	•	•	←	•	1	†	<i>></i>	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^									^	
Traffic Volume (veh/h)	0	510	0	0	0	0	0	0	0	0	669	0
Future Volume (veh/h)	0	510	0	0	0	0	0	0	0	0	669	0
Number	7	4	14							1	6	16
Initial Q (Qb), veh	0	0	0							0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00							1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00							1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1863	0							0	1863	0
Adj Flow Rate, veh/h	0	567	0							0	743	0
Adj No. of Lanes	0	2	0							0	2	0
Peak Hour Factor	0.90	0.90	0.90							0.90	0.90	0.90
Percent Heavy Veh, %	0	2	0							0	2	0
Cap, veh/h	0	796	0							0	1593	0
Arrive On Green	0.00	0.22	0.00							0.00	0.45	0.00
Sat Flow, veh/h	0	3725	0							0	3725	0
Grp Volume(v), veh/h	0	567	0							0	743	0
Grp Sat Flow(s), veh/h/ln	0	1770	0							0	1770	0
Q Serve(g_s), s	0.0	8.9	0.0							0.0	8.8	0.0
Cycle Q Clear(g_c), s	0.0	8.9	0.0							0.0	8.8	0.0
Prop In Lane	0.00	707	0.00							0.00	1502	0.00
Lane Grp Cap(c), veh/h	0.00	796 0.71	0.00							0.00	1593 0.47	0.00
V/C Ratio(X)	0.00	1239	0.00							0.00	1593	0.00
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00							1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00							0.00	1.00	0.00
Uniform Delay (d), s/veh	0.00	21.5	0.00							0.00	11.5	0.00
Incr Delay (d2), s/veh	0.0	1.2	0.0							0.0	1.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0							0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	4.5	0.0							0.0	4.4	0.0
LnGrp Delay(d),s/veh	0.0	22.7	0.0							0.0	12.5	0.0
LnGrp LOS	0.0	C	0.0							0.0	В	0.0
Approach Vol, veh/h		567									743	
Approach Delay, s/veh		22.7									12.5	
Approach LOS		C									В	
Timer	1		2	1	Г	L	7	0				
		2	3	4	5	<u>6</u> 6	1	8				
Assigned Phs Phs Duration (G+Y+Rc), s				19.5		33.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				21.0		27.0						
Max Q Clear Time (q_c+l1), s				10.9		10.8						
Green Ext Time (p_c), s				2.6		4.5						
Intersection Summary												
HCM 2010 Ctrl Delay			16.9									
HCM 2010 LOS			В									

SimTraffic Simulation Summary 2020 Build DDI PM

Summary of All Intervals

Run Number	1	2	3	Avg	
Start Time	4:35	4:35	4:35	4:35	
End Time	5:45	5:45	5:45	5:45	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	6412	6287	6312	6337	
Vehs Exited	6393	6283	6349	6341	
Starting Vehs	206	195	226	208	
Ending Vehs	225	199	189	202	
Travel Distance (mi)	6935	6808	6870	6871	
Travel Time (hr)	195.6	188.4	189.5	191.2	
Total Delay (hr)	67.8	62.9	63.5	64.7	
Total Stops	3682	3309	3448	3481	
Fuel Used (gal)	286.7	279.3	281.2	282.4	

Interval #0 Information Seeding

Start Time	4:35
End Time	4:45
Total Time (min)	10
Volumes adjusted by Growth Fact	tors.
No data recorded this interval	

Interval #1 Information Recording

Start Time	4:45
End Time	5:45
Total Time (min)	60
Volumes adjusted by Growth Fac	tors.

Run Number	1	2	3	Avg	
Vehs Entered	6412	6287	6312	6337	
Vehs Exited	6393	6283	6349	6341	
Starting Vehs	206	195	226	208	
Ending Vehs	225	199	189	202	
Travel Distance (mi)	6935	6808	6870	6871	
Travel Time (hr)	195.6	188.4	189.5	191.2	
Total Delay (hr)	67.8	62.9	63.5	64.7	
Total Stops	3682	3309	3448	3481	
Fuel Used (gal)	286.7	279.3	281.2	282.4	

Queuing and Blocking Report 2020 Build DDI PM

Intersection: 1: I-26 EB Ramps & Columbia Ave

WD	WD	CD	CD	CD
WB	WB	SB	SB	SB
T	Τ	Τ	T	Τ
150	120	113	114	83
119	68	81	91	31
156	113	112	102	71
57	57	5	5	5
41	13	23	39	8
128	40	107	178	37
	119 156 57 41	T T 150 120 119 68 156 113 57 57 41 13	T T T T 150 120 113 119 68 81 156 113 112 57 57 5 41 13 23	T T T T T 14 150 120 113 114 119 68 81 91 156 113 112 102 57 57 5 5 41 13 23 39

Intersection: 21: Columbia Ave/I-26 WB Ramps & I-26 WB Off Ramp

Movement	WB	WB	SB	SB
Directions Served	L	L	T	Т
Maximum Queue (ft)	153	152	50	74
Average Queue (ft)	126	130	22	39
95th Queue (ft)	154	160	46	61
Link Distance (ft)	91	91	10	10
Upstream Blk Time (%)	20	22	17	41
Queuing Penalty (veh)	96	106	55	137
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 22: I-26 WB Ramps & Columbia Ave

Movement	EB	EB	SB	SB
Directions Served	T	T	Т	T
Maximum Queue (ft)	103	113	109	165
Average Queue (ft)	55	81	51	136
95th Queue (ft)	108	128	101	178
Link Distance (ft)	22	22	16	16
Upstream Blk Time (%)	30	46	17	44
Queuing Penalty (veh)	77	118	56	149
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX K

BUILD ALT 2 2020 SYNCHRO AND SIM TRAFFIC REPORTS

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

	۶	→	•	•	+	•	•	†	<i>></i>	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7					^	7	ሻ	^	
Traffic Volume (vph)	27	8	129	0	0	0	0	433	942	143	1077	0
Future Volume (vph)	27	8	129	0	0	0	0	433	942	143	1077	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	225		0	0		0	0		0	150		0
Storage Lanes	1		1	0		0	0		1	1		0
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00
Frt			0.850						0.850			
Flt Protected		0.963								0.950		
Satd. Flow (prot)	0	1794	1583	0	0	0	0	1863	1583	1770	3539	0
Flt Permitted		0.963								0.480		
Satd. Flow (perm)	0	1794	1583	0	0	0	0	1863	1583	894	3539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			95						1011			
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		881			239			1099			740	
Travel Time (s)		13.3			3.6			21.4			14.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	30	9	143	0	0	0	0	481	1047	159	1197	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	39	143	0	0	0	0	481	1047	159	1197	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								Yes				
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1					2	1	1	2	
Detector Template	Left	Thru	Right					Thru	Right	Left	Thru	
Leading Detector (ft)	20	100	20					100	20	20	100	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Detector 1 Position(ft)	0	0	0					0	0	0	0	
Detector 1 Size(ft)	20	6	20					6	20	20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex					CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94						94			94	
Detector 2 Size(ft)		6						6			6	
Detector 2 Type		CI+Ex						CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0						0.0			0.0	
Turn Type	Perm	NA	Perm					NA	Perm	Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4		4						2	6		

S-48 IMR AECOM

1: Columbia Ave & I-26 EB Ramps

	۶	→	•	•	+	•	•	†	~	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	4					2	2	6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0					10.0	10.0	10.0	10.0	
Minimum Split (s)	15.0	15.0	15.0					22.0	22.0	22.0	22.0	
Total Split (s)	15.0	15.0	15.0					45.0	45.0	45.0	45.0	
Total Split (%)	25.0%	25.0%	25.0%					75.0%	75.0%	75.0%	75.0%	
Maximum Green (s)	9.0	9.0	9.0					39.0	39.0	39.0	39.0	
Yellow Time (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0					6.0	6.0	6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					C-Min	C-Min	C-Min	C-Min	
Act Effct Green (s)		7.9	7.9					43.9	43.9	43.9	43.9	
Actuated g/C Ratio		0.13	0.13					0.73	0.73	0.73	0.73	
v/c Ratio		0.17	0.49					0.35	0.73	0.24	0.46	
Control Delay		24.4	16.3					2.6	7.7	5.3	5.3	
Queue Delay		0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay		24.4	16.3					2.6	7.7	5.3	5.3	
LOS		С	В					Α	Α	Α	А	
Approach Delay		18.0						6.1			5.3	
Approach LOS		В						Α			Α	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 23 (38%), Reference	ed to phase	e 2:NBT a	nd 6:SBT	L, Start of	f Green							
Natural Cycle: 60												
Control Type: Actuated-Co	ordinated											

Maximum v/c Ratio: 0.73

Intersection Signal Delay: 6.5 Intersection LOS: A Intersection Capacity Utilization 87.5% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 1: Columbia Ave & I-26 EB Ramps

HCM 2010 Signalized Intersection Summary 1: Columbia Ave & I-26 EB Ramps

	۶	→	•	•	←	•	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7					↑	7	7	^	
Traffic Volume (veh/h)	27	8	129	0	0	0	0	433	942	143	1077	0
Future Volume (veh/h)	27	8	129	0	0	0	0	433	942	143	1077	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863				0	1863	1863	1863	1863	0
Adj Flow Rate, veh/h	30	9	0				0	481	0	159	1197	0
Adj No. of Lanes	0	1	1				0	1	1	1	2	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	77	23	88				0	1386	1178	716	2634	0
Arrive On Green	0.06	0.06	0.00				0.00	0.74	0.00	0.74	0.74	0.00
Sat Flow, veh/h	1380	414	1583				0	1863	1583	910	3632	0
Grp Volume(v), veh/h	39	0	0				0	481	0	159	1197	0
Grp Sat Flow(s), veh/h/ln	1794	0	1583				0	1863	1583	910	1770	0
Q Serve(g_s), s	1.3	0.0	0.0				0.0	5.3	0.0	4.4	7.8	0.0
Cycle Q Clear(g_c), s	1.3	0.0	0.0				0.0	5.3	0.0	9.7	7.8	0.0
Prop In Lane	0.77		1.00				0.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	100	0	88				0	1386	1178	716	2634	0
V/C Ratio(X)	0.39	0.00	0.00				0.00	0.35	0.00	0.22	0.45	0.00
Avail Cap(c_a), veh/h	269	0	237				0	1386	1178	716	2634	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00				0.00	0.81	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	27.3	0.0	0.0				0.0	2.6	0.0	4.3	3.0	0.0
Incr Delay (d2), s/veh	2.5	0.0	0.0				0.0	0.6	0.0	0.7	0.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.7	0.0	0.0				0.0	2.9	0.0	1.2	3.9	0.0
LnGrp Delay(d),s/veh	29.8	0.0	0.0				0.0	3.2	0.0	5.0	3.5	0.0
LnGrp LOS	С							Α		Α	Α	
Approach Vol, veh/h		39						481			1356	
Approach Delay, s/veh		29.8						3.2			3.7	
Approach LOS		С						Α			Α	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		50.7		9.3		50.7						
Change Period (Y+Rc), s		6.0		6.0		6.0						
Max Green Setting (Gmax), s		39.0		9.0		39.0						
Max Q Clear Time (g_c+l1), s		7.3		3.3		11.7						
Green Ext Time (p_c), s		16.5		0.0		15.2						
Intersection Summary												
HCM 2010 Ctrl Delay			4.1									
HCM 2010 LOS			Α									

HCM 2010 TWSC 2: Columbia Ave & I-26 WB Ramps

Intersection														
Int Delay, s/veh	2.4													
Movement		EBL	EBT	EBR		WBL	WBT	WBR	NBI	. NBT	NBR	SBL	SBT	SBR
Lane Configurations				7			f)		١	i ↑			<u></u>	7
Traffic Vol, veh/h		0	0	691		0	2	157	9(0	0	529	49
Future Vol, veh/h		0	0	691		0	2	157	9(370	0	0	529	49
Conflicting Peds, #/hr		0	0	0		0	0	0	(0	0	0	0	0
Sign Control		Yield	Yield	Yield		Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	-	Free		-	-	None			None	-	-	None
Storage Length		-	-	0		-	-	-	179	, -	-	-	-	150
Veh in Median Storage, #	#	-	-	-		-	0	-		. 0	-	-	0	_
Grade, %		-	0	-		-	0	-		. 0	-	-	0	-
Peak Hour Factor		90	90	90		90	90	90	9(90	90	90	90	90
Heavy Vehicles, %		2	2	2		2	2	2	,	2	2	2	2	2
Mvmt Flow		0	0	768		0	2	174	100	411	0	0	588	54
Major/Minor					N	/linor1			Major ²			Major2		
Conflicting Flow All						-	1199	411	588	3 0	-	-	-	0
Stage 1						-	611	-			-	-	-	-
Stage 2						-	588	-			-	-	-	-
Critical Hdwy						-	6.52	6.22	4.12		-	-	-	-
Critical Hdwy Stg 1						-	5.52	-			-	-	-	-
Critical Hdwy Stg 2						-	5.52	-			-	-	-	-
Follow-up Hdwy						-	4.018	3.318	2.218	} -	-	-	-	-
Pot Cap-1 Maneuver						0	185	641	987	' -	0	0	-	-
Stage 1						0	484	-			0	0	-	-
Stage 2						0	496	-			0	0	-	-
Platoon blocked, %										-			-	-
Mov Cap-1 Maneuver						-	0	641	987	' -	-	-	-	-
Mov Cap-2 Maneuver						-	0	-			-	-	-	-
Stage 1						-	0	-			-	-	-	-
Stage 2						-	0	-			-	-	-	-
Ů														
Approach						WB			NE			SB		
HCM Control Delay, s						12.7			1.8	3		0		
HCM LOS						В								
Minor Lane/Major Mvmt		NBL	NBTV	VBLn1	SBT	SBR								
Capacity (veh/h)		987	-	641	-	-								
HCM Lane V/C Ratio		0.101	-	0.276	-	-								
HCM Control Delay (s)		9.1	-	12.7	-	-								
HCM Lane LOS		Α	-	В	-	-								
HCM 95th %tile Q(veh)		0.3	-	1.1	-	-								

SimTraffic Simulation Summary 2020 Build Loop AM

Summary of All Intervals

Run Number	1	2	3	Avg	
Start Time	7:20	7:20	7:20	7:20	
End Time	8:30	8:30	8:30	8:30	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	5225	5258	5272	5251	
Vehs Exited	5221	5265	5275	5255	
Starting Vehs	131	150	145	139	
Ending Vehs	135	143	142	139	
Travel Distance (mi)	5855	5873	5894	5874	
Travel Time (hr)	137.9	140.5	140.4	139.6	
Total Delay (hr)	25.5	26.8	26.3	26.2	
Total Stops	796	995	936	909	
Fuel Used (gal)	223.1	225.4	227.7	225.4	

Interval #0 Information Seeding

Start Time 7:20
End Time 7:30
Total Time (min) 10
Volumes adjusted by Growth Factors.
No data recorded this interval.

Interval #1 Information Recording

Start Time 7:30
End Time 8:30
Total Time (min) 60
Volumes adjusted by Growth Factors.

Run Number	1	2	3	Avg	
Vehs Entered	5225	5258	5272	5251	
Vehs Exited	5221	5265	5275	5255	
Starting Vehs	131	150	145	139	
Ending Vehs	135	143	142	139	
Travel Distance (mi)	5855	5873	5894	5874	
Travel Time (hr)	137.9	140.5	140.4	139.6	
Total Delay (hr)	25.5	26.8	26.3	26.2	
Total Stops	796	995	936	909	
Fuel Used (gal)	223.1	225.4	227.7	225.4	

Queuing and Blocking Report 2020 Build Loop AM

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	NB	SB	SB	SB
Directions Served	LT	T	L	T	T
Maximum Queue (ft)	68	99	89	113	115
Average Queue (ft)	23	21	34	35	33
95th Queue (ft)	55	69	67	94	87
Link Distance (ft)		1032		690	690
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	225		150		
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB
Directions Served	TR	L
Maximum Queue (ft)	71	59
Average Queue (ft)	32	24
95th Queue (ft)	53	52
Link Distance (ft)	543	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		175
Storage Blk Time (%)		
Queuing Penalty (veh)		

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

			_			_						
	•	-	*	•	•	•	1	T		-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7					†	7	ሻ	^	
Traffic Volume (vph)	45	8	121	0	0	0	0	624	742	246	1376	0
Future Volume (vph)	45	8	121	0	0	0	0	624	742	246	1376	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	225		0	0		0	0		0	150		0
Storage Lanes	1		1	0		0	0		1	1		0
Taper Length (ft)	100			100			100			100		
Satd. Flow (prot)	0	1786	1583	0	0	0	0	1863	1583	1770	3539	0
Flt Permitted		0.959								0.346		
Satd. Flow (perm)	0	1786	1583	0	0	0	0	1863	1583	645	3539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			55						824			
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		881			239			1090			740	
Travel Time (s)		13.3			3.6			21.2			14.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	59	134	0	0	0	0	693	824	273	1529	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	-		0	3		12	J		12	<u> </u>
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								Yes				
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm					NA	Perm	Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4		4						2	6		
Detector Phase	4	4	4					2	2	6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0					10.0	10.0	10.0	10.0	
Minimum Split (s)	15.0	15.0	15.0					22.0	22.0	22.0	22.0	
Total Split (s)	15.0	15.0	15.0					45.0	45.0	45.0	45.0	
Total Split (%)	25.0%	25.0%	25.0%					75.0%	75.0%	75.0%	75.0%	
Maximum Green (s)	9.0	9.0	9.0					39.0	39.0	39.0	39.0	
Yellow Time (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
• •												
, ,												
	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
•												
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay	3.0 None	2.0 0.0 6.0 3.0 None 8.1 0.14 0.25 25.6 0.0	3.0 None 8.1 0.14 0.52 22.6 0.0					3.0 C-Min 43.7 0.73 0.51 10.3	2.0 0.0 6.0 3.0 C-Min 43.7 0.73 0.60 6.6 0.0	2.0 0.0 6.0 3.0 C-Min 43.7 0.73 0.58 13.0	2.0 0.0 6.0	

Lanes, Volumes, Timings

1: Columbia Ave & I-26 EB Ramps

2020 Build Loop PM

	•	-	•	•	←	•	1	†		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay		25.6	22.6					10.3	6.6	13.0	6.7	
LOS		С	С					В	Α	В	Α	
Approach Delay		23.5						8.3			7.6	
Approach LOS		С						Α			Α	
Queue Length 50th (ft)		19	26					108	0	48	142	
Queue Length 95th (ft)		48	71					380	343	#176	206	
Internal Link Dist (ft)		801			159			1010			660	
Turn Bay Length (ft)										150		
Base Capacity (vph)		267	284					1357	1377	470	2578	
Starvation Cap Reductn		0	0					0	0	0	0	
Spillback Cap Reductn		0	0					0	0	0	0	
Storage Cap Reductn		0	0					0	0	0	0	
Reduced v/c Ratio		0.22	0.47					0.51	0.60	0.58	0.59	

Intersection Summary

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 32 (53%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.60

Intersection Signal Delay: 8.8 Intersection LOS: A Intersection Capacity Utilization 80.4% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Columbia Ave & I-26 EB Ramps

HCM 2010 Signalized Intersection Summary 1: Columbia Ave & I-26 EB Ramps

	۶	→	•	•	←	•	1	†	<i>></i>	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7					†	7	7	^	
Traffic Volume (veh/h)	45	8	121	0	0	0	0	624	742	246	1376	0
Future Volume (veh/h)	45	8	121	0	0	0	0	624	742	246	1376	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	C
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863				0	1863	1863	1863	1863	0
Adj Flow Rate, veh/h	50	9	0				0	693	0	273	1529	0
Adj No. of Lanes	0	1	1				0	1	1	1	2	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	111	20	116				0	1354	1151	645	2573	0
Arrive On Green	0.07	0.07	0.00				0.00	0.97	0.00	0.73	0.73	0.00
Sat Flow, veh/h	1514	273	1583				0	1863	1583	748	3632	0
Grp Volume(v), veh/h	59	0	0				0	693	0	273	1529	0
Grp Sat Flow(s), veh/h/ln	1787	0	1583				0	1863	1583	748	1770	0
Q Serve(g_s), s	1.9	0.0	0.0				0.0	1.5	0.0	10.3	12.5	0.0
Cycle Q Clear(g_c), s	1.9	0.0	0.0				0.0	1.5	0.0	11.7	12.5	0.0
Prop In Lane	0.85	0.0	1.00				0.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	130	0	116				0	1354	1151	645	2573	0
V/C Ratio(X)	0.45	0.00	0.00				0.00	0.51	0.00	0.42	0.59	0.00
Avail Cap(c_a), veh/h	268	0	237				0	1354	1151	645	2573	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.33	1.33	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00				0.00	0.85	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	26.7	0.0	0.0				0.0	0.3	0.0	4.2	3.9	0.0
Incr Delay (d2), s/veh	2.4	0.0	0.0				0.0	1.2	0.0	2.0	1.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.0	0.0	0.0				0.0	1.0	0.0	2.4	6.3	0.0
LnGrp Delay(d),s/veh	29.1	0.0	0.0				0.0	1.5	0.0	6.2	5.0	0.0
LnGrp LOS	С	0.0	0.0				0.0	A	0.0	A	A	0.0
Approach Vol, veh/h		59						693			1802	
Approach Delay, s/veh		29.1						1.5			5.1	
Approach LOS		C C						Α			Α	
					_	,	_				Λ	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		49.6		10.4		49.6						
Change Period (Y+Rc), s		6.0		6.0		6.0						
Max Green Setting (Gmax), s		39.0		9.0		39.0						
Max Q Clear Time (g_c+I1), s		3.5		3.9		14.5						
Green Ext Time (p_c), s		26.1		0.1		19.5						
Intersection Summary												
HCM 2010 Ctrl Delay			4.7									
HCM 2010 LOS			Α									

HCM 2010 TWSC 2: Columbia Ave & I-26 WB Ramps

Intersection													
Int Delay, s/veh	4												
Movement	EBL	EBT	EBR	W	/BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			ĵ.		ሻ				•	7
Traffic Vol, veh/h	0	0	953		0	2	245	159	510	0	0	669	35
Future Vol, veh/h	0	0	953		0	2	245	159	510	0	0	669	35
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	0	0	0	0
Sign Control	Yield	Yield	Yield	S	top	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Free		-	-	None	-	-	None	-	-	None
Storage Length	-	-	0		-	-	-	175	-	-	-	-	150
Veh in Median Storage, #	-	-	-		-	0	-	-	0	-	-	0	-
Grade, %	-	0	-		-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90		90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	1059		0	2	272	177	567	0	0	743	39
Major/Minor				Min	or1			Major1			Major2		
Conflicting Flow All					-	1663	567	743	0	-	-	-	0
Stage 1					-	920	-	-	-	-	-	-	-
Stage 2					-	743	-	-	-	-	-	-	-
Critical Hdwy					-	6.52	6.22	4.12	-	-	-	-	-
Critical Hdwy Stg 1					-	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2					-	5.52	-	-	-	-	-	-	_
Follow-up Hdwy					-	4.018	3.318	2.218	-	-	-	-	-
Pot Cap-1 Maneuver					0	97	523	864	-	0	0	-	-
Stage 1					0	350	-	-	-	0	0	-	-
Stage 2					0	422	_	-	_	0	0		_
Platoon blocked, %													_
Mov Cap-1 Maneuver					-	77	523	864	_	_	_	_	_
Mov Cap-2 Maneuver						154	-	-	_	_	-	_	_
Stage 1					_	278	_	_	_	_	_	_	_
Stage 2					_	422	_	_	_	_	_	_	_
Olugo Z						122							
Approach				_ \	WB			NB			SB		
HCM Control Delay, s					9.8			2.4			0		
HCM LOS				•	С						•		
Minor Lane/Major Mvmt	NBL	NBTW	/BLn1	SBT S	BR								
Capacity (veh/h)	864	-	513	-	-								
HCM Lane V/C Ratio	0.204	-	0.535	-	-								
HCM Control Delay (s)	10.2	-	19.8	-	-								
HCM Lane LOS	В	-	С	-	-								
HCM 95th %tile Q(veh)	0.8	-	3.1	-	-								

SimTraffic Simulation Summary 2020 Build Loop PM

Summary of All Intervals

Run Number	1	2	3	Avg
Start Time	4:35	4:35	4:35	4:35
End Time	5:45	5:45	5:45	5:45
Total Time (min)	70	70	70	70
Time Recorded (min)	60	60	60	60
# of Intervals	2	2	2	2
# of Recorded Intervals	1	1	1	1
Vehs Entered	6331	6373	6113	6270
Vehs Exited	6335	6337	6152	6275
Starting Vehs	195	171	194	187
Ending Vehs	191	207	155	185
Travel Distance (mi)	7081	7118	6924	7041
Travel Time (hr)	181.2	184.6	173.4	179.7
Total Delay (hr)	44.3	46.7	40.8	43.9
Total Stops	1444	1351	1205	1333
Fuel Used (gal)	277.6	281.1	271.3	276.7

Interval #0 Information Seeding

Start Time	4:35						
End Time	4:45						
Total Time (min)	10						
Volumes adjusted by Growth Factors.							
No data recorded this interval.							

Interval #1 Information Recording

Start Time	4:45
End Time	5:45
Total Time (min)	60
Volumes adjusted by Growth Fac	tors.

Run Number	1	2	3	Avg	
Vehs Entered	6331	6373	6113	6270	
Vehs Exited	6335	6337	6152	6275	
Starting Vehs	195	171	194	187	
Ending Vehs	191	207	155	185	
Travel Distance (mi)	7081	7118	6924	7041	
Travel Time (hr)	181.2	184.6	173.4	179.7	
Total Delay (hr)	44.3	46.7	40.8	43.9	
Total Stops	1444	1351	1205	1333	
Fuel Used (gal)	277.6	281.1	271.3	276.7	

Queuing and Blocking Report 2020 Build Loop PM

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	EB	NB	SB	SB	SB
Directions Served	LT	R	Т	L	T	T
Maximum Queue (ft)	102	18	172	160	140	126
Average Queue (ft)	39	1	58	76	51	52
95th Queue (ft)	81	10	142	141	117	113
Link Distance (ft)		762	1024		690	690
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)	225			150		
Storage Blk Time (%)				1	0	
Queuing Penalty (veh)				4	0	

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	TR	L	R
Maximum Queue (ft)	117	114	7
Average Queue (ft)	53	44	0
95th Queue (ft)	94	80	4
Link Distance (ft)	543		
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		175	150
Storage Blk Time (%)			
Queuing Penalty (veh)			

HCS 2010: Freeway Merge and Diverge Segments Release 6.65

Phone: Fax: E-mail:

_____Diverge Analysis______

Analyst: AECOM
Agency/Co.: AECOM
Date performed: 7/1/2016
Analysis time period: AM Peak
Freeway/Dir of Travel: I-26 WB

Junction: S-48 WB Off-Ramp Alt 2

Jurisdiction:

Analysis Year: 2020 Build Alt 2 Ramp

Description: S-48 IMR

_____Freeway Data______

Type of analysis Diverge
Number of lanes in freeway 2
Free-flow speed on freeway 75.0 mph
Volume on freeway 1713 vph

_____Off Ramp Data_____

Side of freeway

Number of lanes in ramp

Free-Flow speed on ramp

Volume on ramp

Length of first accel/decel lane

Length of second accel/decel lane

ft

______Adjacent Ramp Data (if one exists)_____

Does adjacent ramp exist?

Volume on adjacent ramp

Position of adjacent ramp

Type of adjacent ramp

Downstream

On

Distance to adjacent ramp

1000

ft

_____Conversion to pc/h Under Base Conditions_____

Junction Components		Freeway		Ramp		Adjacent	
						Ramp	
Volume, V (vph)		1713		159		691	vph
Peak-hour factor, PHF		0.90		0.90		0.90	
Peak 15-min volume, v15		476		44		192	v
Trucks and buses		4		2		2	%
Recreational vehicles		0		0		0	%
Terrain type:		Rolling		Rolling		Rolling	
Grade		0.00	%	0.00	%	0.00	%
Length		0.00	mi	0.00	mi	0.00	mi
Trucks and buses PCE, ET		2.5		2.5		2.5	
Recreational vehicle PCE, I	ER	2.0		2.0		2.0	

```
DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97
                                     .943
                                                 0.971
                                                             0.971
Driver population factor, fP
                                     1.00
                                                 1.00
                                                             1.00
                                     2018
Flow rate, vp
                                                 182
                                                             791
                                                                     pcph
                    _____Estimation of V12 Diverge Areas___
                                (Equation 13-12 or 13-13)
                 L =
                  ΕQ
                        1.000 Using Equation 0
                  FD
                 v = v + (v - v) P = 2018 pc/h
                     R
                           F R FD
                    _____Capacity Checks____
                                       Maximum
                                                      LOS F?
                          Actual
    v = v
                          2018
                                       4800
                                                       No
     Fi F
                          1836
                                       4800
                                                       No
    v = v - v
         F
     FΟ
            R
                          182
                                       2100
                                                       No
    V
     R
                          0 pc/h (Equation 13-14 or 13-17)
    v or v
     3
          av34
Is
    v or v
                > 2700 pc/h?
                                       No
     3
           av34
    v or v
                 > 1.5 v / 2
                                       No
Is
     3
           av34
                        12
If yes, v = 2018
                                     (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area___
                                  Max Desirable
                                                        Violation?
                     Actual
                                   4400
                     2018
                                                        No
    V
     12
             ___Level of Service Determination (if not F)______
                      D = 4.252 + 0.0086 v - 0.009 L = 10.6 pc/mi/ln
Density,
                                         12
                       R
Level of service for ramp-freeway junction areas of influence B
                 _____Speed Estimation____
                                           D = 0.314
Intermediate speed variable,
                                            S
Space mean speed in ramp influence area,
                                           S = 64.6
                                                        mph
                                           R
Space mean speed in outer lanes,
                                           S = N/A
                                                        mph
```

S = 64.6

mph

Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.65

Phone: Fax: E-mail:

______Diverge Analysis______

Analyst: AECOM
Agency/Co.: AECOM
Date performed: 7/1/2016
Analysis time period: AM Peak
Freeway/Dir of Travel: I-26 WB

Junction: S-48 WB Off-Ramp Alt 2 Loop

Jurisdiction:

Analysis Year: 2020 Build Alt 2 Loop

Description: S-48 IMR

_____Freeway Data______

Type of analysis Diverge
Number of lanes in freeway 2
Free-flow speed on freeway 75.0
Volume on freeway 1554

_____Off Ramp Data_____

mph

vph

Side of freeway

Number of lanes in ramp

Free-Flow speed on ramp

Volume on ramp

Length of first accel/decel lane

Length of second accel/decel lane

ft

______Adjacent Ramp Data (if one exists)______

Does adjacent ramp exist?

Volume on adjacent ramp

Position of adjacent ramp

Type of adjacent ramp

Distance to adjacent ramp

550

Type

_____Conversion to pc/h Under Base Conditions_____

Freeway	Ramp	Adjacent	5
		Ramp	
1554	691	141	vph
0.90	0.90	0.90	
432	192	39	V
4	2	2	%
0	0	0	%
Rolling	Rolling	Rolling	
0.00 %	0.00 %	0.00	%
0.00 m	i 0.00 m	i 0.00	mi
2.5	2.5	2.5	
2.0	2.0	2.0	
	1554 0.90 432 4 0 Rolling 0.00 % 0.00 ms	1554 691 0.90 0.90 432 192 4 2 0 0 Rolling Rolling 0.00 % 0.00 % 0.00 mi 0.00 m 2.5 2.5	Ramp 1554 691 141 0.90 0.90 0.90 432 192 39 4 2 2 0 0 0 0 Rolling Rolling Rolling 0.00 % 0.00 % 0.00 0.00 mi 0.00 mi 0.00 2.5 2.5 2.5

```
DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97
                                     .943
                                                 0.971
                                                             0.971
Driver population factor, fP
                                     1.00
                                                 1.00
                                                             1.00
                                     1830
Flow rate, vp
                                                 791
                                                             161
                                                                     pcph
                    ____Estimation of V12 Diverge Areas__
                                 (Equation 13-12 or 13-13)
                 L =
                  ΕQ
                         1.000 Using Equation 0
                  FD
                 v = v + (v - v) P = 1830 pc/h
                     R
                           F R FD
                     _____Capacity Checks____
                                       Maximum
                                                      LOS F?
                          Actual
    v = v
                          1830
                                       4800
                                                       No
     Fi F
                          1039
                                       4800
                                                       No
    v = v - v
         F
     FΟ
            R
                          791
                                       2100
                                                       No
    V
     R
                          0
                             pc/h (Equation 13-14 or 13-17)
    v or v
     3
          av34
Is
    v or v
                > 2700 pc/h?
                                       No
     3
           av34
    v or v
                 > 1.5 v / 2
                                       No
Is
     3
           av34
                        12
If yes, v = 1830
                                     (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                     _Flow Entering Diverge Influence Area___
                                  Max Desirable
                                                        Violation?
                     Actual
                                   4400
                     1830
                                                        No
    V
     12
              ___Level of Service Determination (if not F)______
                      D = 4.252 + 0.0086 v - 0.009 L = 9.0 	pc/mi/ln
Density,
                                         12
                       R
Level of service for ramp-freeway junction areas of influence A
                 _____Speed Estimation____
                                           D = 0.369
Intermediate speed variable,
                                            S
Space mean speed in ramp influence area,
                                           S = 62.8
                                                        mph
                                           R
Space mean speed in outer lanes,
                                           S = N/A
                                                        mph
```

S = 62.8

mph

Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.65

Phone: Fax: E-mail:

______Diverge Analysis______

Analyst: AECOM
Agency/Co.: AECOM
Date performed: 7/1/2016
Analysis time period: PM Peak
Freeway/Dir of Travel: I-26 WB

Junction: S-48 WB Off-Ramp Alt 2

Jurisdiction:

Analysis Year: 2020 Build Alt 2 Ramp

Description: S-48 IMR

_____Freeway Data______

Type of analysis Diverge
Number of lanes in freeway 2
Free-flow speed on freeway 75.0 mph
Volume on freeway 2523 vph

_____Off Ramp Data_____

Side of freeway

Number of lanes in ramp

Free-Flow speed on ramp

Volume on ramp

Length of first accel/decel lane

Length of second accel/decel lane

ft

______Adjacent Ramp Data (if one exists)_____

Does adjacent ramp exist?

Volume on adjacent ramp

Position of adjacent ramp

Type of adjacent ramp

Downstream

On

Distance to adjacent ramp

1000

ft

_____Conversion to pc/h Under Base Conditions_____

Junction Components	Freeway	Ramp		Adjacent		
					Ramp	
Volume, V (vph)	2523		247		953	vph
Peak-hour factor, PHF	0.90		0.90		0.90	
Peak 15-min volume, v15	701		69		265	V
Trucks and buses	4		2		2	%
Recreational vehicles	0		0		0	%
Terrain type:	Rolling		Rolling	Г	Rolling	ī
Grade	0.00	%	0.00	%	0.00	%
Length	0.00	mi	0.00	mi	0.00	mi
Trucks and buses PCE, ET	2.5		2.5		2.5	
Recreational vehicle PCE, ER	2.0		2.0		2.0	

```
DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97
                                     .943
                                                 0.971
                                                             0.971
                                     1.00
Driver population factor, fP
                                                 1.00
                                                             1.00
                                     2972
Flow rate, vp
                                                 283
                                                            1091
                                                                     pcph
                    ____Estimation of V12 Diverge Areas__
                                (Equation 13-12 or 13-13)
                 L =
                  ΕQ
                        1.000 Using Equation 0
                  FD
                 v = v + (v - v) P = 2972 pc/h
                     R
                           F R
                                   FD
                    _____Capacity Checks____
                                       Maximum
                                                      LOS F?
                          Actual
    v = v
                          2972
                                       4800
                                                      No
     Fi F
                          2689
                                       4800
                                                      No
    v = v - v
         F
     FΟ
            R
                          283
                                       2100
                                                      No
    V
     R
                          0 pc/h (Equation 13-14 or 13-17)
    v or v
     3
          av34
Is
    v or v
                > 2700 pc/h?
                                       No
     3
           av34
    v or v
                 > 1.5 v / 2
                                       No
Is
     3
           av34
                        12
If yes, v = 2972
                                     (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area___
                                  Max Desirable
                                                        Violation?
                     Actual
                                  4400
                     2972
                                                        No
    V
     12
             ___Level of Service Determination (if not F)______
                      D = 4.252 + 0.0086 v - 0.009 L = 18.8 pc/mi/ln
Density,
                                         12
                       R
Level of service for ramp-freeway junction areas of influence B
                 _____Speed Estimation____
                                           D = 0.323
Intermediate speed variable,
                                            S
Space mean speed in ramp influence area,
                                           S = 64.3
                                                        mph
                                           R
Space mean speed in outer lanes,
                                           S = N/A
                                                        mph
```

S = 64.3

mph

Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.65

Phone: Fax: E-mail:

_____Diverge Analysis______

Analyst: AECOM
Agency/Co.: AECOM
Date performed: 7/1/2016
Analysis time period: PM Peak
Freeway/Dir of Travel: I-26 WB

Junction: S-48 WB Off-Ramp Alt 2 Loop

Jurisdiction:

Analysis Year: 2020 Build Alt 2 Loop

Description: S-48 IMR

_____Freeway Data______

Type of analysis Diverge
Number of lanes in freeway 2
Free-flow speed on freeway 75.0 mph
Volume on freeway 2276 vph

_____Off Ramp Data_____

Side of freeway

Number of lanes in ramp

Free-Flow speed on ramp

Volume on ramp

Length of first accel/decel lane

Length of second accel/decel lane

ft

______Adjacent Ramp Data (if one exists)_____

Does adjacent ramp exist?

Volume on adjacent ramp

Position of adjacent ramp

Type of adjacent ramp

Downstream

On

Distance to adjacent ramp

550

ft

_____Conversion to pc/h Under Base Conditions_____

Junction Components		Freeway				Adjacent		
						Ramp		
Volume, V (vph)		2276		953		196	vph	
Peak-hour factor, PHF		0.90		0.90		0.90		
Peak 15-min volume, v15		632		265		54	V	
Trucks and buses		4		2		2	%	
Recreational vehicles		0		0		0	%	
Terrain type:		Rolling		Rolling		Rolling		
Grade		0.00	용	0.00	8	0.00	%	
Length		0.00	шi	0.00	mi	0.00	mi	
Trucks and buses PCE, ET		2.5		2.5		2.5		
Recreational vehicle PCE,	ER	2.0		2.0		2.0		

```
DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97
                                     .943
                                                 0.971
                                                             0.971
Driver population factor, fP
                                     1.00
                                                 1.00
                                                             1.00
                                     2681
Flow rate, vp
                                                 1091
                                                            224
                                                                     pcph
                    _____Estimation of V12 Diverge Areas___
                                (Equation 13-12 or 13-13)
                 L =
                  ΕQ
                        1.000 Using Equation 0
                  FD
                 v = v + (v - v) P = 2681 pc/h
                           F R
                                   FD
                     R
                    _____Capacity Checks____
                                       Maximum
                                                      LOS F?
                          Actual
    v = v
                          2681
                                       4800
                                                      No
     Fi F
                          1590
                                       4800
                                                      No
    v = v - v
         F R
     FΟ
                          1091
                                       2100
                                                      No
    V
     R
                          0 pc/h (Equation 13-14 or 13-17)
    v or v
     3
          av34
Is
    v or v
                > 2700 pc/h?
                                       No
     3
          av34
    v or v
                 > 1.5 v / 2
                                       No
Is
     3
           av34
                        12
If yes, v = 2681
                                     (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area___
                     Actual
                                  Max Desirable
                                                        Violation?
                                  4400
                     2681
                                                        No
    V
     12
             ___Level of Service Determination (if not F)______
                      D = 4.252 + 0.0086 v - 0.009 L = 16.3 pc/mi/ln
Density,
                                         12
                       R
Level of service for ramp-freeway junction areas of influence B
                 _____Speed Estimation____
                                           D = 0.396
Intermediate speed variable,
                                            S
Space mean speed in ramp influence area,
                                           S = 61.9
                                                        mph
                                           R
Space mean speed in outer lanes,
                                           S = N/A
                                                        mph
```

S = 61.9

mph

Space mean speed for all vehicles,

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX L

BUILD ALT 1 2040 SYNCHRO AND SIM TRAFFIC REPORTS

		_	
1: Columbia	Ave &	I-26 EB	Ramps

	۶	→	•	•	-	4	1	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					†						ተተተ	
Traffic Volume (vph)	0	0	0	0	498	0	0	0	0	0	1461	0
Future Volume (vph)	0	0	0	0	498	0	0	0	0	0	1461	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	3539	0	0	0	0	0	5085	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	3539	0	0	0	0	0	5085	0
Right Turn on Red			Yes	Yes		Yes			Yes			Yes
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		153			109			130			161	
Travel Time (s)		3.0			2.1			2.5			3.1	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	553	0	0	0	0	0	1623	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	2011	0			0		20.0	0		20.1	0	g
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type					NA						NA	
Protected Phases					4						6	
Permitted Phases												
Detector Phase					4						6	
Switch Phase												
Minimum Initial (s)					10.0						10.0	
Minimum Split (s)					22.0						22.0	
Total Split (s)					27.0						43.0	
Total Split (%)					38.6%						61.4%	
Maximum Green (s)					21.0						37.0	
Yellow Time (s)					4.0						4.0	
All-Red Time (s)					2.0						2.0	
Lost Time Adjust (s)					0.0						0.0	
Total Lost Time (s)					6.0						6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)					3.0						3.0	
Recall Mode					Min						C-Max	
Act Effct Green (s)					16.5						41.5	
Actuated g/C Ratio					0.24						0.59	
v/c Ratio					0.66						0.54	
Control Delay					21.8						7.6	
Queue Delay					0.0						0.0	
Total Delay					21.8						7.6	
LOS					С						A	
Approach Delay					21.8						7.6	

S-48 IMR AECOM

1: Columbia Ave & I-26 EB Ramps

	•	→	•	•	←	•	•	†	<i>></i>	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					С						А	
Queue Length 50th (ft)					102						43	
Queue Length 95th (ft)					119						238	
Internal Link Dist (ft)		73			29			50			81	
Turn Bay Length (ft)												
Base Capacity (vph)					1061						3011	
Starvation Cap Reductn					0						0	
Spillback Cap Reductn					0						0	
Storage Cap Reductn					0						0	
Reduced v/c Ratio					0.52						0.54	
Intersection Summary												
<i>J</i> 1	Other											
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 55 (79%), Reference	ed to phase	6:SBT, S	Start of G	reen								
Natural Cycle: 45												
Control Type: Actuated-Coo	ordinated											
Maximum v/c Ratio: 0.66												
Intersection Signal Delay: 1					ntersection		_					
Intersection Capacity Utiliza	ation 58.1%			[(CU Level	of Service	В					
Analysis Period (min) 15												
Splits and Phases: 1: Co	lumbia Ave	& I-26 EI	B Ramps	;								
							← Ø4					
							שש 27s					
11												
Ø6 (R)					_							
43 s												

HCM 2010 Signalized Intersection Summary 1: Columbia Ave & I-26 EB Ramps

	۶	→	•	•	←	•	•	†	<i>></i>	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					^						ተተተ	
Traffic Volume (veh/h)	0	0	0	0	498	0	0	0	0	0	1461	0
Future Volume (veh/h)	0	0	0	0	498	0	0	0	0	0	1461	0
Number				7	4	14				1	6	16
Initial Q (Qb), veh				0	0	0				0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00				1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				0	1863	0				0	1863	0
Adj Flow Rate, veh/h				0	553	0				0	1623	0
Adj No. of Lanes				0	2	0				0	3	0
Peak Hour Factor				0.90	0.90	0.90				0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0				0	2	0
Cap, veh/h				0	738	0				0	2688	0
Arrive On Green				0.00	0.21	0.00				0.00	0.17	0.00
Sat Flow, veh/h				0	3725	0				0	5421	0
Grp Volume(v), veh/h				0	553	0				0	1623	0
Grp Sat Flow(s), veh/h/ln				0	1770	0				0	1695	0
Q Serve(g_s), s				0.0	10.3	0.0				0.0	20.6	0.0
Cycle Q Clear(g_c), s				0.0	10.3	0.0				0.0	20.6	0.0
Prop In Lane				0.00		0.00				0.00		0.00
Lane Grp Cap(c), veh/h				0	738	0				0	2688	0
V/C Ratio(X)				0.00	0.75	0.00				0.00	0.60	0.00
Avail Cap(c_a), veh/h				0	1062	0				0	2688	0
HCM Platoon Ratio				1.00	1.00	1.00				1.00	0.33	1.00
Upstream Filter(I)				0.00	1.00	0.00				0.00	1.00	0.00
Uniform Delay (d), s/veh				0.0	26.0	0.0				0.0	22.1	0.0
Incr Delay (d2), s/veh				0.0	1.8	0.0				0.0	1.0	0.0
Initial Q Delay(d3),s/veh				0.0	0.0 5.2	0.0				0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.0	27.8	0.0				0.0	9.9 23.1	0.0
LnGrp Delay(d),s/veh LnGrp LOS				0.0	27.8 C	0.0				0.0	23.1 C	0.0
					553							
Approach Vol, veh/h					27.8						1623 23.1	
Approach Delay, s/veh Approach LOS					27.8 C						23.1 C	
											C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs				4		6						
Phs Duration (G+Y+Rc), s				20.6		43.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				21.0		37.0						
Max Q Clear Time (g_c+l1), s				12.3		22.6						
Green Ext Time (p_c), s				2.3		9.4						
Intersection Summary												
HCM 2010 Ctrl Delay			24.3									
HCM 2010 LOS			С									

Lanes, Volumes, Timings 21: Columbia Ave & I-26 WB Off Ramp

	•	•	†	/	>	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	75.75					^
Traffic Volume (vph)	1026	0	0	0	0	582
Future Volume (vph)	1026	0	0	0	0	582
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	3433	0	0	0	0	3539
Flt Permitted	0.950	U	U	U	U	3339
		0	0	^	^	2520
Satd. Flow (perm)	3433	0	0	0	0	3539
Right Turn on Red	Yes	Yes		Yes		
Satd. Flow (RTOR)	191					
Link Speed (mph)	30		35			35
Link Distance (ft)	161		300			170
Travel Time (s)	3.7		5.8			3.3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1140	0	0	0	0	647
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	24	, wgrit	0	, angrit	Loit	0
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
• • • • • • • • • • • • • • • • • • • •	10		10			10
Two way Left Turn Lane	1 00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot					NA
Protected Phases	8					6
Permitted Phases						
Detector Phase	8					6
Switch Phase						
Minimum Initial (s)	7.0					10.0
Minimum Split (s)	22.0					22.0
Total Split (s)	39.0					31.0
Total Split (%)	55.7%					44.3%
Maximum Green (s)	33.0					25.0
	4.0					4.0
Yellow Time (s)						
All-Red Time (s)	2.0					2.0
Lost Time Adjust (s)	0.0					0.0
Total Lost Time (s)	6.0					6.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0					3.0
Recall Mode	Min					C-Max
Act Effct Green (s)	27.3					30.7
Actuated g/C Ratio	0.39					0.44
v/c Ratio	0.78					0.42
Control Delay	19.3					8.9
_						0.9
Queue Delay	0.0					
Total Delay	19.3					9.3
LOS	В					Α
Approach Delay	19.3					9.3

S-48 IMR AECOM

2040 Build DDI AM

21: Columbia Ave & I-26 WB Off Ramp

	•	•	†	/	/	†	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Approach LOS	В					А	
Queue Length 50th (ft)	178					97	
Queue Length 95th (ft)	215					160	
Internal Link Dist (ft)	81		220			90	
Turn Bay Length (ft)							
Base Capacity (vph)	1719					1553	
Starvation Cap Reductn	0					451	
Spillback Cap Reductn	0					0	
Storage Cap Reductn	0					0	
Reduced v/c Ratio	0.66					0.59	
Intersection Summary							
Area Type: O	ther						
Cycle Length: 70							
Actuated Cycle Length: 70							
Offset: 9 (13%), Referenced	to phase (5:SBT, Sta	art of Gre	een			
Natural Cycle: 45							
Control Type: Actuated-Coord	dinated						
Maximum v/c Ratio: 0.78							
Intersection Signal Delay: 15.					tersection		
Intersection Capacity Utilizati	on 55.4%			IC	U Level o	of Service	В
Analysis Period (min) 15							
Culity and Dhasses 21, Cal		- 0 I 2/ V	ND 0ft D				
Splits and Phases: 21: Col	umbia Av	e & I-26 V	AR OII K	amp •			
▼ Ø6 (R)				_ ✓	Ø8		

HCM 2010 Signalized Intersection Summary 21: Columbia Ave & I-26 WB Off Ramp

	•	•	†	/	\	I	
Movement	▼ WBL	WBR	NBT	NBR	SBL	SBT	
	WDL TT	WDK	INDI	NDK	SDL		
Lane Configurations Traffic Volume (veh/h)	1026	0	0	0	0	↑↑ 582	
Future Volume (veh/h)	1026	0	0	0	0	582	
Number	3	18	U	U	1	6	
Initial Q (Qb), veh	0	0			0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00			1.00	U	
Parking Bus, Adj	1.00	1.00			1.00	1.00	
	1863	0			0	1863	
Adj Sat Flow, veh/h/ln	1140				0	647	
Adj Flow Rate, veh/h		0				2	
Adj No. of Lanes	2	0			0		
Peak Hour Factor	0.90	0.90			0.90	0.90	
Percent Heavy Veh, %	2	0			0	1244	
Cap, veh/h	0 00	0 00			0 00	1264	
Arrive On Green	0.00	0.00			0.00	0.12	
Sat Flow, veh/h	0				0	3725	
Grp Volume(v), veh/h	0.0				0	647	
Grp Sat Flow(s), veh/h/ln					0	1770	
Q Serve(g_s), s					0.0	12.0	
Cycle Q Clear(g_c), s					0.0	12.0	
Prop In Lane					0.00		
Lane Grp Cap(c), veh/h					0	1264	
V/C Ratio(X)					0.00	0.51	
Avail Cap(c_a), veh/h					0	1264	
HCM Platoon Ratio					1.00	0.33	
Upstream Filter(I)					0.00	0.97	
Uniform Delay (d), s/veh					0.0	25.1	
Incr Delay (d2), s/veh					0.0	1.4	
Initial Q Delay(d3),s/veh					0.0	0.0	
%ile BackOfQ(50%),veh/ln					0.0	6.1	
LnGrp Delay(d),s/veh					0.0	26.6	
LnGrp LOS						С	
Approach Vol, veh/h						647	
Approach Delay, s/veh						26.6	
Approach LOS						С	
Timer	1	2	3	4	5	6	7 8
Assigned Phs						6	
Phs Duration (G+Y+Rc), s						31.0	
Change Period (Y+Rc), s						6.0	
Max Green Setting (Gmax), s						25.0	
Max Q Clear Time (g_c+l1), s						14.0	
Green Ext Time (p_c), s						3.2	
Intersection Summary							
HCM 2010 Ctrl Delay			26.6				
HCM 2010 LOS			С				

	۶	→	*	•	-	•	1	†	/	/	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^									† †	
Traffic Volume (vph)	0	402	0	0	0	0	0	0	0	0	582	0
Future Volume (vph)	0	402	0	0	0	0	0	0	0	0	582	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	3539	0	0	0	0	0	0	0	0	3539	0
Flt Permitted												
Satd. Flow (perm)	0	3539	0	0	0	0	0	0	0	0	3539	0
Right Turn on Red			Yes			Yes			Yes	Yes		Yes
Satd. Flow (RTOR)												
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		147			115			170			129	
Travel Time (s)		2.9			2.2			3.3			2.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Lane Group Flow (vph)	0	447	0	0	0	0	0	0	0	0	647	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left		Left	Left		Left	Left	
Median Width(ft)	Leit	0	Rigiii	Leit	0	Right	Leit	0	Right	Leit	0	Right
Link Offset(ft)					0			0			0	
		0			16							
Crosswalk Width(ft)		16			10			16			16	
Two way Left Turn Lane	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	B.I.A.	9	15		9	15		9	15	N 1 A	9
Turn Type		NA									NA	
Protected Phases		4									6	
Permitted Phases		_									_	
Detector Phase		4									6	
Switch Phase												
Minimum Initial (s)		10.0									10.0	
Minimum Split (s)		22.0									22.0	
Total Split (s)		32.0									38.0	
Total Split (%)		45.7%									54.3%	
Maximum Green (s)		26.0									32.0	
Yellow Time (s)		4.0									4.0	
All-Red Time (s)		2.0									2.0	
Lost Time Adjust (s)		0.0									0.0	
Total Lost Time (s)		6.0									6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0									3.0	
Recall Mode		None									C-Max	
Act Effct Green (s)		14.5									43.5	
Actuated g/C Ratio		0.21									0.62	
v/c Ratio		0.61									0.29	
Control Delay		6.1									7.1	
Queue Delay		0.0									0.1	
Total Delay		6.1									7.2	
LOS		Α									Α.Δ	
Approach Delay		6.1									7.2	
Approach Delay		U. I									1.2	

S-48 IMR AECOM

	•	→	•	•	+	•	•	†	<i>></i>	/	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		А									А	
Queue Length 50th (ft)		4									58	
Queue Length 95th (ft)		5									101	
Internal Link Dist (ft)		67			35			90			49	
Turn Bay Length (ft)												
Base Capacity (vph)		1314									2199	
Starvation Cap Reductn		0									0	
Spillback Cap Reductn		0									439	
Storage Cap Reductn		0									0	
Reduced v/c Ratio		0.34									0.37	
Intersection Summary												
Area Type:	Other											
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 5 (7%), Referenced	to phase 6	:SBT, Sta	rt of Gree	en								
Natural Cycle: 45												
Control Type: Actuated-Coo	ordinated											
Maximum v/c Ratio: 0.61												
Intersection Signal Delay: 6					ntersection							
Intersection Capacity Utiliza	ation 37.2%)		IC	CU Level	of Service	Α					
Analysis Period (min) 15												
Splits and Phases: 22: C	Columbia Av	re & I-26 \	NB Ramı	ns								
Spino unu i riugosi. Zzi o	voidiniola 710	0 4 1 20 1	TO Italii			→ Ø4 32 s						
▼ Ø6 (R)												

HCM 2010 Signalized Intersection Summary 22: Columbia Ave & I-26 WB Ramps

	•	→	•	√	←	•	•	†	<i>></i>	\		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^									^	
Traffic Volume (veh/h)	0	402	0	0	0	0	0	0	0	0	582	0
Future Volume (veh/h)	0	402	0	0	0	0	0	0	0	0	582	0
Number	7	4	14							1	6	16
Initial Q (Qb), veh	0	0	0							0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00							1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00							1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1863	0							0	1863	0
Adj Flow Rate, veh/h	0	447	0							0	647	0
Adj No. of Lanes	0	2	0							0	2	0
Peak Hour Factor	0.90	0.90	0.90							0.90	0.90	0.90
Percent Heavy Veh, %	0	2	0							0	2	0
Cap, veh/h	0	646	0							0	1618	0
Arrive On Green	0.00	0.18	0.00							0.00	0.46	0.00
Sat Flow, veh/h	0	3725	0							0	3725	0
Grp Volume(v), veh/h	0	447	0							0	647	0
Grp Sat Flow(s), veh/h/ln	0	1770	0							0	1770	0
Q Serve(g_s), s	0.0	8.3	0.0							0.0	8.5	0.0
Cycle Q Clear(g_c), s	0.0	8.3	0.0							0.0	8.5	0.0
Prop In Lane	0.00		0.00							0.00		0.00
Lane Grp Cap(c), veh/h	0	646	0							0	1618	0
V/C Ratio(X)	0.00	0.69	0.00							0.00	0.40	0.00
Avail Cap(c_a), veh/h	0	1315	0							0	1618	0
HCM Platoon Ratio	1.00	1.00	1.00							1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00							0.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	26.8	0.0							0.0	12.6	0.0
Incr Delay (d2), s/veh	0.0	1.3	0.0							0.0	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0							0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	4.2	0.0							0.0	4.3	0.0
LnGrp Delay(d),s/veh	0.0	28.1	0.0							0.0	13.4	0.0
LnGrp LOS		C 447									B (47	
Approach Vol, veh/h		447									647	
Approach Delay, s/veh		28.1 C									13.4	
Approach LOS											В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs				4		6						
Phs Duration (G+Y+Rc), s				18.8		38.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				26.0		32.0						
Max Q Clear Time (g_c+l1), s				10.3		10.5						
Green Ext Time (p_c), s				2.5		4.3						
Intersection Summary												
HCM 2010 Ctrl Delay			19.4									
HCM 2010 LOS			В									

SimTraffic Simulation Summary 2040 Build DDI AM

Summary of All Intervals

Run Number	1	2	3	Avg	
Start Time	7:20	7:20	7:20	7:20	
End Time	8:30	8:30	8:30	8:30	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	7063	7226	7216	7169	
Vehs Exited	7023	7148	7084	7085	
Starting Vehs	248	289	256	261	
Ending Vehs	288	367	388	343	
Travel Distance (mi)	7643	7805	7774	7741	
Travel Time (hr)	266.1	346.3	275.9	296.1	
Total Delay (hr)	125.2	203.6	133.2	154.0	
Total Stops	7425	9634	6909	7988	
Fuel Used (gal)	307.1	328.7	314.1	316.6	

Interval #0 Information Seeding

Start Time	7:20
End Time	7:30
Total Time (min)	10
Volumes adjusted by Growth F	actors.
No data recorded this interval.	

Interval #1 Information Recording

Start Time	7:30
End Time	8:30
Total Time (min)	60
Volumes adjusted by Growth	Factors.

Run Number	1	2	3	Avg	
Vehs Entered	7063	7226	7216	7169	
Vehs Exited	7023	7148	7084	7085	
Starting Vehs	248	289	256	261	
Ending Vehs	288	367	388	343	
Travel Distance (mi)	7643	7805	7774	7741	
Travel Time (hr)	266.1	346.3	275.9	296.1	
Total Delay (hr)	125.2	203.6	133.2	154.0	
Total Stops	7425	9634	6909	7988	
Fuel Used (gal)	307.1	328.7	314.1	316.6	

Queuing and Blocking Report 2040 Build DDI AM

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	WB	WB	SB	SB	SB
Directions Served	T	T	T	T	T
Maximum Queue (ft)	138	125	98	108	88
Average Queue (ft)	123	51	66	92	37
95th Queue (ft)	159	103	112	110	77
Link Distance (ft)	57	57	13	13	13
Upstream Blk Time (%)	44	9	18	33	14
Queuing Penalty (veh)	111	23	86	159	70
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

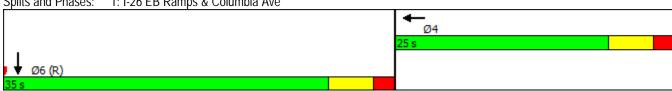
Intersection: 21: Columbia Ave & I-26 WB Off Ramp

Movement	WB	WB	SB	SB
Directions Served	L	L	Т	T
Maximum Queue (ft)	168	186	62	96
Average Queue (ft)	136	151	26	43
95th Queue (ft)	175	183	62	72
Link Distance (ft)	103	103	30	30
Upstream Blk Time (%)	18	25	11	39
Queuing Penalty (veh)	94	127	32	112
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 22: Columbia Ave & I-26 WB Ramps

Movement	EB	EB	SB	SB	
Directions Served	Т	T	Т	Т	
Maximum Queue (ft)	94	90	83	171	
Average Queue (ft)	59	73	23	127	
95th Queue (ft)	100	111	60	177	
Link Distance (ft)	13	13	16	16	
Upstream Blk Time (%)	46	45	8	43	
Queuing Penalty (veh)	92	90	23	124	
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

	۶	→	•	•	-	•	1	†	/	/	↓	-✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					^						ተተተ	
Traffic Volume (vph)	0	0	0	0	723	0	0	0	0	0	1781	0
Future Volume (vph)	0	0	0	0	723	0	0	0	0	0	1781	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	0	0	0	3539	0	0	0	0	0	5085	0
Flt Permitted												
Satd. Flow (perm)	0	0	0	0	3539	0	0	0	0	0	5085	0
Right Turn on Red			Yes	Yes	0007	Yes			Yes		0000	Yes
Satd. Flow (RTOR)			100	100		100			100			100
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		135			109			140			150	
Travel Time (s)		2.6			2.1			2.7			2.9	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Lane Group Flow (vph)	0	0	0	0	803	0	0	0	0	0	1979	0
				0								0
Enter Blocked Intersection	No	No	No Dialet	No	No	No Dialet	No	No	No Dialet	No	No	No Dialet
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type					NA						NA	
Protected Phases					4						6	
Permitted Phases												
Detector Phase					4						6	
Switch Phase												
Minimum Initial (s)					10.0						10.0	
Minimum Split (s)					22.0						22.0	
Total Split (s)					25.0						35.0	
Total Split (%)					41.7%						58.3%	
Maximum Green (s)					19.0						29.0	
Yellow Time (s)					4.0						4.0	
All-Red Time (s)					2.0						2.0	
Lost Time Adjust (s)					0.0						0.0	
Total Lost Time (s)					6.0						6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)					3.0						3.0	
Recall Mode					Min						C-Max	
Act Effct Green (s)					18.0						30.0	
Actuated g/C Ratio					0.30						0.50	
v/c Ratio					0.76						0.78	
Control Delay					19.5						11.1	
Queue Delay					0.0						0.0	
Total Delay					19.5						11.1	
LOS					19.5 B						В	
Approach Delay					19.5						11.1	
Approacti Delay					17.5						11.1	


S-48 IMR AECOM

1: I-26 EB Ramps & Columbia Ave

	ᄼ	-	\rightarrow	•	←	•	•	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS					В						В	
Queue Length 50th (ft)					83						127	
Queue Length 95th (ft)					m146						209	
Internal Link Dist (ft)		55			29			60			70	
Turn Bay Length (ft)												
Base Capacity (vph)					1120						2542	
Starvation Cap Reductn					0						0	
Spillback Cap Reductn					0						0	
Storage Cap Reductn					0						0	
Reduced v/c Ratio					0.72						0.78	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 45 (75%), Reference	ed to phase	e 6:SBT, S	Start of G	reen								
Natural Cycle: 55												
Control Type: Actuated-Cool	rdinated											
Maximum v/c Ratio: 0.78												
Intersection Signal Delay: 13					ntersection							
Intersection Capacity Utiliza	tion 64.4%)		[(CU Level	of Service	C C					
Analysis Period (min) 15												

m Volume for 95th percentile queue is metered by upstream signal.

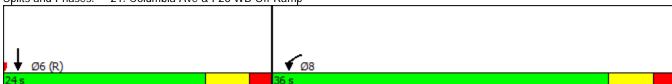
Splits and Phases: 1: I-26 EB Ramps & Columbia Ave

HCM 2010 Signalized Intersection Summary 1: I-26 EB Ramps & Columbia Ave

	۶	→	•	•	-	•	1	†	<i>></i>	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					^						ተተተ	
Traffic Volume (veh/h)	0	0	0	0	723	0	0	0	0	0	1781	0
Future Volume (veh/h)	0	0	0	0	723	0	0	0	0	0	1781	0
Number				7	4	14				1	6	16
Initial Q (Qb), veh				0	0	0				0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00				1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00				1.00	1.00	1.00
Adj Sat Flow, veh/h/ln				0	1863	0				0	1863	0
Adj Flow Rate, veh/h				0	803	0				0	1979	0
Adj No. of Lanes				0	2	0				0	3	0
Peak Hour Factor				0.90	0.90	0.90				0.90	0.90	0.90
Percent Heavy Veh, %				0	2	0				0	2	0
Cap, veh/h				0	987	0				0	2458	0
Arrive On Green				0.00	0.28	0.00				0.00	0.16	0.00
Sat Flow, veh/h				0	3725	0				0	5421	0
Grp Volume(v), veh/h				0	803	0				0	1979	0
Grp Sat Flow(s), veh/h/ln				0	1770	0				0	1695	0
Q Serve(g_s), s				0.0	12.7	0.0				0.0	22.5	0.0
Cycle Q Clear(g_c), s				0.0	12.7	0.0				0.0	22.5	0.0
Prop In Lane				0.00	007	0.00				0.00	0.450	0.00
Lane Grp Cap(c), veh/h				0	987	0				0	2458	0
V/C Ratio(X)				0.00	0.81	0.00				0.00	0.81	0.00
Avail Cap(c_a), veh/h				0	1121	0				0	2458	0
HCM Platoon Ratio				1.00	1.00	1.00				1.00	0.33	1.00
Upstream Filter(I)				0.00	1.00	0.00				0.00	1.00	0.00
Uniform Delay (d), s/veh				0.0	20.2 4.2	0.0				0.0	22.5 2.9	0.0
Incr Delay (d2), s/veh				0.0	0.0	0.0				0.0	0.0	0.0
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln				0.0	6.7	0.0				0.0	11.2	0.0
LnGrp Delay(d),s/veh				0.0	24.4	0.0				0.0	25.4	0.0
LnGrp LOS				0.0	24.4 C	0.0				0.0	25.4 C	0.0
Approach Vol, veh/h					803						1979	
Approach Delay, s/veh					24.4						25.4	
Approach LOS					24.4 C						25.4 C	
		_	_				_				C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs				4		6						
Phs Duration (G+Y+Rc), s				22.7		35.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				19.0		29.0						
Max Q Clear Time (g_c+l1), s				14.7		24.5						
Green Ext Time (p_c), s				2.0		3.9						
Intersection Summary												
HCM 2010 Ctrl Delay			25.1									
HCM 2010 LOS			С									

Lanes, Volumes, Timings 21: Columbia Ave & I-26 WB Off Ramp

	•	•	†	/	>	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ	· · · ·	1101	HBIC	ODL	^
Traffic Volume (vph)	1325	0	0	0	0	713
Future Volume (vph)	1325	0	0	0	0	713
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
	3433		1900	1900		3539
Satd. Flow (prot)	0.950	0	U	U	0	2027
Flt Permitted		0	0	0	0	2520
Satd. Flow (perm)	3433	0	0	0	0	3539
Right Turn on Red	Yes	Yes		Yes		
Satd. Flow (RTOR)	59					
Link Speed (mph)	30		35			35
Link Distance (ft)	149		327			152
Travel Time (s)	3.4		6.4			3.0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1472	0	0	0	0	792
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	24	ragin	0	ragin	LOIL	0
Link Offset(ft)	0		0			0
, ,	16		16			16
Crosswalk Width(ft)	10		10			10
Two way Left Turn Lane	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot					NA
Protected Phases	8					6
Permitted Phases						
Detector Phase	8					6
Switch Phase						
Minimum Initial (s)	7.0					10.0
Minimum Split (s)	15.0					22.0
Total Split (s)	36.0					24.0
Total Split (%)	60.0%					40.0%
Maximum Green (s)	30.0					18.0
Yellow Time (s)	4.0					4.0
All-Red Time (s)	2.0					2.0
Lost Time Adjust (s)	0.0					0.0
Total Lost Time (s)	6.0					6.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0					3.0
Recall Mode	Min					C-Max
Act Effct Green (s)	29.0					19.0
Actuated g/C Ratio	0.48					0.32
v/c Ratio	0.40					0.71
Control Delay	20.3					13.0
Queue Delay	0.0					0.5
Total Delay	20.3					13.5
LOS	С					В
Approach Delay	20.3					13.5


S-48 IMR AECOM

Lanes, Volumes, Timings

21: Columbia Ave & I-26 WB Off Ramp

	•	•	†	<i>></i>	>	ļ	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	
Approach LOS	С					В	
Queue Length 50th (ft)	210					134	
Queue Length 95th (ft)	#308					193	
Internal Link Dist (ft)	69		247			72	
Turn Bay Length (ft)							
Base Capacity (vph)	1746					1118	
Starvation Cap Reductn	0					86	
Spillback Cap Reductn	0					0	
Storage Cap Reductn	0					0	
Reduced v/c Ratio	0.84					0.77	
Intersection Summary							
Area Type:	Other						
Cycle Length: 60							
Actuated Cycle Length: 60							
Offset: 16 (27%), Referen	ced to phase	6:SBT, S	itart of G	reen			
Natural Cycle: 60							
Control Type: Actuated-Co	oordinated						
Maximum v/c Ratio: 0.87							
Intersection Signal Delay:				In	tersection	LOS: B	
Intersection Capacity Utiliz	zation 67.5%			IC	U Level c	of Service C	
Analysis Period (min) 15							
# 95th percentile volume	e exceeds ca	pacity, qu	eue may	be longe	r		
Queue shown is maxin	num after two	cycles.					

Splits and Phases: 21: Columbia Ave & I-26 WB Off Ramp

HCM 2010 Signalized Intersection Summary 21: Columbia Ave & I-26 WB Off Ramp

		•	•			1		
	•	•	T		*	¥		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ሻሻ					^		
Traffic Volume (veh/h)	1325	0	0	0	0	713		
Future Volume (veh/h)	1325	0	0	0	0	713		
Number	3	18			1	6		
Initial Q (Qb), veh	0	0			0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00			1.00			
Parking Bus, Adj	1.00	1.00			1.00	1.00		
Adj Sat Flow, veh/h/ln	1863	0			0	1863		
Adj Flow Rate, veh/h	1472	0			0	792		
Adj No. of Lanes	2	0			0	2		
Peak Hour Factor	0.90	0.90			0.90	0.90		
Percent Heavy Veh, %	2	0			0	2		
Cap, veh/h	0	0			0	1062		
Arrive On Green	0.00	0.00			0.00	0.10		
Sat Flow, veh/h	0				0	3725		
Grp Volume(v), veh/h	0.0				0	792		
Grp Sat Flow(s), veh/h/ln					0	1770		
Q Serve(g_s), s					0.0	13.1		
Cycle Q Clear(g_c), s					0.0	13.1		
Prop In Lane					0.00	1062		
Lane Grp Cap(c), veh/h V/C Ratio(X)					0.00	0.75		
Avail Cap(c_a), veh/h					0.00	1062		
HCM Platoon Ratio					1.00	0.33		
Upstream Filter(I)					0.00	0.33		
Uniform Delay (d), s/veh					0.00	24.8		
Incr Delay (d2), s/veh					0.0	4.4		
Initial Q Delay(d3),s/veh					0.0	0.0		
%ile BackOfQ(50%),veh/ln					0.0	7.0		
LnGrp Delay(d),s/veh					0.0	29.2		
LnGrp LOS					3.0	C		
Approach Vol, veh/h						792		
Approach Delay, s/veh						29.2		
Approach LOS						C		
Timer	1	2	3	4	5	6	7	8
Assigned Phs			3	4	J	6		J
Phs Duration (G+Y+Rc), s						24.0		
Change Period (Y+Rc), s						6.0		
Max Green Setting (Gmax), s						18.0		
Max Q Clear Time (g_c+l1), s						15.1		
Green Ext Time (p_c), s						1.4		
						1.7		
Intersection Summary								
HCM 2010 Ctrl Delay			29.2					
HCM 2010 LOS			С					

	۶	→	•	•	←	•	4	†	/	/	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^									^	
Traffic Volume (vph)	0	543	0	0	0	0	0	0	0	0	713	0
Future Volume (vph)	0	543	0	0	0	0	0	0	0	0	713	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Satd. Flow (prot)	0	3539	0	0	0	0	0	0	0	0	3539	0
Flt Permitted		0007									0007	
Satd. Flow (perm)	0	3539	0	0	0	0	0	0	0	0	3539	0
Right Turn on Red	Ū	0007	Yes	Ū	Ū	Yes			Yes	Yes	0007	Yes
Satd. Flow (RTOR)			103			103			103	103		103
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		159			115			152			129	
Travel Time (s)		3.1			2.2			3.0			2.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Lane Group Flow (vph)	0	603	0	0	0	0	0	0	0	0	792	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left 0	Right	Left	Left	Right	Left	Left 0	Right
Median Width(ft)		0						0				
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	B.I.A.	9	15		9	15		9	15	N 1 A	9
Turn Type		NA									NA	
Protected Phases		4									6	
Permitted Phases		_										
Detector Phase		4									6	
Switch Phase												
Minimum Initial (s)		10.0									10.0	
Minimum Split (s)		22.0									22.0	
Total Split (s)		27.0									33.0	
Total Split (%)		45.0%									55.0%	
Maximum Green (s)		21.0									27.0	
Yellow Time (s)		4.0									4.0	
All-Red Time (s)		2.0									2.0	
Lost Time Adjust (s)		0.0									0.0	
Total Lost Time (s)		6.0									6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0									3.0	
Recall Mode		None									C-Max	
Act Effct Green (s)		16.2									31.8	
Actuated g/C Ratio		0.27									0.53	
v/c Ratio		0.63									0.42	
Control Delay		5.8									10.2	
Queue Delay		0.0									0.8	
Total Delay		5.8									11.0	
LOS		Α									В	
Approach Delay		5.8									11.0	

S-48 IMR AECOM

Lanes, Volumes, Timings 22: Columbia Ave & I-26 WB Ramps

2040 Build DDI PM

	۶	→	•	•	•	•	4	†	/	>	ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		А									В	
Queue Length 50th (ft)		5									83	
Queue Length 95th (ft)		6									144	
Internal Link Dist (ft)		79			35			72			49	
Turn Bay Length (ft)												
Base Capacity (vph)		1238									1875	
Starvation Cap Reductn		0									0	
Spillback Cap Reductn		0									718	
Storage Cap Reductn		0									0	
Reduced v/c Ratio		0.49									0.68	
Intersection Summary												
Area Type: Of	ther											
Cycle Length: 60												
Actuated Cycle Length: 60												
Offset: 4 (7%), Referenced to	phase 6:	SBT, Sta	t of Gree	en								
Natural Cycle: 45												
Control Type: Actuated-Coord	linated											
Maximum v/c Ratio: 0.63												
Intersection Signal Delay: 8.8					itersection							
Intersection Capacity Utilization	on 44.7%			IC	CU Level	of Service	: A					
Analysis Period (min) 15												
Splits and Phases: 22: Colu	umbia Av	e & I-26 V	VB Ramp)S								
						→ø4						
						27 s						

HCM 2010 Signalized Intersection Summary 22: Columbia Ave & I-26 WB Ramps

	•	→	•	√	←	•	•	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^									^	
Traffic Volume (veh/h)	0	543	0	0	0	0	0	0	0	0	713	0
Future Volume (veh/h)	0	543	0	0	0	0	0	0	0	0	713	0
Number	7	4	14							1	6	16
Initial Q (Qb), veh	0	0	0							0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00							1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00							1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1863	0							0	1863	0
Adj Flow Rate, veh/h	0	603	0							0	792	0
Adj No. of Lanes	0	2	0							0	2	0
Peak Hour Factor	0.90	0.90	0.90							0.90	0.90	0.90
Percent Heavy Veh, %	0	2	0							0	2	0
Cap, veh/h	0	834	0							0	1593	0
Arrive On Green	0.00	0.24	0.00							0.00	0.45	0.00
Sat Flow, veh/h	0	3725	0							0	3725	0
Grp Volume(v), veh/h	0	603	0							0	792	0
Grp Sat Flow(s), veh/h/ln	0	1770	0							0	1770	0
Q Serve(g_s), s	0.0	9.4	0.0							0.0	9.5	0.0
Cycle Q Clear(g_c), s	0.0	9.4	0.0							0.0	9.5	0.0
Prop In Lane	0.00	00.4	0.00							0.00	4500	0.00
Lane Grp Cap(c), veh/h	0	834	0							0	1593	0
V/C Ratio(X)	0.00	0.72	0.00							0.00	0.50	0.00
Avail Cap(c_a), veh/h	0	1239	0							1.00	1593	1.00
HCM Platoon Ratio	1.00	1.00	1.00							1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	0.00							0.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	21.1 1.2	0.0							0.0	11.7 1.1	0.0
Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh	0.0	0.0	0.0							0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	4.7	0.0							0.0	4.9	0.0
LnGrp Delay(d),s/veh	0.0	22.3	0.0							0.0	12.8	0.0
LnGrp LOS	0.0	22.3 C	0.0							0.0	12.0 B	0.0
Approach Vol, veh/h		603									792	
Approach Delay, s/veh		22.3									12.8	
Approach LOS		22.3 C									12.0 B	
					_	,	_					
Timer	1	2	3	4	5	6	7	8				
Assigned Phs				4		6						
Phs Duration (G+Y+Rc), s				20.1		33.0						
Change Period (Y+Rc), s				6.0		6.0						
Max Green Setting (Gmax), s				21.0		27.0						
Max Q Clear Time (g_c+l1), s				11.4 2.7		11.5						
Green Ext Time (p_c), s				Z.1		4.8						
Intersection Summary			4									
HCM 2010 Ctrl Delay			16.9									
HCM 2010 LOS			В									

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX M

BUILD ALT 2 2040 SYNCHRO AND SIM TRAFFIC REPORTS

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

	•		_		_	_	_	•		Τ,	ı	
		-	•	•	•		1	T		-	¥	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7						7	7	^↑	
Traffic Volume (vph)	29	9	185	0	0	0	0	498	1261	147	1461	0
Future Volume (vph)	29	9	185	0	0	0	0	498	1261	147	1461	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	225		0	0		0	0		0	150		0
Storage Lanes	1		1	0		0	0		1	1		0
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00
Frt			0.850						0.850			
Flt Protected		0.963								0.950		
Satd. Flow (prot)	0	1794	1583	0	0	0	0	1863	1583	1770	3539	0
Flt Permitted		0.963								0.432		
Satd. Flow (perm)	0	1794	1583	0	0	0	0	1863	1583	805	3539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			62						973			
Link Speed (mph)		45			45			35			35	
Link Distance (ft)		881			239			1099			740	
Travel Time (s)		13.3			3.6			21.4			14.4	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	32	10	206	0	0	0	0	553	1401	163	1623	0
Shared Lane Traffic (%)	02		200		Ū	, and the second				.00	.020	J
Lane Group Flow (vph)	0	42	206	0	0	0	0	553	1401	163	1623	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	9		0	9		12			12	9
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								Yes				
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1					2	1	1	2	
Detector Template	Left	Thru	Right					Thru	Right	Left	Thru	
Leading Detector (ft)	20	100	20					100	20	20	100	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Detector 1 Position(ft)	0	0	0					0	0	0	0	
Detector 1 Size(ft)	20	6	20					6	20	20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex					CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94						94			94	
Detector 2 Size(ft)		6						6			6	
Detector 2 Type		CI+Ex						CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0						0.0			0.0	
Turn Type	Perm	NA	Perm					NA	Perm	Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4		4						2	6		

S-48 IMR AECOM

2040 Build Loop AM

1: Columbia Ave & I-26 EB Ramps

	۶	→	•	•	•	•	•	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	4					2	2	6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0					10.0	10.0	10.0	10.0	
Minimum Split (s)	15.0	15.0	15.0					22.0	22.0	22.0	22.0	
Total Split (s)	16.0	16.0	16.0					74.0	74.0	74.0	74.0	
Total Split (%)	17.8%	17.8%	17.8%					82.2%	82.2%	82.2%	82.2%	
Maximum Green (s)	10.0	10.0	10.0					68.0	68.0	68.0	68.0	
Yellow Time (s)	4.0	4.0	4.0					4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0					6.0	6.0	6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					C-Min	C-Min	C-Min	C-Min	
Act Effct Green (s)		9.9	9.9					68.1	68.1	68.1	68.1	
Actuated g/C Ratio		0.11	0.11					0.76	0.76	0.76	0.76	
v/c Ratio		0.21	0.90					0.39	0.98	0.27	0.61	
Control Delay		39.4	67.3					2.0	25.5	4.6	6.1	
Queue Delay		0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay		39.4	67.3					2.0	25.5	4.6	6.1	
LOS		D	Ε					Α	С	Α	Α	
Approach Delay		62.6						18.8			6.0	
Approach LOS		Е						В			Α	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 90)											
Offset: 21 (23%), Referen	ced to phase	e 2:NBT a	nd 6:SBT	L, Start o	f Green							
Natural Cycle: 90												
Control Type: Actuated-Co	oordinated											
Maximum v/c Ratio: 0.98												
Intersection Signal Delay:	15.8			In	tersection	LOS: B						
Intersection Capacity Utiliz	zation 107.2	%		IC	CU Level of	of Service	G					

Splits and Phases: 1: Columbia Ave & I-26 EB Ramps

Analysis Period (min) 15

HCM 2010 Signalized Intersection Summary 1: Columbia Ave & I-26 EB Ramps

	ᄼ	→	•	•	←	•	1	†	<i>></i>	/	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7					↑	7	7	^	
Traffic Volume (veh/h)	29	9	185	0	0	0	0	498	1261	147	1461	0
Future Volume (veh/h)	29	9	185	0	0	0	0	498	1261	147	1461	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863				0	1863	1863	1863	1863	0
Adj Flow Rate, veh/h	32	10	0				0	553	0	163	1623	0
Adj No. of Lanes	0	1	1				0	1	1	1	2	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	69	22	80				0	1520	1292	709	2888	0
Arrive On Green	0.05	0.05	0.00				0.00	0.82	0.00	0.82	0.82	0.00
Sat Flow, veh/h	1367	427	1583				0	1863	1583	852	3632	0
Grp Volume(v), veh/h	42	0	0				0	553	0	163	1623	0
Grp Sat Flow(s), veh/h/ln	1794	0	1583				0	1863	1583	852	1770	0
Q Serve(g_s), s	2.0	0.0	0.0				0.0	7.0	0.0	5.6	14.0	0.0
Cycle Q Clear(g_c), s	2.0	0.0	0.0				0.0	7.0	0.0	12.6	14.0	0.0
Prop In Lane	0.76		1.00				0.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	91	0	80				0	1520	1292	709	2888	0
V/C Ratio(X)	0.46	0.00	0.00				0.00	0.36	0.00	0.23	0.56	0.00
Avail Cap(c_a), veh/h	199	0	176				0	1520	1292	709	2888	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00				0.00	0.69	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	41.5	0.0	0.0				0.0	2.2	0.0	3.8	2.8	0.0
Incr Delay (d2), s/veh	3.6	0.0	0.0				0.0	0.5	0.0	0.8	0.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	0.0	0.0				0.0	3.7	0.0	1.4	6.9	0.0
LnGrp Delay(d),s/veh	45.2	0.0	0.0				0.0	2.6	0.0	4.6	3.6	0.0
LnGrp LOS	D							Α		Α	Α	
Approach Vol, veh/h		42						553			1786	
Approach Delay, s/veh		45.2						2.6			3.7	
Approach LOS		D						A			A	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	•	2		4		6	•					
Phs Duration (G+Y+Rc), s		79.4		10.6		79.4						
Change Period (Y+Rc), s		6.0		6.0		6.0						
Max Green Setting (Gmax), s		68.0		10.0		68.0						
Max Q Clear Time (q_c+l1), s		9.0		4.0		16.0						
Green Ext Time (p_c), s		33.2		0.0		30.9						
Intersection Summary												
HCM 2010 Ctrl Delay			4.2									
HCM 2010 LOS			Α									

HCM 2010 TWSC 2: Columbia Ave & I-26 WB Ramps

Intersection													
Int Delay, s/veh	2.5												
Movement	EBL	EBT	EBR	W	'BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			₽		ሻ				•	7
Traffic Vol, veh/h	0	0	1026		0	3	159	125	402	0	0	582	56
Future Vol, veh/h	0	0	1026		0	3	159	125	402	0	0	582	56
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	0	0	0	0
Sign Control	Yield	Yield	Yield	S	top	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Free		-	-	None	-	-	None	-	-	None
Storage Length	-	-	0		-	-	-	175	-	-	-	-	150
Veh in Median Storage, #	-	-	-		-	0	-	-	0	-	-	0	-
Grade, %	-	0	-		-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90		90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	1140		0	3	177	139	447	0	0	647	62
Major/Minor				Min	or1			Major1			Major2		
Conflicting Flow All					-	1371	447	647	0	-	-	-	0
Stage 1					-	724	-	-	-	-	-	-	-
Stage 2					-	647	-	-	-	-	-	-	-
Critical Hdwy					-	6.52	6.22	4.12	-	-	-	-	-
Critical Hdwy Stg 1					-	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2					-	5.52	-	-	-	-	-	-	-
Follow-up Hdwy					-	4.018	3.318	2.218	-	-	-	-	-
Pot Cap-1 Maneuver					0	146	612	939	-	0	0	-	-
Stage 1					0	430	-	-	-	0	0	-	-
Stage 2					0	467	-	-	-	0	0	-	-
Platoon blocked, %									-			-	-
Mov Cap-1 Maneuver					-	0	612	939	-	-	-	-	-
Mov Cap-2 Maneuver					-	0	-	-	-	-	-	-	-
Stage 1					-	0	-	-	-	-	-	-	-
Stage 2					-	0	-	-	-	-	-	-	-
Approach				\	NB			NB			SB		
HCM Control Delay, s				1:	3.3			2.3			0		
HCM LOS					В								
Minor Lane/Major Mvmt	NBL	NBTV	VBLn1	SBT S	BR								
Capacity (veh/h)	939	-		-	-								
HCM Lane V/C Ratio	0.148	-	0.294	-	-								
HCM Control Delay (s)	9.5	-		-	-								
HCM Lane LOS	А	-	В	-	-								
HCM 95th %tile Q(veh)	0.5	-	1.2	-	-								

SimTraffic Simulation Summary 2040 Build Loop AM

Summary of All Intervals

Run Number	1	2	3	Avg	
Start Time	7:20	7:20	7:20	7:20	
End Time	8:30	8:30	8:30	8:30	
Total Time (min)	70	70	70	70	
Time Recorded (min)	60	60	60	60	
# of Intervals	2	2	2	2	
# of Recorded Intervals	1	1	1	1	
Vehs Entered	7126	7166	7170	7153	
Vehs Exited	7053	7137	7105	7097	
Starting Vehs	206	249	253	232	
Ending Vehs	279	278	318	289	
Travel Distance (mi)	7952	8033	8009	7998	
Travel Time (hr)	264.0	268.1	284.3	272.1	
Total Delay (hr)	110.8	114.2	130.7	118.5	
Total Stops	5500	5470	6120	5699	
Fuel Used (gal)	308.2	311.4	313.6	311.1	

Interval #0 Information Seeding

Start Time	7:20
End Time	7:30
Total Time (min)	10
Volumes adjusted by Growth Fact	ors.
No data recorded this interval	

Interval #1 Information Recording

Start Time	7:30
End Time	8:30
Total Time (min)	60
Volumes adjusted by Growth Fa	actors.

Run Number	1	2	3	Avg	
Vehs Entered	7126	7166	7170	7153	
Vehs Exited	7053	7137	7105	7097	
Starting Vehs	206	249	253	232	
Ending Vehs	279	278	318	289	
Travel Distance (mi)	7952	8033	8009	7998	
Travel Time (hr)	264.0	268.1	284.3	272.1	
Total Delay (hr)	110.8	114.2	130.7	118.5	
Total Stops	5500	5470	6120	5699	
Fuel Used (gal)	308.2	311.4	313.6	311.1	

Queuing and Blocking Report 2040 Build Loop AM

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	EB	NB	NB	SB	SB	SB
Directions Served	LT	R	Т	R	L	Т	Т
Maximum Queue (ft)	105	94	404	738	93	126	158
Average Queue (ft)	30	4	44	82	36	49	54
95th Queue (ft)	74	43	180	456	69	117	127
Link Distance (ft)		761	1032	1032		690	690
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	225				150		
Storage Blk Time (%)						0	
Queuing Penalty (veh)						0	

Intersection: 2: Columbia Ave & I-26 WB Ramps

Movement	WB	NB
Directions Served	TR	L
Maximum Queue (ft)	74	72
Average Queue (ft)	35	30
95th Queue (ft)	56	59
Link Distance (ft)	543	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		175
Storage Blk Time (%)		
Queuing Penalty (veh)		

Lanes, Volumes, Timings 1: Columbia Ave & I-26 EB Ramps

Lane Configurations		۶	→	•	•	—	•	•	†	/	/	↓	✓
Traffic Yollume (yoh)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic (volume (vph)	Lane Configurations		ર્ન	7					†	7	7	^	
Ideal Flow (ryhpip)	Traffic Volume (vph)	48		173	0	0	0	0	723	1096	257		0
Storage Length (ft) 225	Future Volume (vph)	48	9	173	0	0	0	0	723	1096	257	1781	0
Storage Lanes	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Taper Length (ft)	Storage Length (ft)	225		0	0		0	0		0	150		0
Taper Length (ff)	Storage Lanes	1		1	0		0	0		1	1		0
File permitted		100			100			100			100		
Satd, Flow (perm) 0 1788 1583 0 0 0 1863 1583 542 3539 0 Right Turn on Red Yes Yes <td>Satd. Flow (prot)</td> <td>0</td> <td>1788</td> <td>1583</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1863</td> <td>1583</td> <td>1770</td> <td>3539</td> <td>0</td>	Satd. Flow (prot)	0	1788	1583	0	0	0	0	1863	1583	1770	3539	0
Page	Flt Permitted		0.960								0.291		
Satid. Flow (RTOR) 45 45 35 35 35 15	Satd. Flow (perm)	0	1788	1583	0	0	0	0	1863	1583	542	3539	0
Link Speed (mph)	Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)				36						992			
Link Distance (ft)	, ,		45			45			35			35	
Travel Time (s)			881			239			1090			740	
Peak Hour Factor 0.90 0.													
Shared Lane Traffic (%) Lane Group Flow (wph) 0 63 192 0 0 0 0 803 1218 286 1979 0 100 1		0.90		0.90	0.90		0.90	0.90		0.90	0.90		0.90
Lane Group Flow (vph)													
Enter Blocked Intersection		0	63	192	0	0	0	0	803	1218	286	1979	0
Left Left Right Left Left Left Right Left	` ' '	No		No	No	No	No	No					No
Median Width(fft)													
Crosswalk Width(fit)	Ŭ.			J			9			J			9
Crosswalk Width(fft)													
Two way Left Turn Lane						16							
Headway Factor 1.00													
Turning Speed (mph) 15 9 16 2 2 6 6 2 2 6 6 2 2 6 6 8 9 15 9 15 6 6 8 2 2 2 6 6 6 6 6 6 8 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 6 6 6 6		1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00
Turn Type Perm NA Perm NA Perm NA Protected Phases 4 4 2 6 6 Permitted Phases 4 4 2 2 6 6 Detector Phase 4 4 4 2 2 6 6 Switch Phase Minimum Initial (s) 7.0 7.0 10.0 10.0 10.0 10.0 Minimum Split (s) 15.0 15.0 15.0 22.0 22.0 22.0 22.0 22.0 Total Split (s) 18.0 18.0 18.0 72.0													
Protected Phases		Perm	NA	Perm					NA	Perm	Perm	NA	
Permitted Phases 4 4 4 4 2 2 6 6 Switch Phase Minimum Initial (s) 7.0 7.0 10.0 10.0 10.0 10.0 Minimum Split (s) 15.0 15.0 15.0 22.0													
Detector Phase 4		4		4						2	6		
Switch Phase Minimum Initial (s) 7.0 7.0 7.0 10.0 10.0 10.0 10.0 Minimum Split (s) 15.0 15.0 15.0 15.0 22.0 72.0 20.0 20.0			4						2			6	
Minimum Initial (s) 7.0 7.0 7.0 10.0 10.0 10.0 10.0 Minimum Split (s) 15.0 15.0 15.0 22.0 22.0 22.0 22.0 Total Split (s) 18.0 18.0 18.0 72.0 72.0 72.0 72.0 Total Split (%) 20.0% 20.0% 80.0%													
Minimum Split (s) 15.0 15.0 15.0 22.0 <td></td> <td>7.0</td> <td>7.0</td> <td>7.0</td> <td></td> <td></td> <td></td> <td></td> <td>10.0</td> <td>10.0</td> <td>10.0</td> <td>10.0</td> <td></td>		7.0	7.0	7.0					10.0	10.0	10.0	10.0	
Total Split (s) 18.0 18.0 18.0 20.0% 20.0% 20.0% 20.0% 20.0% 80.0%													
Total Split (%) 20.0% 20.0% 20.0% 80.0% 80.0% 80.0% 80.0% Maximum Green (s) 12.0 12.0 12.0 66.0 66.0 66.0 66.0 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0													
Maximum Green (s) 12.0 12.0 12.0 66.0 66.0 66.0 66.0 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None C-Min C-Min C-Min C-Min C-Min Act Effct Green (s) 11.6 11.6 66.4 6													
Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0													
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	` '												
Lost Time Adjust (s) 0.0													
Total Lost Time (s) 6.0 3.0<													
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0													
Lead-Lag Optimize? Vehicle Extension (s) 3.0 A.0 A.0 C-Min													
Vehicle Extension (s) 3.0													
Recall Mode None None None C-Min C-Min C-Min C-Min Act Effct Green (s) 11.6 11.6 66.4 66.4 66.4 66.4 66.4 Actuated g/C Ratio 0.13 0.13 0.74 0.74 0.74 0.74 v/c Ratio 0.27 0.82 0.58 0.85 0.72 0.76 Control Delay 38.5 58.4 5.9 12.5 19.6 9.6		3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Act Effct Green (s) 11.6 11.6 66.4 66.4 66.4 66.4 Actuated g/C Ratio 0.13 0.13 0.74 0.74 0.74 0.74 v/c Ratio 0.27 0.82 0.58 0.85 0.72 0.76 Control Delay 38.5 58.4 5.9 12.5 19.6 9.6	. ,												
Actuated g/C Ratio 0.13 0.13 0.74 0.74 0.74 0.74 v/c Ratio 0.27 0.82 0.58 0.85 0.72 0.76 Control Delay 38.5 58.4 5.9 12.5 19.6 9.6		.10110											
v/c Ratio 0.27 0.82 0.58 0.85 0.72 0.76 Control Delay 38.5 58.4 5.9 12.5 19.6 9.6	. ,												
Control Delay 38.5 58.4 5.9 12.5 19.6 9.6													
,													
	Queue Delay		0.0	0.0					0.0	0.0	0.0	0.0	

S-48 IMR AECOM

Lanes, Volumes, Timings

1: Columbia Ave & I-26 EB Ramps

2040 Build Loop PM

	•	-	•	•	•	•	1	†		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay		38.5	58.4					5.9	12.5	19.6	9.6	
LOS		D	Ε					Α	В	В	Α	
Approach Delay		53.5						9.9			10.8	
Approach LOS		D						Α			В	
Queue Length 50th (ft)		33	87					117	215	76	295	
Queue Length 95th (ft)		71	#198					200	387	#260	381	
Internal Link Dist (ft)		801			159			1010			660	
Turn Bay Length (ft)										150		
Base Capacity (vph)		241	245					1378	1429	400	2618	
Starvation Cap Reductn		0	0					0	0	0	0	
Spillback Cap Reductn		0	0					0	0	0	0	
Storage Cap Reductn		0	0					0	0	0	0	
Reduced v/c Ratio		0.26	0.78					0.58	0.85	0.71	0.76	

Intersection Summary

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 83 (92%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.85

Intersection Signal Delay: 12.8 Intersection LOS: B
Intersection Capacity Utilization 102.9% ICU Level of Service G

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Columbia Ave & I-26 EB Ramps

HCM 2010 Signalized Intersection Summary 1: Columbia Ave & I-26 EB Ramps

	۶	→	•	•	←	•	1	†	/	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7					↑	7	ሻ	^	
Traffic Volume (veh/h)	48	9	173	0	0	0	0	723	1096	257	1781	0
Future Volume (veh/h)	48	9	173	0	0	0	0	723	1096	257	1781	0
Number	7	4	14				5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1863				0	1863	1863	1863	1863	0
Adj Flow Rate, veh/h	53	10	0				0	803	0	286	1979	0
Adj No. of Lanes	0	1	1				0	1	1	1	2	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	93	18	98				0	1499	1275	623	2849	0
Arrive On Green	0.06	0.06	0.00				0.00	1.00	0.00	0.80	0.80	0.00
Sat Flow, veh/h	1504	284	1583				0	1863	1583	675	3632	0
Grp Volume(v), veh/h	63	0	0				0	803	0	286	1979	0
Grp Sat Flow(s), veh/h/ln	1788	0	1583				0	1863	1583	675	1770	0
Q Serve(g_s), s	3.1	0.0	0.0				0.0	0.0	0.0	12.9	22.3	0.0
Cycle Q Clear(g_c), s	3.1	0.0	0.0				0.0	0.0	0.0	12.9	22.3	0.0
Prop In Lane	0.84		1.00				0.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	110	0	98				0	1499	1275	623	2849	0
V/C Ratio(X)	0.57	0.00	0.00				0.00	0.54	0.00	0.46	0.69	0.00
Avail Cap(c_a), veh/h	238	0	211				0	1499	1275	623	2849	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.33	1.33	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00				0.00	0.56	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	41.1	0.0	0.0				0.0	0.0	0.0	3.0	3.9	0.0
Incr Delay (d2), s/veh	4.6	0.0	0.0				0.0	8.0	0.0	2.4	1.4	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.7	0.0	0.0				0.0	0.3	0.0	2.7	11.0	0.0
LnGrp Delay(d),s/veh	45.7	0.0	0.0				0.0	0.8	0.0	5.4	5.3	0.0
LnGrp LOS	D							Α		Α	Α	
Approach Vol, veh/h		63						803			2265	
Approach Delay, s/veh		45.7						8.0			5.3	
Approach LOS		D						Α			Α	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		78.4		11.6		78.4						
Change Period (Y+Rc), s		6.0		6.0		6.0						
Max Green Setting (Gmax), s		66.0		12.0		66.0						
Max Q Clear Time (g_c+l1), s		2.0		5.1		24.3						
Green Ext Time (p_c), s		51.7		0.1		36.1						
Intersection Summary												
HCM 2010 Ctrl Delay			5.0									
HCM 2010 LOS			Α									

HCM 2010 TWSC 3: Columbia Ave & I-26 WB Ramps

Intersection												
Int Delay, s/veh	4.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	LDI	7	WDL	1	VVDIX	Ť	<u>↑</u>	NDIX	<u> </u>	<u> </u>	7
Traffic Vol, veh/h	0	0	1325	0		248	228	543	0	0	713	36
Future Vol, veh/h	0		1325	0		248	228	543	0	0	713	36
Conflicting Peds, #/hr	0		0	0		0	0	0	0	0	0	0
Sign Control	Yield		Yield	Stop		Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Free				-	-	None	-	-	None
Storage Length	_	_	0			-	175	_	-	_	_	150
Veh in Median Storage, #	! _	_	-		_	_	-	0	_	-	0	-
Grade, %	_	_	_		_	_	_	0	_	_	0	
Peak Hour Factor	90		90	90		90	90	90	90	90	90	90
Heavy Vehicles, %	2		2	2		2	2	2	2	2	2	2
Mvmt Flow	0		1472	0		276	253	603	0	0	792	40
WWW. Tiow	0	· ·	1172		J	270	200	000	J	· ·	172	10
Major/Minor				Minor1			Major1			Major2		
Conflicting Flow All					1902	603	792	0	_	-		0
Stage 1					1110	-	172	-	_	_	_	_
Stage 2				_	792	_	_	_	_	_	_	_
Critical Hdwy				_	6.52	6.22	4.12	_	_	_	_	_
Critical Hdwy Stg 1				_	5.52	0.22	7.12	_	_	_	_	_
Critical Hdwy Stg 2				_	5.52	_	_	_	_	_	_	_
Follow-up Hdwy				_		3.318	2.218	_	_	_	_	_
Pot Cap-1 Maneuver				0		499	829	_	0	0	_	_
Stage 1				0			027	_	0	0	_	_
Stage 2				0		_	_	_	0	0	-	_
Platoon blocked, %				0	401			_	U	O .	_	_
Mov Cap-1 Maneuver					0	499	829	_	_	-	_	_
Mov Cap-2 Maneuver				_	_	-	-		_	_		_
Stage 1					0	_	-	_	_	-	_	_
Stage 2				_	0	_	_		_	_		_
Olugo Z												
Approach				WB			NB			SB		
HCM Control Delay, s				21			3.3			0		
HCM LOS				C			0.0					
TIOM EGO				<u> </u>								
Minor Lane/Major Mvmt	NBL	NBT\	WBLn1	SBT SBR								
Capacity (veh/h)	829											
HCM Lane V/C Ratio	0.306		0.559									
HCM Control Delay (s)	11.2		21									
HCM Lane LOS	В		C									
HCM 95th %tile Q(veh)	1.3		3.4									
2(1311)			J.,									

SimTraffic Simulation Summary 2040 Build Loop PM

Summary of All Intervals

Run Number	1	2	3	Avg
Start Time	4:35	4:35	4:35	4:35
End Time	5:45	5:45	5:45	5:45
Total Time (min)	70	70	70	70
Time Recorded (min)	60	60	60	60
# of Intervals	2	2	2	2
# of Recorded Intervals	1	1	1	1
Vehs Entered	7947	7934	7944	7939
Vehs Exited	7774	7802	7793	7790
Starting Vehs	293	297	322	301
Ending Vehs	466	429	473	455
Travel Distance (mi)	8876	8865	8887	8876
Travel Time (hr)	714.6	740.6	789.1	748.1
Total Delay (hr)	545.6	571.2	620.8	579.2
Total Stops	7925	7708	9099	8242
Fuel Used (gal)	444.8	453.7	461.6	453.4

Interval #0 Information Seeding

Start Time	4:35
End Time	4:45
Total Time (min)	10
Volumes adjusted by Growth Fac	ctors.
No data recorded this interval.	

Interval #1 Information Recording

Start Time	4:45
End Time	5:45
Total Time (min)	60
Volumes adjusted by Growth Factor	ſS.

Run Number	1	2	3	Avg	
Vehs Entered	7947	7934	7944	7939	
Vehs Exited	7774	7802	7793	7790	
Starting Vehs	293	297	322	301	
Ending Vehs	466	429	473	455	
Travel Distance (mi)	8876	8865	8887	8876	
Travel Time (hr)	714.6	740.6	789.1	748.1	
Total Delay (hr)	545.6	571.2	620.8	579.2	
Total Stops	7925	7708	9099	8242	
Fuel Used (gal)	444.8	453.7	461.6	453.4	

Queuing and Blocking Report 2040 Build Loop PM

Intersection: 1: Columbia Ave & I-26 EB Ramps

Movement	EB	EB	NB	NB	SB	SB	SB
Directions Served	LT	R	Т	R	L	T	Т
Maximum Queue (ft)	103	80	629	606	160	171	160
Average Queue (ft)	45	7	189	173	70	70	71
95th Queue (ft)	94	43	669	758	124	155	151
Link Distance (ft)		762	1024	1024		690	690
Upstream Blk Time (%)			0	2			
Queuing Penalty (veh)			4	16			
Storage Bay Dist (ft)	225				150		
Storage Blk Time (%)					0	0	
Queuing Penalty (veh)					3	1	

Intersection: 3: Columbia Ave & I-26 WB Ramps

Movement	WB	NB	SB
Directions Served	TR	L	R
Maximum Queue (ft)	96	137	7
Average Queue (ft)	46	56	0
95th Queue (ft)	76	102	4
Link Distance (ft)	543		
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		175	150
Storage Blk Time (%)		0	
Queuing Penalty (veh)		1	

HCS 2010: Freeway Merge and Diverge Segments Release 6.65

Phone: Fax: E-mail:

______Diverge Analysis______

Analyst: AECOM
Agency/Co.: AECOM
Date performed: 7/1/2016
Analysis time period: AM Peak
Freeway/Dir of Travel: I-26 WB

Junction: S-48 WB Off-Ramp Alt 2

Jurisdiction:

Analysis Year: 2040 Build Alt 2 Ramp

Description: S-48 IMR

______Freeway Data______

Type of analysis Diverge
Number of lanes in freeway 2
Free-flow speed on freeway 75.0 mph
Volume on freeway 1713 vph

_____Off Ramp Data_____

Side of freeway

Number of lanes in ramp

Free-Flow speed on ramp

Volume on ramp

Length of first accel/decel lane

Length of second accel/decel lane

ft

______Adjacent Ramp Data (if one exists)_____

Does adjacent ramp exist?

Volume on adjacent ramp

Position of adjacent ramp

Type of adjacent ramp

Distance to adjacent ramp

1000

ft

_____Conversion to pc/h Under Base Conditions_____

Junction Components	Freeway	Ramp	Adjacent	t
			Ramp	
Volume, V (vph)	1713	162	1026	vph
Peak-hour factor, PHF	0.90	0.90	0.90	
Peak 15-min volume, v15	476	45	285	v
Trucks and buses	4	2	2	%
Recreational vehicles	0	0	0	%
Terrain type:	Rolling	Rolling	Rolling	
Grade	0.00 %	0.00 %	0.00	용
Length	0.00 mi	. 0.00 mi	0.00	mi
Trucks and buses PCE, ET	2.5	2.5	2.5	
Recreational vehicle PCE, ER	2.0	2.0	2.0	

```
DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97
                                     .943
                                                 0.971
                                                            0.971
Driver population factor, fP
                                     1.00
                                                 1.00
                                                            1.00
                                     2018
Flow rate, vp
                                                 185
                                                            1174
                                                                     pcph
                    ____Estimation of V12 Diverge Areas__
                                (Equation 13-12 or 13-13)
                 L =
                  ΕQ
                        1.000 Using Equation 0
                  FD
                 v = v + (v - v) P = 2018 pc/h
                     R
                           F R FD
                    _____Capacity Checks____
                                       Maximum
                                                     LOS F?
                         Actual
    v = v
                          2018
                                       4800
                                                      No
     Fi F
                         1833
                                       4800
                                                      No
    v = v - v
         F R
     FΟ
                         185
                                       2100
                                                      No
    V
     R
                          0 pc/h (Equation 13-14 or 13-17)
    v or v
     3
          av34
Is
    v or v
                > 2700 pc/h?
                                       No
     3
          av34
    v or v
                 > 1.5 v / 2
                                       No
Is
     3
           av34
                       12
If yes, v = 2018
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area___
                                  Max Desirable
                                                       Violation?
                    Actual
                                  4400
                     2018
                                                       No
    V
     12
             ___Level of Service Determination (if not F)______
                      D = 4.252 + 0.0086 v - 0.009 L = 10.6 pc/mi/ln
Density,
                                         12
                       R
Level of service for ramp-freeway junction areas of influence B
                 _____Speed Estimation____
                                           D = 0.315
Intermediate speed variable,
                                           S
Space mean speed in ramp influence area,
                                           S = 64.6
                                                       mph
                                           R
Space mean speed in outer lanes,
                                           S = N/A
                                                       mph
```

S = 64.6

mph

Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.65

Phone: Fax: E-mail:

_____Diverge Analysis______

Analyst: AECOM
Agency/Co.: AECOM
Date performed: 7/1/2016
Analysis time period: AM Peak
Freeway/Dir of Travel: I-26 WB

Junction: S-48 WB Off-Ramp Alt 2 Loop

Jurisdiction:

Analysis Year: 2040 Build Alt 2 Loop

Description: S-48 IMR

______Freeway Data______

Type of analysis Diverge
Number of lanes in freeway 2
Free-flow speed on freeway 75.0 mph
Volume on freeway 2256 vph

_____Off Ramp Data_____

Side of freeway

Number of lanes in ramp

Free-Flow speed on ramp

Volume on ramp

Length of first accel/decel lane

Length of second accel/decel lane

ft

______Adjacent Ramp Data (if one exists)______

Does adjacent ramp exist?

Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
Distance to adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
Type of adjacent ramp

_____Conversion to pc/h Under Base Conditions_____

Junction Components	Freeway	Ramp	Adjacent	_
			Ramp	
Volume, V (vph)	2256	1026	184	vph
Peak-hour factor, PHF	0.90	0.90	0.90	
Peak 15-min volume, v15	627	285	51	V
Trucks and buses	4	2	2	%
Recreational vehicles	0	0	0	%
Terrain type:	Rolling	Rolling	Rolling	
Grade	0.00 %	0.00 %	0.00	%
Length	0.00 mi	0.00 mi	0.00	mi
Trucks and buses PCE, ET	2.5	2.5	2.5	
Recreational vehicle PCE, ER	2.0	2.0	2.0	

```
DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97
                                     .943
                                                 0.971
                                                             0.971
                                     1.00
Driver population factor, fP
                                                 1.00
                                                            1.00
                                     2657
Flow rate, vp
                                                 1174
                                                            211
                                                                     pcph
                    ____Estimation of V12 Diverge Areas__
                                (Equation 13-12 or 13-13)
                 L =
                  ΕQ
                        1.000 Using Equation 0
                  FD
                 v = v + (v - v) P = 2657 pc/h
                           F R
                                   FD
                     R
                    _____Capacity Checks____
                                       Maximum
                                                      LOS F?
                          Actual
    v = v
                          2657
                                       4800
                                                      No
     Fi F
                          1483
                                       4800
                                                      No
    v = v - v
         F
     FΟ
            R
                          1174
                                       2100
                                                      No
    V
     R
                          0 pc/h (Equation 13-14 or 13-17)
    v or v
     3
          av34
Is
    v or v
                > 2700 pc/h?
                                       No
     3
           av34
    v or v
                 > 1.5 v / 2
                                       No
Is
     3
           av34
                        12
If yes, v = 2657
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area___
                                  Max Desirable
                                                        Violation?
                     Actual
                                  4400
                     2657
                                                        No
    V
     12
              ___Level of Service Determination (if not F)______
                      D = 4.252 + 0.0086 v - 0.009 L = 16.1 pc/mi/ln
Density,
                                         12
                       R
Level of service for ramp-freeway junction areas of influence B
                 _____Speed Estimation____
                                           D = 0.404
Intermediate speed variable,
                                            S
Space mean speed in ramp influence area,
                                           S = 61.7
                                                        mph
                                           R
Space mean speed in outer lanes,
                                           S = N/A
                                                        mph
```

S = 61.7

mph

Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.65

Phone: Fax: E-mail:

______Diverge Analysis______

Analyst: AECOM
Agency/Co.: AECOM
Date performed: 7/1/2016
Analysis time period: PM Peak
Freeway/Dir of Travel: I-26 WB

Junction: S-48 WB Off-Ramp Alt 2

Jurisdiction:

Analysis Year: 2040 Build Alt 2 Ramp

Description: S-48 IMR

_____Freeway Data______

Type of analysis

Number of lanes in freeway

Free-flow speed on freeway

Volume on freeway

Diverge

2

75.0 mph

1325 vph

_____Off Ramp Data_____

Side of freeway

Number of lanes in ramp

Free-Flow speed on ramp

Volume on ramp

Length of first accel/decel lane

Length of second accel/decel lane

ft

______Adjacent Ramp Data (if one exists)______

Does adjacent ramp exist?

Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
Double Tamp
Distance to adjacent ramp
Type Distance to adjacent ramp
Distance Type Dist

_____Conversion to pc/h Under Base Conditions_____

Junction Components	Freeway	Ramp	Adjacent	
			Ramp	
Volume, V (vph)	1325	247	1026	vph
Peak-hour factor, PHF	0.90	0.90	0.90	
Peak 15-min volume, v15	368	69	285	V
Trucks and buses	4	2	2	용
Recreational vehicles	0	0	0	용
Terrain type:	Rolling	Rolling	Rolling	
Grade	0.00 %	0.00 %	0.00	왕
Length	0.00 mi	0.00 mi	0.00	mi
Trucks and buses PCE, ET	2.5	2.5	2.5	
Recreational vehicle PCE, ER	2.0	2.0	2.0	

```
DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97
                                     .943
                                                 0.971
                                                             0.971
Driver population factor, fP
                                     1.00
                                                 1.00
                                                             1.00
                                     1561
Flow rate, vp
                                                 283
                                                            1174
                                                                     pcph
                    ____Estimation of V12 Diverge Areas__
                                (Equation 13-12 or 13-13)
                 L =
                  ΕQ
                        1.000 Using Equation 0
                  FD
                 v = v + (v - v) P = 1561 pc/h
                     R
                           F R
                                   FD
                     _____Capacity Checks____
                                       Maximum
                                                      LOS F?
                          Actual
    v = v
                          1561
                                       4800
                                                      No
     Fi F
                          1278
                                       4800
                                                      No
    v = v - v
         F
     FΟ
            R
                          283
                                       2100
                                                      No
    V
     R
                          0 pc/h (Equation 13-14 or 13-17)
    v or v
     3
          av34
Is
    v or v
                > 2700 pc/h?
                                       No
     3
           av34
    v or v
                 > 1.5 v / 2
                                       No
Is
     3
           av34
                        12
If yes, v = 1561
                                    (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                    _Flow Entering Diverge Influence Area___
                     Actual
                                  Max Desirable
                                                        Violation?
                                  4400
                     1561
                                                        No
    V
     12
             ___Level of Service Determination (if not F)______
                      D = 4.252 + 0.0086 v - 0.009 L = 6.7 pc/mi/ln
Density,
                                         12
                       R
Level of service for ramp-freeway junction areas of influence A
                 _____Speed Estimation____
                                           D = 0.323
Intermediate speed variable,
                                            S
Space mean speed in ramp influence area,
                                           S = 64.3
                                                        mph
                                           R
Space mean speed in outer lanes,
                                           S = N/A
                                                        mph
```

S = 64.3

mph

Space mean speed for all vehicles,

HCS 2010: Freeway Merge and Diverge Segments Release 6.65

Phone: Fax: E-mail:

______Diverge Analysis______

Analyst: AECOM
Agency/Co.: AECOM
Date performed: 7/1/2016
Analysis time period: PM Peak
Freeway/Dir of Travel: I-26 WB

Junction: S-48 WB Off-Ramp Alt 2 Loop

Jurisdiction:

Analysis Year: 2040 Build Alt 2 Loop

Description: S-48 IMR

_____Freeway Data______

Type of analysis

Number of lanes in freeway

Free-flow speed on freeway

Volume on freeway

Diverge

2

Free-flow speed on freeway

75.0 mph

volume on freeway

3216 vph

_____Off Ramp Data_____

Side of freeway

Number of lanes in ramp

Free-Flow speed on ramp

Volume on ramp

Length of first accel/decel lane

Length of second accel/decel lane

ft

______Adjacent Ramp Data (if one exists)_____

Does adjacent ramp exist?

Volume on adjacent ramp

Position of adjacent ramp

Type of adjacent ramp

Distance to adjacent ramp

550

Type

_____Conversion to pc/h Under Base Conditions_____

Junction Components		Freeway		Ramp		Adjacen	t
						Ramp	
Volume, V (vph)		3216		1325		267	vph
Peak-hour factor, PHF		0.90		0.90		0.90	
Peak 15-min volume, v15		893		368		74	V
Trucks and buses		4		2		2	%
Recreational vehicles		0		0		0	%
Terrain type:		Rolling		Rolling		Rolling	
Grade		0.00	용	0.00	8	0.00	%
Length		0.00	шi	0.00	mi	0.00	mi
Trucks and buses PCE, ET		2.5		2.5		2.5	
Recreational vehicle PCE,	ER	2.0		2.0		2.0	

```
DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97
                                     .943
                                                 0.971
                                                             0.971
                                                 1.00
Driver population factor, fP
                                     1.00
                                                             1.00
                                     3788
Flow rate, vp
                                                 1516
                                                             306
                                                                     pcph
                    ____Estimation of V12 Diverge Areas__
                                (Equation 13-12 or 13-13)
                 L =
                  ΕQ
                        1.000 Using Equation 0
                  FD
                 v = v + (v - v) P = 3788 pc/h
                     R
                           F R
                                   FD
                     _____Capacity Checks____
                                       Maximum
                                                      LOS F?
                          Actual
    v = v
                          3788
                                       4800
                                                       No
     Fi F
                          2272
                                       4800
                                                       No
    v = v - v
         F
     FΟ
            R
                          1516
                                       2100
                                                       No
    V
     R
                          0 pc/h (Equation 13-14 or 13-17)
    v or v
     3
          av34
Is
    v or v
                > 2700 pc/h?
                                       No
     3
           av34
                 > 1.5 v /2
    v or v
                                       No
Is
     3
           av34
                        12
If yes, v = 3788
                                     (Equation 13-15, 13-16, 13-18, or 13-19)
        12A
                     _Flow Entering Diverge Influence Area___
                                  Max Desirable
                                                        Violation?
                     Actual
                                   4400
                     3788
                                                        No
    V
     12
              ___Level of Service Determination (if not F)______
                      D = 4.252 + 0.0086 v - 0.009 L = 25.8 pc/mi/ln
Density,
                                         12
                       R
Level of service for ramp-freeway junction areas of influence C
                 _____Speed Estimation____
                                           D = 0.434
Intermediate speed variable,
                                            S
Space mean speed in ramp influence area,
                                           S = 60.7
                                                        mph
                                           R
Space mean speed in outer lanes,
                                           S = N/A
                                                        mph
```

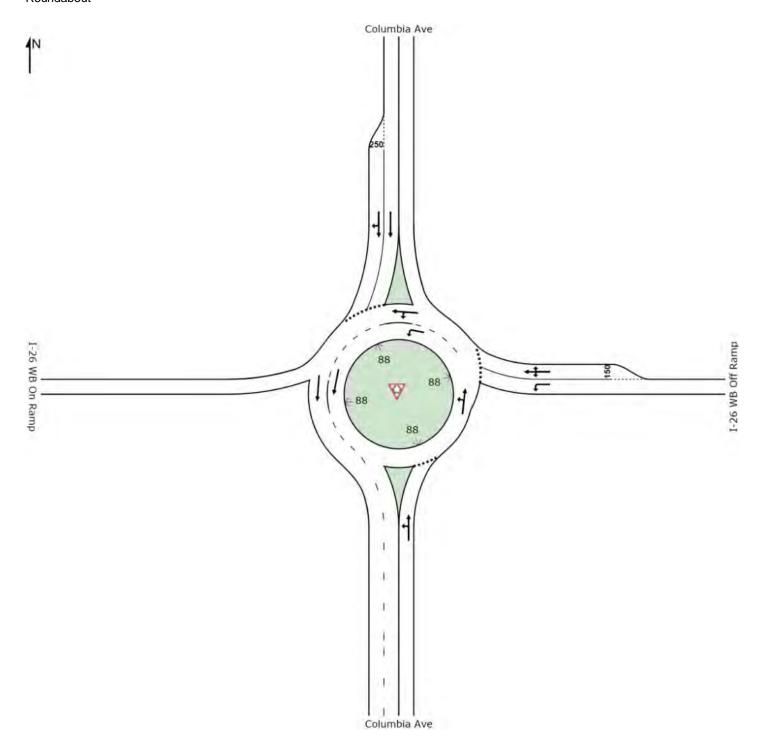
S = 60.7

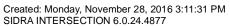
mph

Space mean speed for all vehicles,

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

APPENDIX N


BUILD ALT 3 2020 AND 2040 SIDRA REPORTS


SITE LAYOUT

 § Site: I-26 WB Ramps 2020 AM - Alt 3

I-26 WB Ramps 2020 AM Roundabout

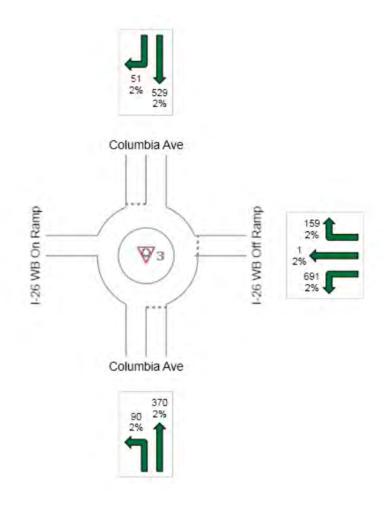
Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6

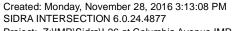
Copyright © 2000-2014 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 6 www.sidrasolutions.com

8003941, 6023379, AECOM, PLUS / 1PC

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes


₩ Site: I-26 WB Ramps 2020 AM - Alt 3


I-26 WB Ramps 2020 AM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh) All Movement Classes: 1891 Light Vehicles (LV): 1853 Heavy Vehicles (HV): 38

MOVEMENT SUMMARY

₩ Site: I-26 WB Ramps 2020 AM - Alt 3

I-26 WB Ramps 2020 AM Roundabout

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia Av	/e									
3	L2	98	2.0	0.451	8.2	LOS A	0.0	0.0	0.00	0.00	26.0
8	T1	402	2.0	0.451	8.2	LOS A	0.0	0.0	0.00	0.00	25.5
Approa	ach	500	2.0	0.451	8.2	LOS A	0.0	0.0	0.00	0.00	25.6
East: I-	-26 WB Off F	Ramp									
1	L2	751	2.0	0.695	20.3	LOS C	5.1	128.5	0.79	0.95	20.6
6	T1	1	2.0	0.695	20.3	LOS C	5.1	128.5	0.79	0.95	20.4
16	R2	173	2.0	0.695	20.3	LOS C	5.1	128.5	0.79	0.95	19.9
Approa	ach	925	2.0	0.695	20.3	LOSC	5.1	128.5	0.79	0.95	20.4
North:	Columbia Av	ve									
4	T1	575	2.0	0.533	15.5	LOSC	2.2	55.3	0.65	0.73	22.0
14	R2	55	2.0	0.533	15.2	LOS C	2.1	53.3	0.64	0.72	21.5
Approa	ach	630	2.0	0.533	15.5	LOS C	2.2	55.3	0.65	0.73	22.0
All Veh	nicles	2055	2.0	0.695	15.9	LOSC	5.1	128.5	0.55	0.65	22.0

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

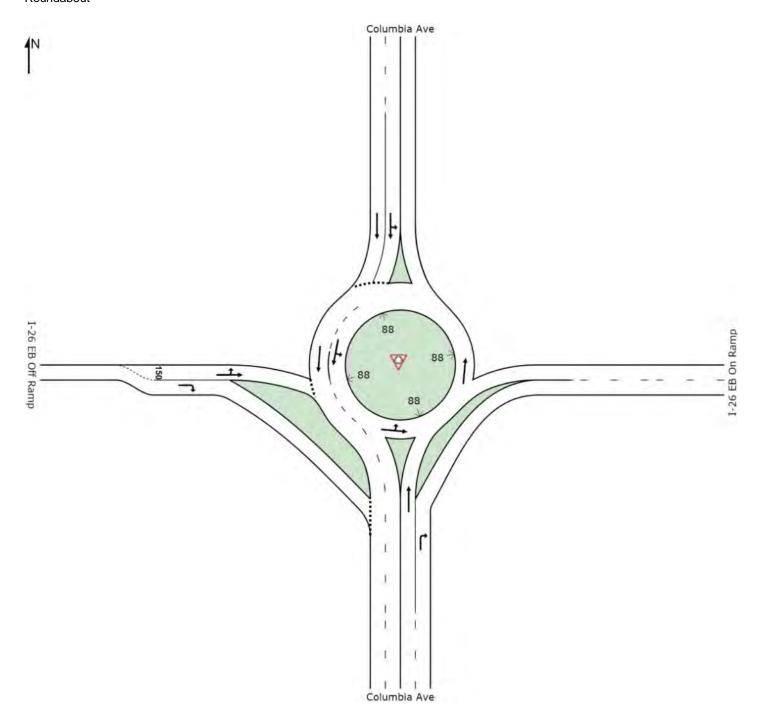
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 3:04:08 PM SIDRA INTERSECTION 6.0.24.4877

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6

8003941, 6023379, AECOM, PLUS / 1PC



SITE LAYOUT

 § Site: I-26 EB Ramps 2020 AM - Alt 3

I-26 EB Ramps 2020 AM Roundabout

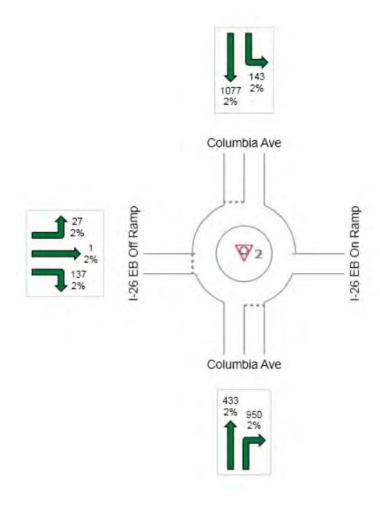
Created: Monday, November 28, 2016 3:15:58 PM SIDRA INTERSECTION 6.0.24.4877

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes


₩ Site: I-26 EB Ramps 2020 AM - Alt 3

I-26 EB Ramps 2020 AM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh) All Movement Classes: 2768 Light Vehicles (LV): 2713 Heavy Vehicles (HV): 55

MOVEMENT SUMMARY

∀ Site: I-26 EB Ramps 2020 AM - Alt 3

I-26 EB Ramps 2020 AM Roundabout

Move	Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	I Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph	
South	: Columbia A	ve								·		
8	T1	471	2.0	0.243	0.0	LOS A	0.0	0.0	0.00	0.00	25.8	
18	R2	1033	2.0	0.629	0.2	LOS A	0.0	0.0	0.00	0.00	25.0	
Appro	ach	1503	2.0	0.629	0.1	NA	0.0	0.0	0.00	0.00	25.2	
North:	Columbia Av	ve										
7	L2	155	2.0	0.598	11.0	LOS B	0.0	0.0	0.00	0.00	25.9	
4	T1	1171	2.0	0.598	11.0	LOS B	0.0	0.0	0.00	0.00	25.7	
Appro	ach	1326	2.0	0.598	11.0	LOS B	0.0	0.0	0.00	0.00	25.7	
West:	I-26 EB Off F	Ramp										
5	L2	29	2.0	0.071	9.4	LOS A	0.2	4.4	0.63	0.63	22.6	
2	T1	1	2.0	0.071	9.4	LOS A	0.2	4.4	0.63	0.63	22.3	
12	R2	149	2.0	0.310	12.4	LOS B	0.9	22.8	0.65	0.68	22.0	
Appro	ach	179	2.0	0.310	11.9	LOS B	0.9	22.8	0.65	0.67	22.1	
All Vel	hicles	3009	2.0	0.629	5.6	LOS A	0.9	22.8	0.04	0.04	25.2	

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

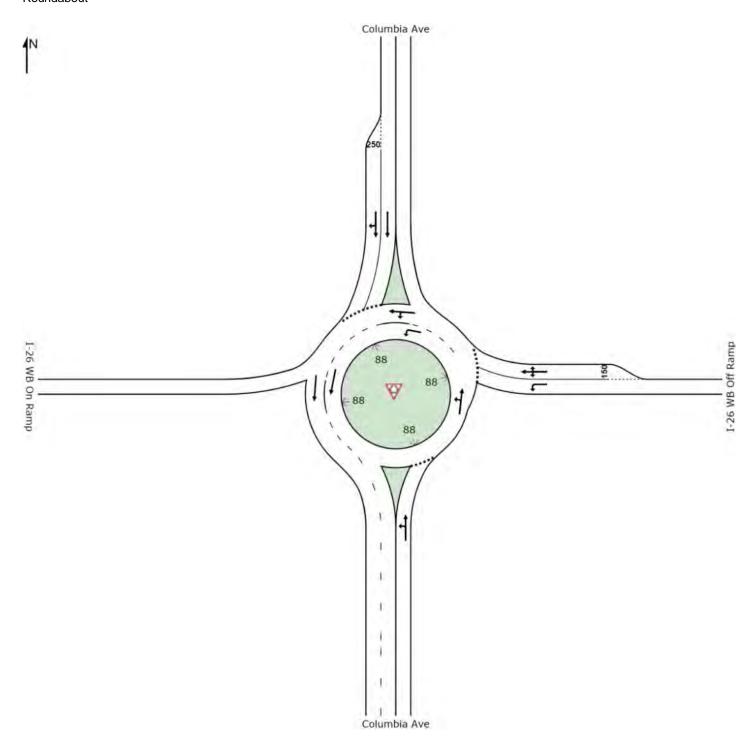
Gap-Acceptance Capacity: Traditional M1.

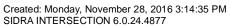
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 3:08:44 PM SIDRA INTERSECTION 6.0.24.4877

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6


8003941, 6023379, AECOM, PLUS / 1PC



SITE LAYOUT

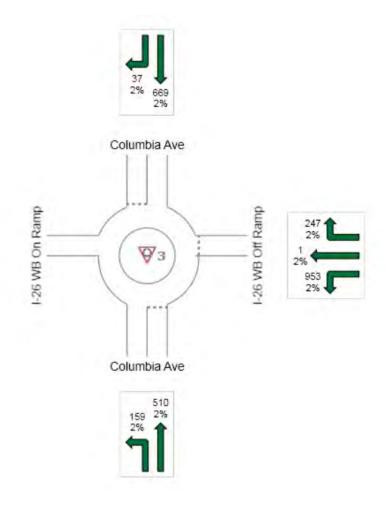
I-26 WB Ramps 2042 PM Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes


₩ Site: I-26 WB Ramps 2020 PM - Alt 3

I-26 WB Ramps 2042 PM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh) All Movement Classes: 2576 Light Vehicles (LV): 2524 Heavy Vehicles (HV): 52

MOVEMENT SUMMARY

 Site: I-26 WB Ramps 2020 PM - Alt 3

I-26 WB Ramps 2042 PM Roundabout

Movement Performance - Vehicles											
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia A	ve									
3	L2	173	2.0	0.656	12.5	LOS B	0.0	0.0	0.00	0.00	25.9
8	T1	554	2.0	0.656	12.5	LOS B	0.0	0.0	0.00	0.00	25.4
Approa	ach	727	2.0	0.656	12.5	LOS B	0.0	0.0	0.00	0.00	25.5
East: I	-26 WB Off F	Ramp									
1	L2	1036	2.0	1.237	146.6	LOS F	50.2	1275.0	1.00	4.14	9.7
6	T1	1	2.0	1.237	146.6	LOS F	50.2	1275.0	1.00	4.14	9.6
16	R2	268	2.0	1.237	146.6	LOS F	50.2	1275.0	1.00	4.14	9.5
Approa	ach	1305	2.0	1.237	146.6	LOS F	50.2	1275.0	1.00	4.14	9.6
North:	Columbia Av	ve									
4	T1	727	2.0	0.731	27.0	LOS D	3.8	95.4	0.80	0.99	19.8
14	R2	40	2.0	0.731	26.4	LOS D	3.7	92.8	0.79	0.97	19.5
Approa	ach	767	2.0	0.731	27.0	LOS D	3.8	95.4	0.80	0.99	19.8
All Veh	nicles	2800	2.0	1.237	79.0	LOS F	50.2	1275.0	0.68	2.20	13.8

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

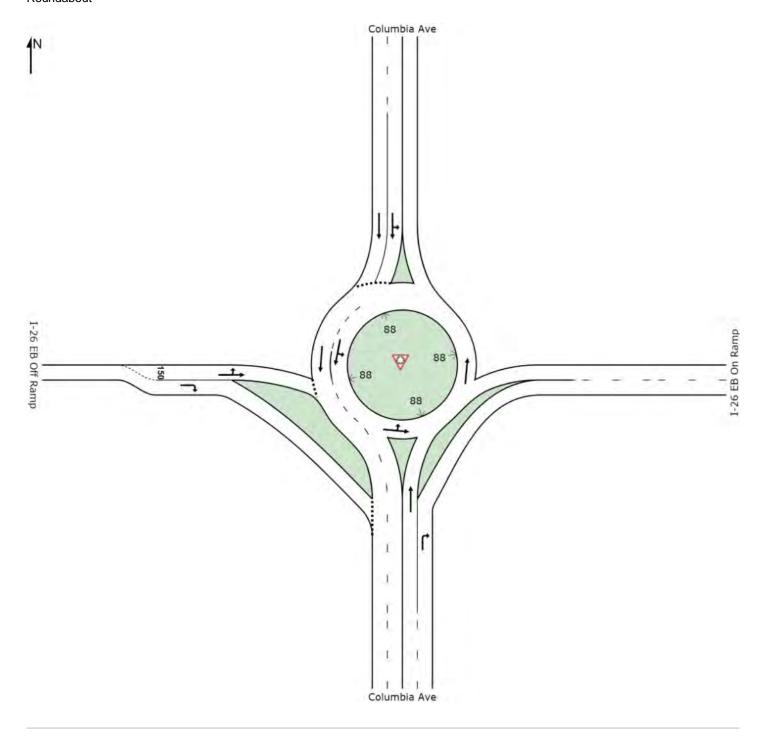
Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 3:05:44 PM SIDRA INTERSECTION 6.0.24.4877

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6


8003941, 6023379, AECOM, PLUS / 1PC

SITE LAYOUT

I-26 EB Ramps 2020 PM Roundabout

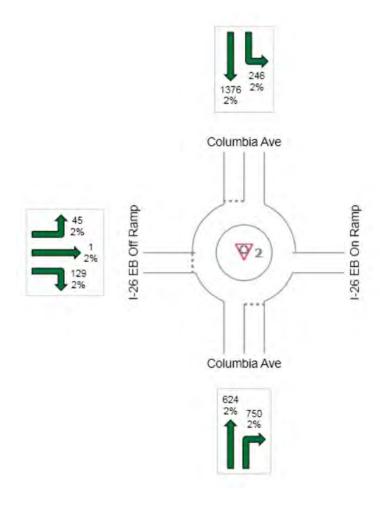
Created: Monday, November 28, 2016 3:17:56 PM SIDRA INTERSECTION 6.0.24.4877

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes


₩ Site: I-26 EB Ramps 2020 PM - Alt 3

I-26 EB Ramps 2020 PM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh) All Movement Classes: 3171 Light Vehicles (LV): 3108 Heavy Vehicles (HV): 63

MOVEMENT SUMMARY

∀ Site: I-26 EB Ramps 2020 PM - Alt 3

I-26 EB Ramps 2020 PM Roundabout

Move	ment Perfo	rmance - Ve	hicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia A	ve									
8	T1	678	2.0	0.350	0.0	LOS A	0.0	0.0	0.00	0.00	25.8
18	R2	815	2.0	0.497	0.1	LOS A	0.0	0.0	0.00	0.00	25.0
Approa	ach	1493	2.0	0.497	0.1	NA	0.0	0.0	0.00	0.00	25.3
North:	Columbia Av	/e									
7	L2	267	2.0	0.796	18.5	LOSC	0.0	0.0	0.00	0.00	25.8
4	T1	1496	2.0	0.796	18.5	LOS C	0.0	0.0	0.00	0.00	25.7
Approa	ach	1763	2.0	0.796	18.5	LOSC	0.0	0.0	0.00	0.00	25.7
West:	I-26 EB Off F	Ramp									
5	L2	49	2.0	0.159	14.4	LOS B	0.4	10.0	0.75	0.75	21.6
2	T1	1	2.0	0.159	14.4	LOS B	0.4	10.0	0.75	0.75	21.3
12	R2	140	2.0	0.368	16.7	LOS C	1.1	27.5	0.75	0.81	21.1
Approa	ach	190	2.0	0.368	16.1	LOS C	1.1	27.5	0.75	0.79	21.2
All Veh	nicles	3447	2.0	0.796	10.4	LOS B	1.1	27.5	0.04	0.04	25.2

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

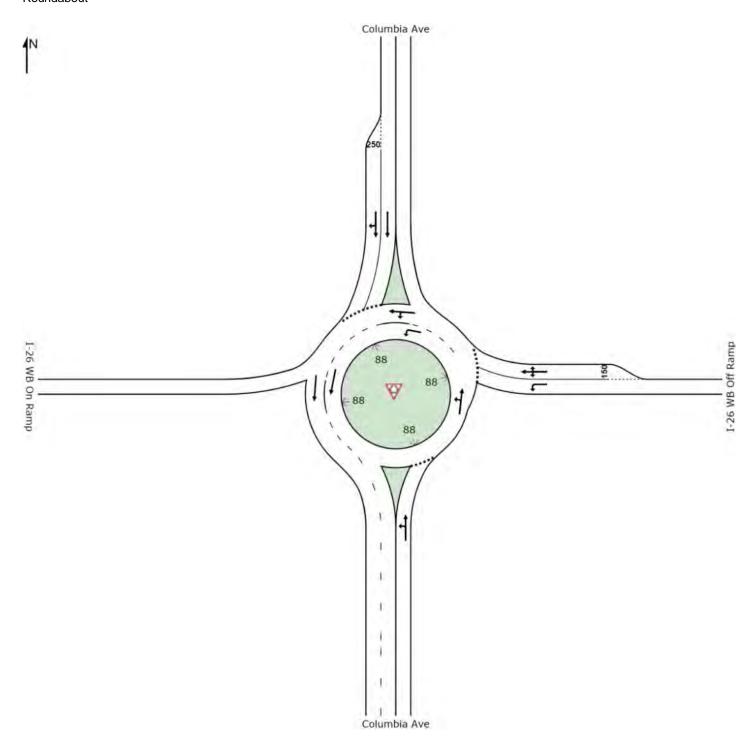
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 3:10:26 PM SIDRA INTERSECTION 6.0.24.4877

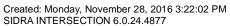
Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6

8003941, 6023379, AECOM, PLUS / 1PC



SITE LAYOUT



 Site: I-26 WB Ramps 2040 AM - Alt 3

I-26 WB Ramps 2040 AM Roundabout

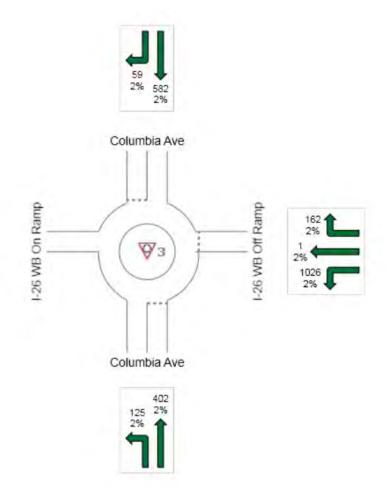
Copyright © 2000-2014 Akcelik and Associates Pty Ltd

www.sidrasolutions.com

SIDRA INTERSECTION 6

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes


Site: I-26 WB Ramps 2040 AM - Alt 3

I-26 WB Ramps 2040 AM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh) All Movement Classes: 2357 Light Vehicles (LV): 2310 Heavy Vehicles (HV): 47

MOVEMENT SUMMARY

₩ Site: I-26 WB Ramps 2040 AM - Alt 3

I-26 WB Ramps 2040 AM Roundabout

Mover	nent Perfo	ormance - Ve	hicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia A	ve									
3	L2	136	2.0	0.517	9.3	LOS A	0.0	0.0	0.00	0.00	25.9
8	T1	437	2.0	0.517	9.3	LOS A	0.0	0.0	0.00	0.00	25.4
Approa	ich	573	2.0	0.517	9.3	LOS A	0.0	0.0	0.00	0.00	25.5
East: I-	26 WB Off	Ramp									
1	L2	1115	2.0	1.046	74.6	LOS F	25.7	653.2	1.00	2.42	13.9
6	T1	1	2.0	1.046	74.6	LOS F	25.7	653.2	1.00	2.42	13.7
16	R2	176	2.0	1.046	74.6	LOS F	25.7	653.2	1.00	2.42	13.5
Approa	ich	1292	2.0	1.046	74.6	LOS F	25.7	653.2	1.00	2.42	13.8
North:	Columbia A	ve									
4	T1	633	2.0	0.765	33.2	LOS D	3.9	98.1	0.85	1.08	18.8
14	R2	64	2.0	0.765	32.4	LOS D	3.8	95.9	0.84	1.07	18.5
Approa	ich	697	2.0	0.765	33.1	LOS D	3.9	98.1	0.85	1.08	18.8
All Veh	icles	2562	2.0	1.046	48.7	LOS E	25.7	653.2	0.74	1.52	16.7

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

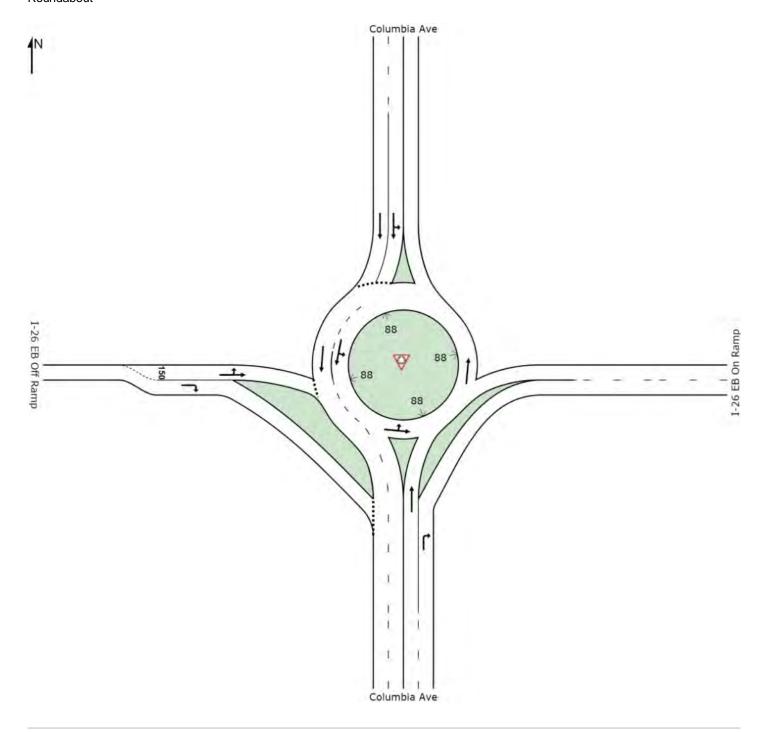
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 2:01:11 PM SIDRA INTERSECTION 6.0.24.4877

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6

8003941, 6023379, AECOM, PLUS / 1PC



SITE LAYOUT

 § Site: I-26 EB Ramps 2040 AM - Alt 3

I-26 EB Ramps 2040 AM Roundabout

Created: Monday, November 28, 2016 3:27:04 PM SIDRA INTERSECTION 6.0.24.4877

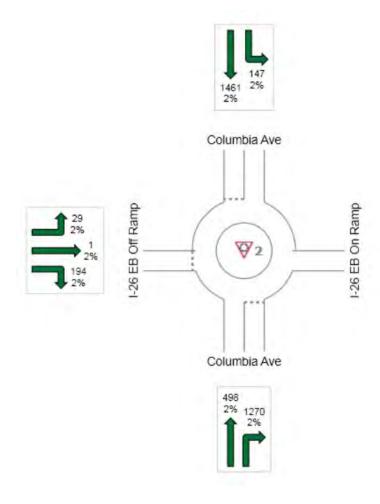
Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION 6

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes


₩ Site: I-26 EB Ramps 2040 AM - Alt 3

I-26 EB Ramps 2040 AM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh) All Movement Classes: 3600 Light Vehicles (LV): 3528 Heavy Vehicles (HV): 72

MOVEMENT SUMMARY

∀ Site: I-26 EB Ramps 2040 AM - Alt 3

I-26 EB Ramps 2040 AM Roundabout

Move	ment Perfo	rmance - Ve	hicles								
Mov ID	OD Mov	Demand Total veh/h	I Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia A	ve									
8	T1	541	2.0	0.279	0.0	LOS A	0.0	0.0	0.00	0.00	25.8
18	R2	1380	2.0	0.841	0.5	LOS A	0.0	0.0	0.00	0.00	24.8
Appro	ach	1922	2.0	0.841	0.4	NA	0.0	0.0	0.00	0.00	25.1
North:	Columbia Av	/e									
7	L2	160	2.0	0.789	18.1	LOS C	0.0	0.0	0.00	0.00	26.0
4	T1	1588	2.0	0.789	18.1	LOS C	0.0	0.0	0.00	0.00	25.7
Appro	ach	1748	2.0	0.789	18.1	LOSC	0.0	0.0	0.00	0.00	25.8
West:	I-26 EB Off F	Ramp									
5	L2	32	2.0	0.103	13.1	LOS B	0.2	6.3	0.73	0.73	21.8
2	T1	1	2.0	0.103	13.1	LOS B	0.2	6.3	0.73	0.73	21.6
12	R2	211	2.0	0.592	26.7	LOS D	2.1	52.5	0.83	0.96	19.3
Appro	ach	243	2.0	0.592	24.9	LOSC	2.1	52.5	0.82	0.93	19.6
All Vel	nicles	3913	2.0	0.841	9.8	LOS A	2.1	52.5	0.05	0.06	24.9

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

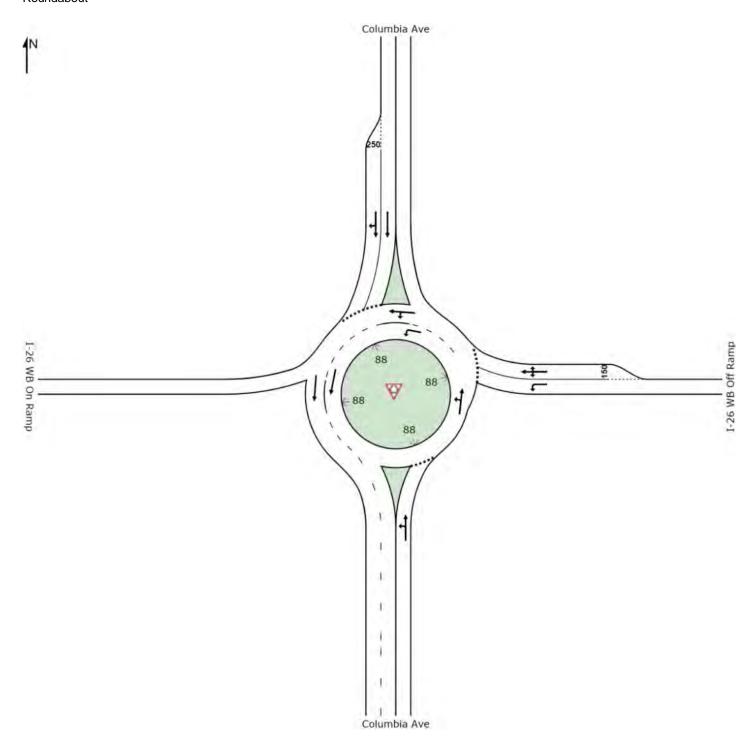
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 2:03:54 PM SIDRA INTERSECTION 6.0.24.4877

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6

8003941, 6023379, AECOM, PLUS / 1PC



SITE LAYOUT

 Site: I-26 WB Ramps 2040 PM - Alt 3

I-26 WB Ramps 2040 PM Roundabout

Copyright © 2000-2014 Akcelik and Associates Pty Ltd

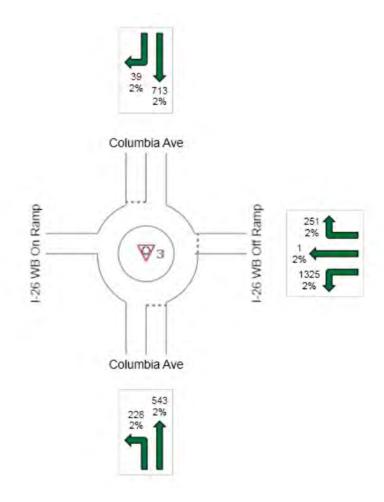
Created: Monday, November 28, 2016 3:24:51 PM SIDRA INTERSECTION 6.0.24.4877

www.sidrasolutions.com

SIDRA INTERSECTION 6

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes


₩ Site: I-26 WB Ramps 2040 PM - Alt 3

I-26 WB Ramps 2040 PM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh) All Movement Classes: 3100 Light Vehicles (LV): 3038 Heavy Vehicles (HV): 62

MOVEMENT SUMMARY

 Site: I-26 WB Ramps 2040 PM - Alt 3

I-26 WB Ramps 2040 PM Roundabout

Move	ment Perfo	rmance - Ve	hicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia A	ve									
3	L2	248	2.0	0.756	16.3	LOSC	0.0	0.0	0.00	0.00	25.9
8	T1	590	2.0	0.756	16.3	LOSC	0.0	0.0	0.00	0.00	25.3
Approa	ach	838	2.0	0.756	16.3	LOSC	0.0	0.0	0.00	0.00	25.5
East: I	-26 WB Off I	Ramp									
1	L2	1440	2.0	1.819	397.3	LOS F	131.7	3345.1	1.00	7.42	4.7
6	T1	1	2.0	1.819	397.3	LOS F	131.7	3345.1	1.00	7.42	4.7
16	R2	273	2.0	1.819	397.3	LOS F	131.7	3345.1	1.00	7.42	4.7
Approa	ach	1714	2.0	1.819	397.3	LOS F	131.7	3345.1	1.00	7.42	4.7
North:	Columbia Av	ve									
4	T1	775	2.0	0.796	33.1	LOS D	4.6	116.5	0.84	1.10	18.8
14	R2	42	2.0	0.796	32.4	LOS D	4.5	113.6	0.83	1.08	18.5
Approa	ach	817	2.0	0.796	33.0	LOS D	4.6	116.5	0.84	1.10	18.8
All Veh	nicles	3370	2.0	1.819	214.2	LOS F	131.7	3345.1	0.71	4.04	7.6

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Gap-Acceptance Capacity: Traditional M1.

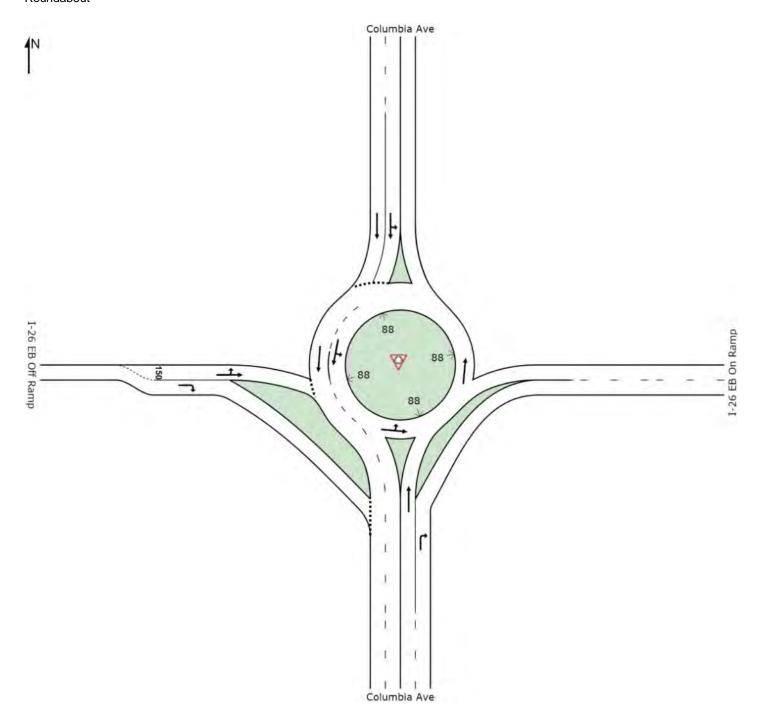
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 2:01:25 PM SIDRA INTERSECTION 6.0.24.4877

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6

8003941, 6023379, AECOM, PLUS / 1PC



SITE LAYOUT

 § Site: I-26 EB Ramps 2040 PM - Alt 3

I-26 EB Ramps 2040 PM Roundabout

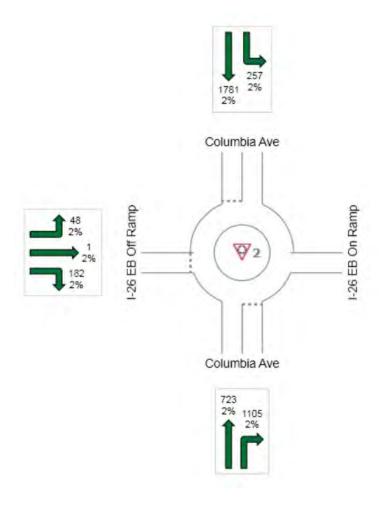
Created: Monday, November 28, 2016 3:28:39 PM SIDRA INTERSECTION 6.0.24.4877

Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6 8003941, 6023379, AECOM, PLUS / 1PC

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes


₩ Site: I-26 EB Ramps 2040 PM - Alt 3

I-26 EB Ramps 2040 PM Roundabout

Volume Display Method: Total and %

Volumes are shown for Movement Class(es): All Classes and Heavy Vehicles

Total Intersection Volumes (veh) All Movement Classes: 4097 Light Vehicles (LV): 4015 Heavy Vehicles (HV): 82

MOVEMENT SUMMARY

₩ Site: I-26 EB Ramps 2040 PM - Alt 3

I-26 EB Ramps 2040 PM Roundabout

Move	ment Perfo	rmance - Ve	hicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South:	Columbia A	ve									
8	T1	786	2.0	0.406	0.1	LOS A	0.0	0.0	0.00	0.00	25.7
18	R2	1201	2.0	0.732	0.3	LOS A	0.0	0.0	0.00	0.00	24.9
Appro	ach	1987	2.0	0.732	0.2	NA	0.0	0.0	0.00	0.00	25.2
North:	Columbia Av	/e									
7	L2	279	2.0	1.000	46.4	LOS E	0.0	0.0	1.00	0.04	17.0
4	T1	1936	2.0	1.000	46.4	LOS E	0.0	0.0	1.00	0.04	16.9
Appro	ach	2215	2.0	1.000	46.4	LOS E	0.0	0.0	1.00	0.04	16.9
West:	I-26 EB Off F	Ramp									
5	L2	52	2.0	0.234	21.7	LOS C	0.6	14.8	0.83	0.86	20.2
2	T1	1	2.0	0.234	21.7	LOS C	0.6	14.8	0.83	0.86	19.9
12	R2	198	2.0	0.711	43.0	LOS E	2.6	66.0	0.91	1.11	16.9
Appro	ach	251	2.0	0.711	38.5	LOS E	2.6	66.0	0.89	1.06	17.5
All Vel	nicles	4453	2.0	1.000	25.4	LOS D	2.6	66.0	0.55	0.08	19.8

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

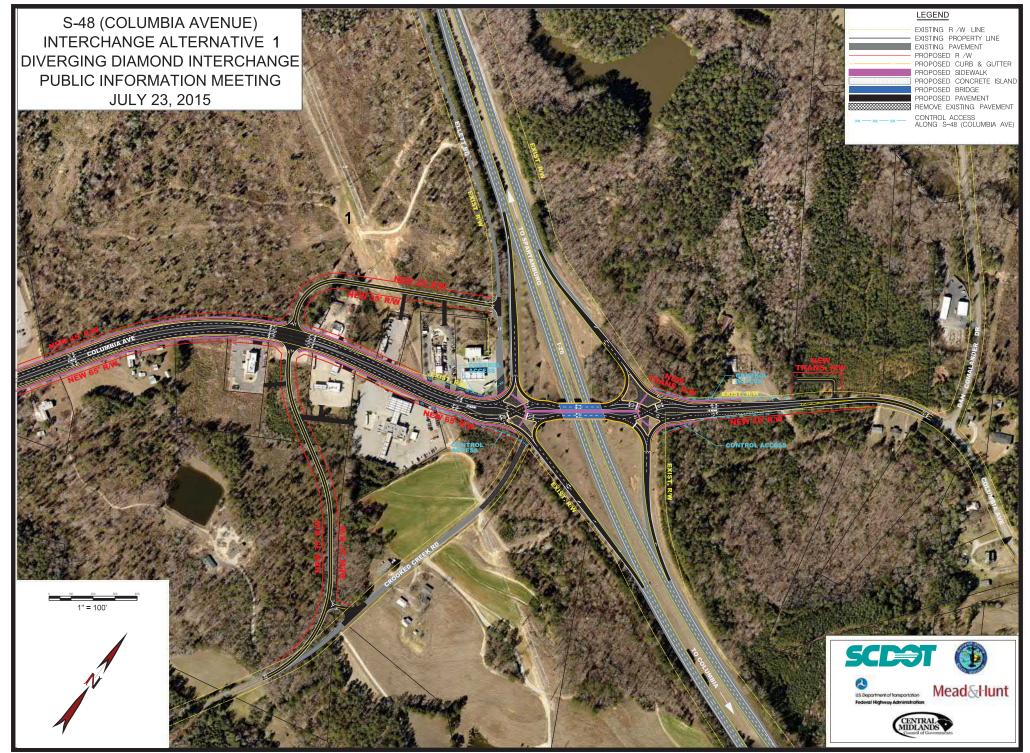
Gap-Acceptance Capacity: Traditional M1.

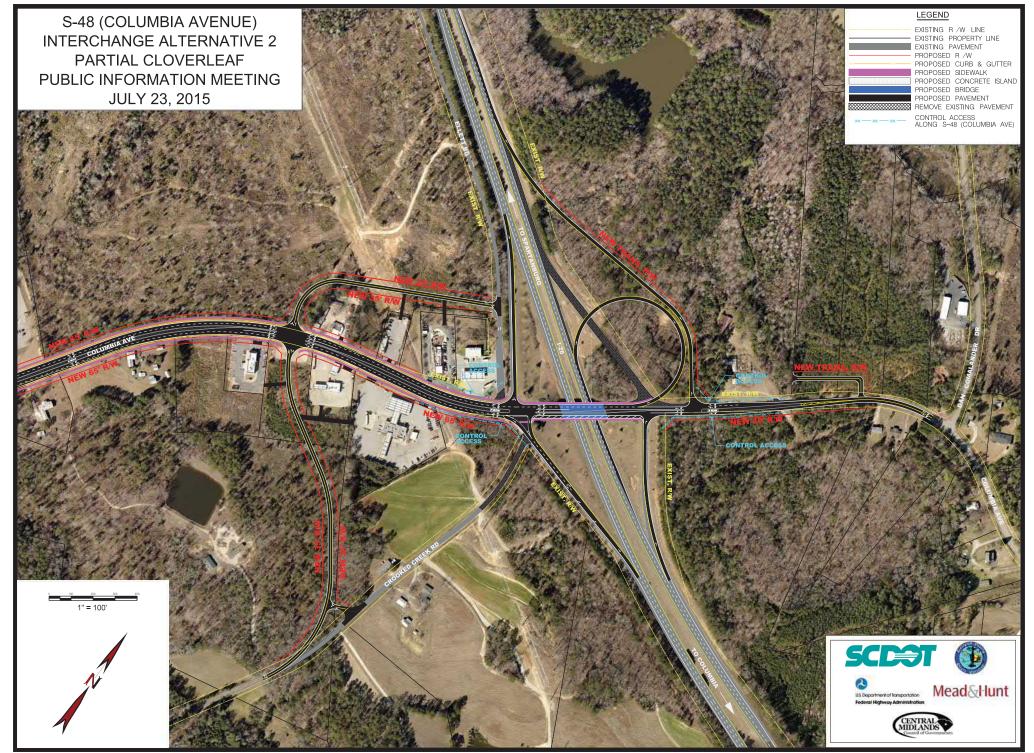
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Monday, November 28, 2016 3:10:40 PM SIDRA INTERSECTION 6.0.24.4877

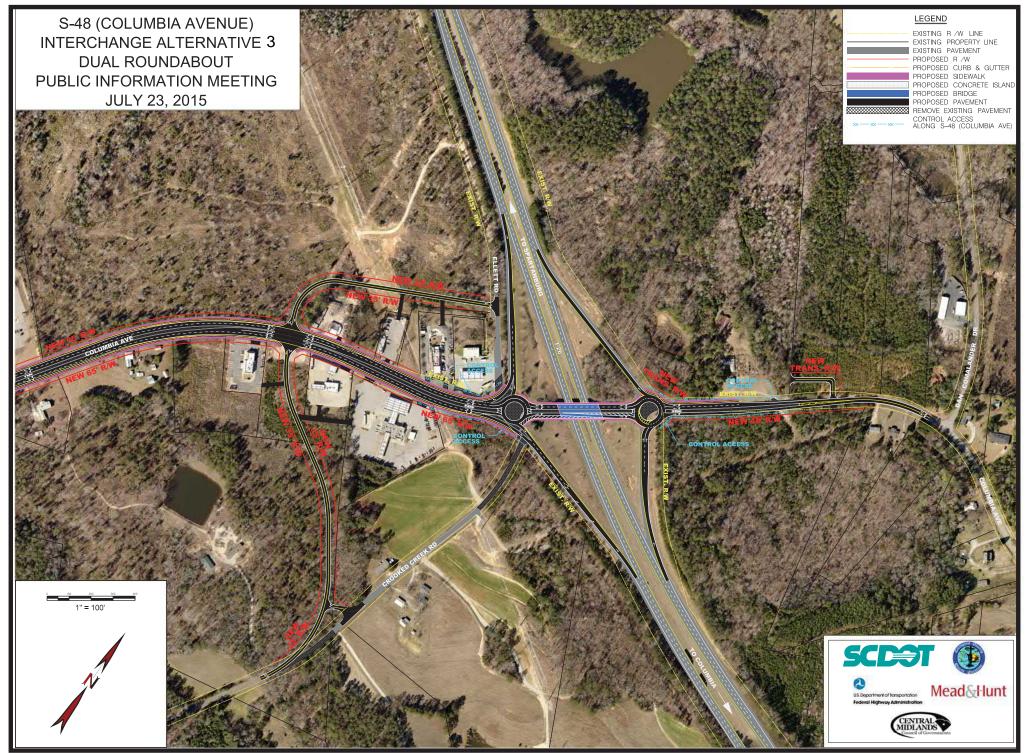
Copyright © 2000-2014 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: Z:\IMR\Sidra\I-26 at Columbia Avenue IMR Final.sip6


8003941, 6023379, AECOM, PLUS / 1PC


DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

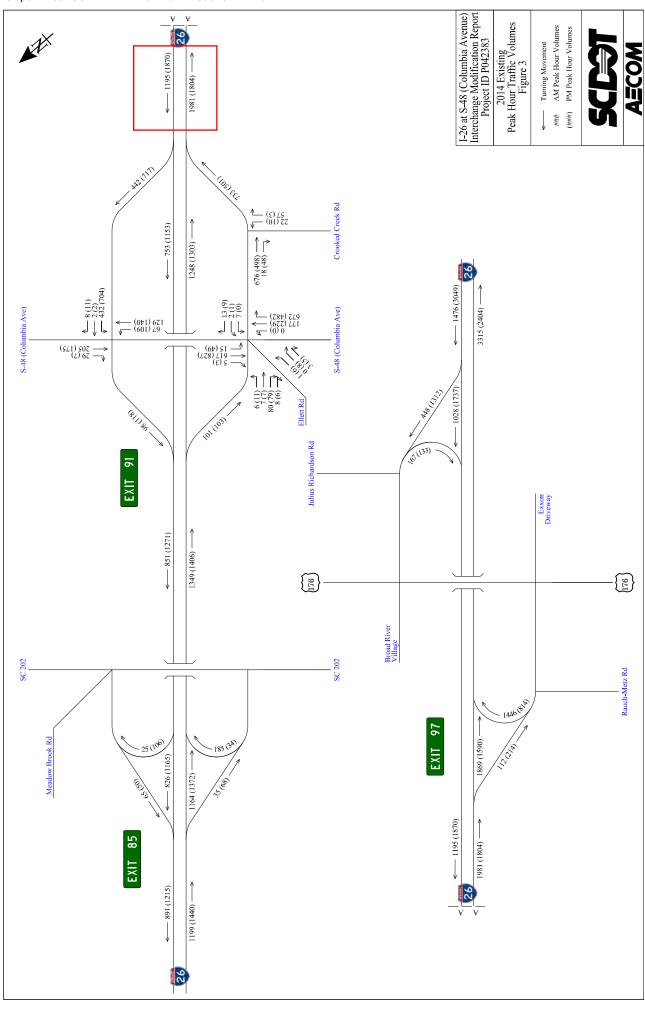
APPENDIX O


ALTERNATIVE 1, 2, & 3 CONCEPTUAL DESIGNS

ALL RIGHT-OF-WAY (R/W) SHOWN IS PROPOSED AND SUBJECT TO CHANGE

ALL RIGHT-OF-WAY (R/W) SHOWN IS PROPOSED AND SUBJECT TO CHANGE

ALL RIGHT-OF-WAY (R/W) SHOWN IS PROPOSED AND SUBJECT TO CHANGE

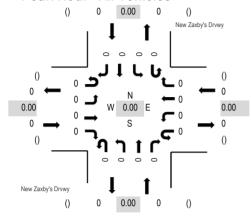

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 RAMEY KEMP ASSOCIATES

Moving forward.

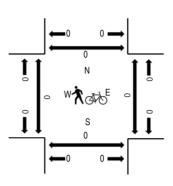
Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

APPENDIX B

Traffic Counts


Location: #1 New Zaxby's Drvwy & AM

Date and Start Time: Thursday, January 30, 2020


Peak Hour: 07:00 AM - 08:00 AM

Peak 15-Minutes: 07:00 AM - 07:15 AM

Peak Hour - All Vehicles

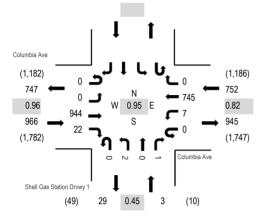
Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.

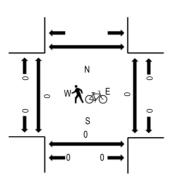
Traffic Counts

									Ne	w Zaxby	/'s Drvw	/y	Ne	w Zaxb	y's Drv	wy						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestrair	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0

		East	bound			West	oound			North	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lights	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mediums	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


Location: #2 Shell Gas Station Drvwy 1 & Columbia Ave AM

Date and Start Time: Thursday, January 30, 2020


Peak Hour: 07:30 AM - 08:30 AM

Peak 15-Minutes: 08:00 AM - 08:15 AM

Peak Hour - All Vehicles

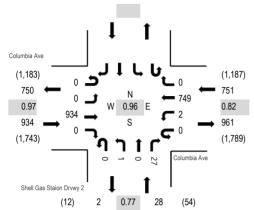
Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.

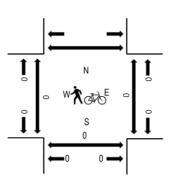
Traffic Counts

	(Columb	ia Ave			Columb	ia Ave		Shell C	Sas Sta	tion Dr	vwy 1										
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estraii	n Crossing	gs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	√orth
7:00 AM	0	0	240	5	0	1	94	0	0	0	0	0					340	1,517	0	0	0	
7:15 AM	0	0	248	8	0	0	98	0	0	0	0	0					354	1,630	0	0	0	
7:30 AM	0	0	239	7	0	2	131	0	0	0	0	0					379	1,721	0	0	0	
7:45 AM	0	0	234	4	0	2	203	0	0	0	0	1					444	1,627	0	0	0	
8:00 AM	0	0	217	7	0	0	228	0	0	1	0	0					453	1,461	0	0	0	
8:15 AM	0	0	254	4	0	3	183	0	0	1	0	0					445		0	0	0	
8:30 AM	0	0	156	1	0	2	124	0	0	2	0	0					285		0	0	0	
8:45 AM	0	0	155	3	0	0	115	0	0	2	0	3					278		0	0	0	

		East	bound			West	ound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	8	0	0	0	7	0	0	0	0	0					15
Lights	0	0	905	22	0	6	713	0	0	2	0	1					1,649
Mediums	0	0	31	0	0	1	25	0	0	0	0	0					57
Total	0	0	944	22	0	7	745	0	0	2	0	1					1,721


Location: #3 Shell Gas Staion Drvwy 2 & Columbia Ave AM

Date and Start Time: Thursday, January 30, 2020


Peak Hour: 07:30 AM - 08:30 AM

Peak 15-Minutes: 08:15 AM - 08:30 AM

Peak Hour - All Vehicles

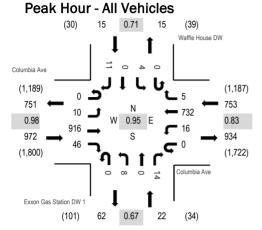
Peak Hour - Pedestrians/Bicycles in Crosswalk

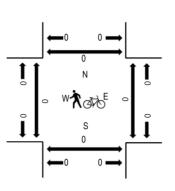
Note: Total study counts contained in parentheses.

Traffic Counts

		(Columb	oia Ave			Columb	ia Ave		Shell (Gas Sta	ion Dr	/wy 2										
	Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrai	n Crossin	gs
_	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	Vorth
	7:00 AM	0	0	245	0	0	1	93	0	0	1	0	9					349	1,523	0	0	0	
	7:15 AM	0	0	247	1	0	0	96	0	0	2	0	4					350	1,618	0	0	0	
	7:30 AM	0	0	240	0	0	0	133	0	0	1	0	10					384	1,713	0	0	0	
	7:45 AM	0	0	232	0	0	1	200	0	0	0	0	7					440	1,622	0	0	0	
	8:00 AM	0	0	213	0	0	1	228	0	0	0	0	2					444	1,461	0	0	0	
	8:15 AM	0	0	249	0	0	0	188	0	0	0	0	8					445		0	0	0	
	8:30 AM	0	0	158	1	0	1	127	0	0	1	0	5					293		0	0	0	
	8:45 AM	0	0	156	1	0	5	113	0	0	0	0	4					279		0	0	0	

		East	bound			West	ound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	5	0	0	0	5	0	0	0	0	0					10
Lights	0	0	896	0	0	2	716	0	0	1	0	27					1,642
Mediums	0	0	33	0	0	0	28	0	0	0	0	0					61
Total	0	0	934	0	0	2	749	0	0	1	0	27					1,713


Location: #4 Exxon Gas Station DW 1 & Columbia Ave AM


Date and Start Time: Thursday, January 30, 2020

Peak Hour: 07:30 AM - 08:30 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM

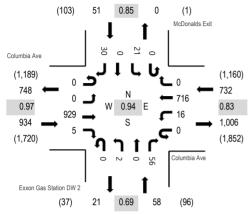
Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.

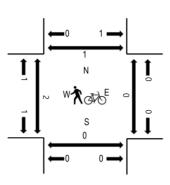
Traffic Counts

	(Columb	oia Ave		(Columb	ia Ave		Exxor	Gas S	tation [)W 1	W	affle Ho	ouse D\	Ν						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrair	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	3	244	6	0	0	91	3	0	3	0	1	0	1	0	1	353	1,562	0	0	0	0
7:15 AM	0	3	245	5	0	2	95	4	0	1	0	0	0	1	0	2	358	1,665	0	0	0	0
7:30 AM	0	1	228	20	0	5	130	0	0	0	0	2	0	1	0	1	388	1,762	0	0	0	0
7:45 AM	0	2	230	9	0	6	199	2	0	3	0	6	0	1	0	5	463	1,672	0	0	0	0
8:00 AM	0	3	206	9	0	2	224	2	0	1	0	5	0	0	0	4	456	1,489	0	0	0	0
8:15 AM	0	4	252	8	0	3	179	1	0	4	0	1	0	2	0	1	455		0	0	0	0
8:30 AM	0	1	153	9	0	2	123	2	0	3	0	1	0	1	0	3	298		0	0	0	0
8:45 AM	0	4	140	15	0	0	108	4	0	2	0	1	0	0	0	6	280		0	0	0	0

		East	bound			West	oound			Northb	oound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	6	0	0	1	5	0	0	2	0	1	0	0	0	0	15
Lights	0	10	879	44	0	14	700	5	0	5	0	12	0	4	0	11	1,684
Mediums	0	0	31	2	0	1	27	0	0	1	0	1	0	0	0	0	63
Total	0	10	916	46	0	16	732	5	Λ	8	0	14	0	4	0	11	1 762


Location: #5 Exxon Gas Station DW 2 & Columbia Ave AM

Date and Start Time: Thursday, January 30, 2020


Peak Hour: 07:30 AM - 08:30 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM

Peak Hour - All Vehicles

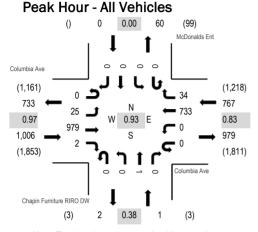
Peak Hour - Pedestrians/Bicycles in Crosswalk

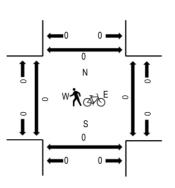
Note: Total study counts contained in parentheses.

Traffic Counts

	(Columb	oia Ave			Columb	ia Ave		Exxon	Gas S	tation [)W 2	N	1cDona	lds Exi	t						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	oound			Rolling	Ped	estrair	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	0	244	0	0	2	87	0	0	2	0	6	0	9	0	5	355	1,585	0	0	0	0
7:15 AM	0	0	245	2	0	3	103	0	0	0	0	6	0	2	0	5	366	1,692	0	0	0	0
7:30 AM	0	0	232	0	0	5	119	0	0	1	0	20	0	6	0	9	392	1,775	2	0	0	1
7:45 AM	0	0	238	0	0	6	206	0	0	0	0	13	0	2	0	7	472	1,697	0	0	0	0
8:00 AM	0	0	208	1	0	5	218	0	0	0	0	13	0	8	0	9	462	1,494	0	0	0	0
8:15 AM	0	0	251	4	0	0	173	0	0	1	0	10	0	5	0	5	449		0	0	0	0
8:30 AM	0	0	154	0	0	2	126	0	0	1	1	14	0	11	0	5	314		0	0	0	0
8:45 AM	0	0	141	0	0	7	98	0	0	0	0	8	0	6	0	9	269		0	0	0	0

		East	bound			West	ound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	7	0	0	3	6	0	0	0	0	3	0	0	0	0	19
Lights	0	0	893	4	0	12	687	0	0	1	0	51	0	21	0	30	1,699
Mediums	0	0	29	1	0	1	23	0	0	1	0	2	0	0	0	0	57
Total	0	0	929	5	0	16	716	0	0	2	0	56	0	21	0	30	1,775


Location: #6 Chapin Furniture RIRO DW & Columbia Ave AM


Date and Start Time: Thursday, January 30, 2020

Peak Hour: 07:30 AM - 08:30 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM

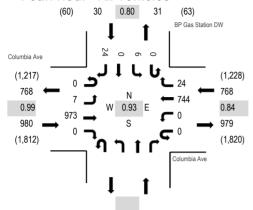
Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.

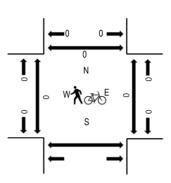
Traffic Counts

	(Columb	oia Ave		(Columb	ia Ave		Chapin	Furnitu	ire RIR	O DW	N	/lcDona	alds Enf							
Interval		Eastb	ound			Westb	ound			Northb	ound			South	oound			Rolling	Ped	estrair	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	5	258	0	0	0	89	4	0	0	0	0	0	0	0	0	356	1,583	0	0	0	0
7:15 AM	0	2	247	0	0	0	104	6	0	0	0	2	0	0	0	0	361	1,687	0	0	0	0
7:30 AM	0	9	250	0	0	0	125	7	0	0	0	0	0	0	0	0	391	1,774	0	0	0	0
7:45 AM	0	6	247	0	0	0	211	10	0	0	1	0	0	0	0	0	475	1,697	0	0	0	0
8:00 AM	0	7	222	0	0	0	222	9	0	0	0	0	0	0	0	0	460	1,491	0	0	0	0
8:15 AM	0	3	260	2	0	0	175	8	0	0	0	0	0	0	0	0	448		0	0	0	0
8:30 AM	0	5	174	1	0	0	129	5	0	0	0	0	0	0	0	0	314		0	0	0	0
8:45 AM	0	4	151	0	0	0	106	8	0	0	0	0	0	0	0	0	269		0	0	0	0

		East	bound			West	ound			North	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	9	0	0	0	10	0	0	0	0	0	0	0	0	0	19
Lights	0	25	937	2	0	0	697	34	0	0	1	0	0	0	0	0	1,696
Mediums	0	0	33	0	0	0	26	0	0	0	0	0	0	0	0	0	59
Total	0	25	979	2	0	0	733	34	0	0	1	0	0	0	0	0	1,774



Location: #7 BP Gas Station DW & Columbia Ave AM **Date and Start Time:** Thursday, January 30, 2020


Peak Hour: 07:30 AM - 08:30 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM

Peak Hour - All Vehicles

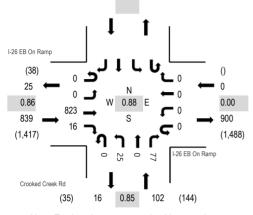
Peak Hour - Pedestrians/Bicycles in Crosswalk

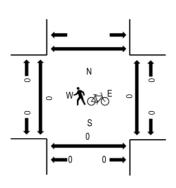
Note: Total study counts contained in parentheses.

Traffic Counts

	(Columb	oia Ave			Columb	ia Ave					BP	Gas S	tation D	W						
Interval		Eastb	ound			Westb	ound			Northb	ound		Southl	oound			Rolling	Ped	estrair	Crossing	JS
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	orth
7:00 AM	0	1	253	0	0	0	87	5				0	3	0	6	355	1,594	0	0		0
7:15 AM	0	1	250	0	0	0	103	8				0	2	0	6	370	1,698	0	0		0
7:30 AM	0	2	248	0	0	0	129	5				0	4	0	4	392	1,778	0	0		0
7:45 AM	0	2	247	0	0	0	215	9				0	0	0	4	477	1,706	0	0		0
8:00 AM	0	1	219	0	0	0	224	5				0	0	0	10	459	1,506	0	0		0
8:15 AM	0	2	259	0	0	0	176	5				0	2	0	6	450		0	0		0
8:30 AM	0	1	172	0	0	0	128	9				0	6	0	4	320		0	0		0
8:45 AM	0	0	154	0	0	0	113	7				0	1	0	2	277		0	0		0

		East	bound			West	oound			North	bound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	8	0	0	0	7	0					0	0	0	2	17
Lights	0	6	934	0	0	0	712	21					0	6	0	20	1,699
Mediums	0	1	31	0	0	0	25	3					0	0	0	2	62
Total	0	7	973	0	0	0	744	24					0	6	0	24	1,778


Location: #8 Crooked Creek Rd & I-26 EB On Ramp AM Date and Start Time: Thursday, January 30, 2020


Peak Hour: 07:00 AM - 08:00 AM

Peak 15-Minutes: 07:00 AM - 07:15 AM

Peak Hour - All Vehicles

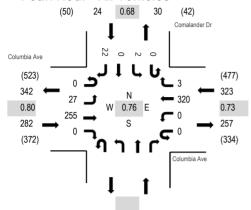
Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.

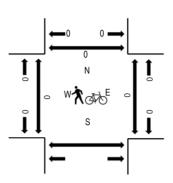
Traffic Counts

	I-2	6 EB C	n Ram	пр	I-26	EB O	n Ramp)	Cro	ooked C	reek Ro	t										
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestrair	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	0	240	3	0	0	0	0	0	3	0	20					266	941	0	0	0	
7:15 AM	0	0	221	3	0	0	0	0	0	3	0	27					254	819	0	0	0	
7:30 AM	0	0	200	7	0	0	0	0	0	10	0	19					236	745	0	0	0	
7:45 AM	0	0	162	3	0	0	0	0	0	9	0	11					185	659	0	0	0	
8:00 AM	0	0	124	5	0	0	0	0	0	7	0	8					144	620	0	0	0	
8:15 AM	0	0	164	6	0	0	0	0	0	2	0	8					180		0	0	0	
8:30 AM	0	0	139	4	0	0	0	0	0	1	0	6					150		0	0	0	
8:45 AM	0	0	132	4	0	0	0	0	0	3	0	7					146		0	0	0	

		East	bound			West	oound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	5	0	0	0	0	0	0	0	0	0					5
Lights	0	0	811	16	0	0	0	0	0	25	0	77					929
Mediums	0	0	7	0	0	0	0	0	0	0	0	0					7
Total	0	0	823	16	0	0	0	0	0	25	0	77					941



Location: #9 Comalander Dr & Columbia Ave AM **Date and Start Time:** Thursday, January 30, 2020


Peak Hour: 07:45 AM - 08:45 AM

Peak 15-Minutes: 08:00 AM - 08:15 AM

Peak Hour - All Vehicles

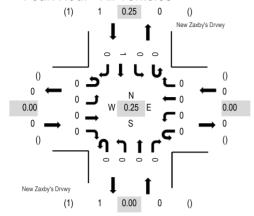
Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.

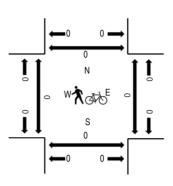
Traffic Counts

		(Columb	oia Ave		С	olumbi	a Ave					C	omala	nder Dr							
	Interval		Eastb	ound			Westb	ound			Northb	ound		South	oound			Rolling	Ped	estrain	Crossing	JS
_	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South N	orth
	7:00 AM	0	1	12	0	0	0	41	0				0	0	0	10	64	396	0	0		0
	7:15 AM	0	2	21	0	0	0	49	0				0	0	0	6	78	538	0	0		0
	7:30 AM	0	7	32	0	0	0	38	0				0	0	0	6	83	621	0	0		0
	7:45 AM	0	7	62	0	0	0	95	2				0	0	0	5	171	629	0	0		0
	8:00 AM	0	4	84	0	0	0	110	0				0	0	0	8	206	503	0	0		0
	8:15 AM	0	4	81	0	0	0	70	1				0	1	0	4	161		0	0		0
	8:30 AM	0	12	28	0	0	0	45	0				0	1	0	5	91		0	0		0
	8:45 AM	1	2	12	0	0	0	26	0				0	0	0	4	45		0	0		0

		East	bound			West	oound			North	bound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	2	1	0	0	0	8	0					0	0	0	0	11
Lights	0	24	237	0	0	0	295	3					0	0	0	21	580
Mediums	0	1	17	0	0	0	17	0					0	2	0	1	38
Total	0	27	255	Λ	0	0	320	3					0	2	0	22	629


Location: #1 New Zaxby's Drvwy & PM

Date and Start Time: Thursday, January 30, 2020


Peak Hour: 04:00 PM - 05:00 PM

Peak 15-Minutes: 04:00 PM - 04:15 PM

Peak Hour - All Vehicles

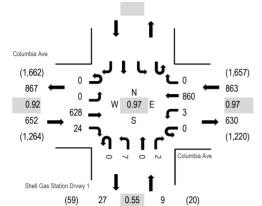
Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.

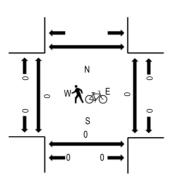
Traffic Counts

									Nev	ν Zaxby	y's Drvı	NY	Ne	w Zaxb	y's Drv	wy						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestrair	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0

		East	bound			West	oound			North	oound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lights	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
Mediums	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1


Location: #2 Shell Gas Station Drvwy 1 & Columbia Ave PM

Date and Start Time: Thursday, January 30, 2020


Peak Hour: 05:00 PM - 06:00 PM

Peak 15-Minutes: 05:15 PM - 05:30 PM

Peak Hour - All Vehicles

Peak Hour - Pedestrians/Bicycles in Crosswalk

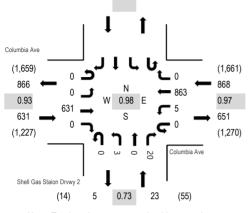
Note: Total study counts contained in parentheses.

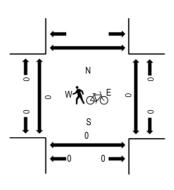
Traffic Counts

	(Columb	oia Ave		C	olumb	ia Ave		Shell C	Sas Sta	tion Dr	vwy 1										
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestraii	n Cross	sings
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	0	192	9	0	0	212	0	0	3	0	2					418	1,417	0	0	1	
4:15 PM	0	0	144	8	0	1	183	0	0	2	0	1					339	1,390	0	0	0	
4:30 PM	0	0	122	6	0	4	205	0	0	0	0	1					338	1,443	0	0	0	
4:45 PM	0	0	128	3	0	1	188	0	0	2	0	0					322	1,480	0	0	0	
5:00 PM	0	0	172	5	0	0	213	0	0	1	0	0					391	1,524	0	0	0	
5:15 PM	0	0	159	8	0	2	221	0	0	2	0	0					392		0	0	0	
5:30 PM	0	0	160	6	0	0	207	0	0	1	0	1					375		0	0	0	
5:45 PM	0	0	137	5	0	1	219	0	0	3	0	1					366		0	0	0	

		East	bound			West	oound			North	oound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0					0
Lights	0	0	616	24	0	3	855	0	0	7	0	2					1,507
Mediums	0	0	12	0	0	0	5	0	0	0	0	0					17
Total	0	0	628	24	0	3	860	0	Λ	7	0	2					1 524

Location: #3 Shell Gas Staion Drvwy 2 & Columbia Ave PM


Date and Start Time: Thursday, January 30, 2020


Peak Hour: 05:00 PM - 06:00 PM

Peak 15-Minutes: 05:00 PM - 05:15 PM

Peak Hour - All Vehicles

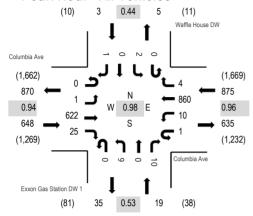
${\bf Peak\ Hour\ -\ Pedestrians/Bicycles\ in\ Crosswalk}$

Note: Total study counts contained in parentheses.

Traffic Counts

	(Columbia Ave				Columbi	a Ave		Shell (Gas Sta	ion Drv	wy 2										
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestrair	Cross	ings
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	0	198	1	0	3	209	0	0	2	0	9					422	1,421	0	0	1	
4:15 PM	0	0	145	1	0	3	184	0	0	1	0	9					343	1,388	0	0	0	
4:30 PM	0	0	119	1	0	0	205	0	0	2	0	5					332	1,433	0	0	0	
4:45 PM	0	0	131	0	0	0	189	0	0	1	0	3					324	1,477	0	0	0	
5:00 PM	0	0	169	0	0	1	214	0	0	2	0	3					389	1,522	0	0	0	
5:15 PM	0	0	159	0	0	0	220	0	0	1	0	8					388		0	0	0	
5:30 PM	0	0	162	0	0	2	207	0	0	0	0	5					376		0	0	0	
5:45 PM	0	0	141	0	0	2	222	0	0	0	0	4					369		0	0	0	

		East	bound			West	ound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	1	0	0	0	0	0	0	0	0	0					1
Lights	0	0	619	0	0	5	859	0	0	3	0	20					1,506
Mediums	0	0	11	0	0	0	4	0	0	0	0	0					15
Total	0	0	631	0	0	5	863	0	0	3	0	20					1,522


Location: #4 Exxon Gas Station DW 1 & Columbia Ave PM

Date and Start Time: Thursday, January 30, 2020

Peak Hour: 05:00 PM - 06:00 PM

Peak 15-Minutes: 05:15 PM - 05:30 PM

Peak Hour - All Vehicles

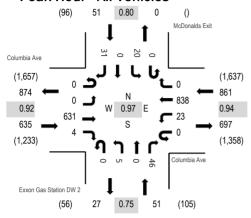
Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.

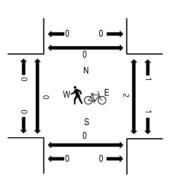
Traffic Counts

	(Columb	oia Ave		C	olumbi	a Ave		Exxor	Gas S	tation D	W 1	W	affle Ho	use D\	N						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	oound			Rolling	Ped	destrair	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	0	196	13	0	2	209	1	0	1	0	4	0	0	0	2	428	1,441	1	0	0	1
4:15 PM	0	0	148	6	0	5	183	2	0	3	0	4	0	0	0	0	351	1,404	0	0	0	0
4:30 PM	0	2	116	5	0	2	202	0	0	1	0	3	0	1	0	3	335	1,446	0	0	0	0
4:45 PM	0	1	123	11	0	2	186	0	0	2	0	1	0	1	0	0	327	1,496	0	0	0	1
5:00 PM	0	0	167	5	1	2	211	0	0	1	0	4	0	0	0	0	391	1,545	0	0	0	0
5:15 PM	0	0	160	7	0	1	221	2	0	1	0	1	0	0	0	0	393		0	0	0	0
5:30 PM	0	0	157	8	0	4	203	2	0	6	0	3	0	2	0	0	385		0	0	0	1
5:45 PM	0	1	138	5	0	3	225	0	0	1	0	2	0	0	0	1	376		0	0	0	0

		East	bound			West	oound			North	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Lights	0	1	610	25	1	9	855	4	0	9	0	9	0	2	0	1	1,526
Mediums	0	0	11	0	0	1	5	0	0	0	0	1	0	0	0	0	18
Total	0	1	622	25	1	10	860	4	Λ	9	٥	10	0	2	0	1	1 545


Location: #5 Exxon Gas Station DW 2 & Columbia Ave PM

Date and Start Time: Thursday, January 30, 2020


Peak Hour: 05:00 PM - 06:00 PM

Peak 15-Minutes: 05:00 PM - 05:15 PM

Peak Hour - All Vehicles

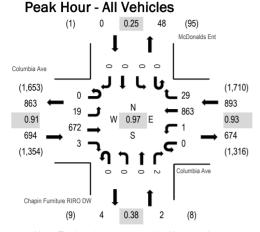
Peak Hour - Pedestrians/Bicycles in Crosswalk

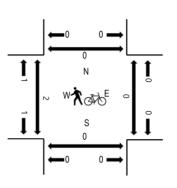
Note: Total study counts contained in parentheses.

Traffic Counts

	(Columb	oia Ave		(Columb	ia Ave		Exxon	Gas S	tation [)W 2	N	/lcDona	alds Exi	t						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	estrair	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	0	199	2	0	5	203	0	0	1	0	17	0	6	0	8	441	1,473	0	0	0	2
4:15 PM	0	0	151	1	0	10	180	0	0	0	0	13	0	6	0	8	369	1,443	0	0	0	0
4:30 PM	0	0	122	0	0	7	196	0	0	0	0	10	0	1	0	6	342	1,478	0	0	0	0
4:45 PM	0	0	122	1	0	3	172	0	0	2	0	11	0	3	0	7	321	1,526	0	0	0	0
5:00 PM	0	0	172	0	0	5	205	0	0	1	0	12	0	8	0	8	411	1,598	0	2	0	0
5:15 PM	0	0	160	0	0	8	218	0	0	1	0	8	0	4	0	5	404		0	0	0	0
5:30 PM	0	0	161	2	0	2	194	0	0	2	0	15	0	3	0	11	390		0	0	0	0
5:45 PM	0	0	138	2	0	8	221	0	0	1	0	11	0	5	0	7	393		0	0	0	0

		East	bound			West	oound			Northb	oound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	3
Lights	0	0	619	4	0	20	832	0	0	5	0	45	0	20	0	31	1,576
Mediums	0	0	11	0	0	2	6	0	0	0	0	0	0	0	0	0	19
Total	0	0	631	4	0	23	838	0	Λ	5	0	46	0	20	0	31	1 598


Location: #6 Chapin Furniture RIRO DW & Columbia Ave PM


Date and Start Time: Thursday, January 30, 2020

Peak Hour: 05:00 PM - 06:00 PM

Peak 15-Minutes: 05:15 PM - 05:30 PM

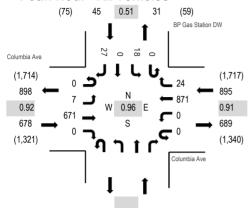
Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.

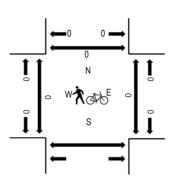
Traffic Counts

	(Columb	oia Ave		C	Columbi	a Ave		Chapin	Furnitu	re RIRO	DW C	Λ	/lcDona	lds Ent							
Interval		Eastb	ound			Westb	ound			Northb	ound			South	oound			Rolling	Ped	destrair	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	2	222	0	0	1	208	9	0	0	0	4	0	0	0	1	447	1,484	0	0	0	0
4:15 PM	0	5	163	2	0	0	190	6	0	1	0	0	0	0	0	0	367	1,444	0	0	0	0
4:30 PM	0	5	120	2	0	0	207	7	0	0	0	1	0	0	0	0	342	1,487	0	0	0	0
4:45 PM	0	7	132	0	0	0	183	6	0	0	0	0	0	0	0	0	328	1,526	0	0	0	0
5:00 PM	0	7	183	1	0	0	210	5	0	0	0	1	0	0	0	0	407	1,589	2	0	0	0
5:15 PM	0	3	169	1	0	0	228	9	0	0	0	0	0	0	0	0	410		0	0	0	0
5:30 PM	0	3	175	0	0	0	196	6	0	0	0	1	0	0	0	0	381		0	0	0	0
5:45 PM	0	6	145	1	0	1	229	9	0	0	0	0	0	0	0	0	391		0	0	0	0

		East	bound			West	oound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	3
Lights	0	19	659	3	0	1	855	29	0	0	0	2	0	0	0	0	1,568
Mediums	0	0	11	0	0	0	7	0	0	0	0	0	0	0	0	0	18
Total	0	19	672	3	0	1	863	29	0	0	0	2	0	0	0	0	1,589



(303) 216-2439 www.alltrafficdata.net **Location:** #7 BP Gas Station DW & Columbia Ave PM **Date and Start Time:** Thursday, January 30, 2020


Peak Hour: 05:00 PM - 06:00 PM

Peak 15-Minutes: 05:15 PM - 05:30 PM

Peak Hour - All Vehicles

Peak Hour - Pedestrians/Bicycles in Crosswalk

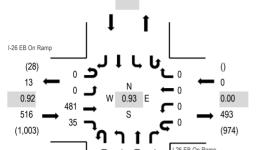
Note: Total study counts contained in parentheses.

Traffic Counts

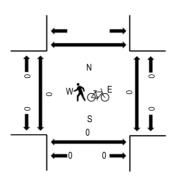
	(Columb	oia Ave		(Columb	ia Ave					BP	Gas S	tation D	W						
Interval		Eastb	ound			Westb	ound			Northb	ound		South	bound			Rolling	Ped	lestrair	Crossir	ngs
 Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	1	227	0	0	0	212	4				0	2	0	6	452	1,495	0	0		0
4:15 PM	0	2	160	0	0	0	191	6				0	3	0	5	367	1,459	0	0		0
4:30 PM	0	1	117	0	0	0	210	5				0	4	0	4	341	1,514	0	0		0
4:45 PM	0	1	134	0	0	0	186	8				0	4	0	2	335	1,559	0	0		0
5:00 PM	0	2	182	0	0	0	205	5				0	8	0	14	416	1,618	0	0		0
5:15 PM	0	2	170	0	0	0	237	8				0	4	0	1	422		0	0		0
5:30 PM	0	3	170	0	0	0	196	6				0	4	0	7	386		0	0		0
5:45 PM	0	0	149	0	0	0	233	5				0	2	0	5	394		0	0		0

Peak Rolling Hour Flow Rates

		East	bound			West	oound			North	oound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	3	0	0	0	1	0					0	0	0	0	4
Lights	0	7	658	0	0	0	863	24					0	18	0	27	1,597
Mediums	0	0	10	0	0	0	7	0					0	0	0	0	17
Total	0	7	671	0	0	0	871	24					0	18	0	27	1,618



(303) 216-2439 www.alltrafficdata.net Location: #8 Crooked Creek Rd & I-26 EB On Ramp PM Date and Start Time: Thursday, January 30, 2020


Peak Hour: 05:00 PM - 06:00 PM

Peak 15-Minutes: 05:00 PM - 05:15 PM

Peak Hour - All Vehicles

Peak Hour - Pedestrians/Bicycles in Crosswalk

0.63 Note: Total study counts contained in parentheses.

25

Traffic Counts

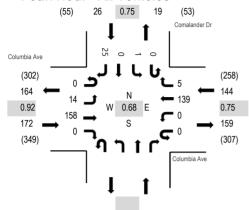
(59)

Crooked Creek Rd

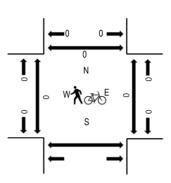
Interval	I-2	6 EB C Eastb	On Ram ound	пр		EB O Westb	n Ramp ound		Cro	ooked (Northb		Rd		South	bound			Rollina	Ped	lestrai	n Cross	sings
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total		West	East	South	North
4:00 PM	0	0	163	3	0	0	0	0	0	5	0	8					179	520	0	0	0	
4:15 PM	0	0	116	6	0	0	0	0	0	2	0	4					128	487	0	0	0	
4:30 PM	0	0	90	12	0	0	0	0	0	2	0	3					107	496	0	0	0	
4:45 PM	0	0	94	3	0	0	0	0	0	6	0	3					106	532	0	0	0	
5:00 PM	0	0	130	10	0	0	0	0	0	3	0	3					146	541	0	0	0	
5:15 PM	0	0	123	11	0	0	0	0	0	1	0	2					137		0	0	0	
5:30 PM	0	0	125	5	0	0	0	0	0	8	0	5					143		0	0	0	
5:45 PM	0	0	103	9	0	0	0	0	0	1	0	2					115		0	0	0	

Peak Rolling Hour Flow Rates

		East	bound			West	oound			North	oound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	2	0	0	0	0	0	0	0	0	0					2
Lights	0	0	472	34	0	0	0	0	0	12	0	12					530
Mediums	0	0	7	1	0	0	0	0	0	1	0	0					9
Total	0	0	481	35	0	Λ	0	0	0	13	0	12					541



(303) 216-2439 www.alltrafficdata.net **Location:** #9 Comalander Dr & Columbia Ave PM **Date and Start Time:** Thursday, January 30, 2020


Peak Hour: 04:00 PM - 05:00 PM

Peak 15-Minutes: 04:00 PM - 04:15 PM

Peak Hour - All Vehicles

Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.

Traffic Counts

	(Columb	oia Ave		C	olumbi	a Ave					C	Comala	nder Di	•						
Interval		Eastb	ound			Westb	ound			Northb	ound		Southl	oound			Rolling	Ped	lestrair	n Crossir	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	3	64	0	0	0	47	1				0	0	0	11	126	342	0	0		0
4:15 PM	0	3	35	0	0	0	25	0				0	1	0	4	68	294	0	0		0
4:30 PM	0	4	27	0	0	0	33	1				0	0	0	5	70	311	0	0		0
4:45 PM	0	4	32	0	0	0	34	3				0	0	0	5	78	317	0	0		0
5:00 PM	0	5	35	0	0	0	28	0				0	0	0	10	78	320	0	0		0
5:15 PM	0	11	33	0	0	0	30	1				0	0	0	10	85		0	0		0
5:30 PM	0	6	42	0	0	0	21	3				0	0	0	4	76		0	0		0
5:45 PM	0	7	38	0	0	0	30	1				0	0	0	5	81		0	0		0

Peak Rolling Hour Flow Rates

		East	bound			West	oound			North	oound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0					0	0	0	0	0
Lights	0	14	153	0	0	0	137	5					0	1	0	23	333
Mediums	0	0	5	0	0	0	2	0					0	0	0	2	9
Total	0	14	158	0	0	0	139	5					0	1	0	25	342

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 RAMEY KEMP ASSOCIATES

Moving forward.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

APPENDIX C

Volume Development Worksheets

S-48/Columbia Avenue at Ellett Road/New Frontage Road

TRAFFIC CONTROL: Unsignalized

DATE COUNTED: Wednesday, January 15, 2020

AM PEAK HOUR	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 RAW TRAFFIC VOLUMES*				111		179		789	152	156	608	
Balance Adjustment								4				
2020 EXISTING TRAFFIC VOLUMES				111		179		793	152	156	608	
Years To Buildout (2024)				4		4		4	4	4	4	
Yearly Growth Rate				0.0%		0.0%		1.5%	0.0%	0.0%	1.5%	
Background Traffic Growth				0		0		46	0	0	36	
Balance Adjustment												
Chapin Comm. Village Vested Volumes								211			182	
Chapin Tech. Park Vested Volumes	36		24				125	258			347	175
2024 NO-BUILD TRAFFIC VOLUMES	36	0	24	111	0	179	125	1,308	152	156	1,173	175
Build Alt. Diversion (Ellet Road)	3		1				1	-1				5
Build Alt. Diversion (Crooked Creek Road)				7		105		-16	16	1	-7	
2024 BUILD TRAFFIC VOLUMES	39	0	25	118	0	284	126	1,291	168	157	1,166	180
Years To Buildout (2044)				24		24		24	24	24	24	
Yearly Growth Rate				0.0%		0.0%		1.5%	0.0%	0.0%	1.5%	
Background Traffic Growth				0		0		285	0	0	218	
Balance Adjustment												
Chapin Comm. Village Vested Volumes								211			182	
Chapin Tech. Park Vested Volumes	36		24				125	258			347	175
2044 NO-BUILD TRAFFIC VOLUMES	36	0	24	111	0	179	125	1,547	152	156	1,355	175
Build Alt. Diversion (Ellet Road)	4		1				1	-1				6
Build Alt. Diversion (Crooked Creek Road)				10		134		-21	21	1	-10	
2044 BUILD TRAFFIC VOLUMES	40	0	25	121	0	313	126	1,525	173	157	1.345	181

PM PEAK HOUR	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 RAW TRAFFIC VOLUMES*				109		160		532	112	142	800	
Balance Adjustment											-6	
2020 EXISTING TRAFFIC VOLUMES				109		160		532	112	142	794	
Years To Buildout (2024)				4		4		4	4	4	4	
Yearly Growth Rate				0.0%		0.0%		1.5%	0.0%	0.0%	1.5%	
Background Traffic Growth				0		0		33	0	0	48	
Balance Adjustment												
Chapin Comm. Village Vested Volumes								332			283	
Chapin Tech. Park Vested Volumes	155		104				26	491			413	39
2024 NO-BUILD TRAFFIC VOLUMES	155	0	104	109	0	160	26	1,388	112	142	1,538	39
Build Alt. Diversion (Ellet Road)	12		5				2	-2				19
Build Alt. Diversion (Crooked Creek Road)				0		19		-35	35	2	0	
2024 BUILD TRAFFIC VOLUMES	167	0	109	109	0	179	28	1,351	147	144	1,538	58
Years To Buildout (2044)				24		24		24	24	24	24	
Yearly Growth Rate				0.0%		0.0%		1.5%	0.0%	0.0%	1.5%	
Background Traffic Growth				0		0		192	0	0	287	
Balance Adjustment												
Chapin Comm. Village Vested Volumes								332			283	
Chapin Tech. Park Vested Volumes	155		104				26	491			413	39
2044 NO-BUILD TRAFFIC VOLUMES	155	0	104	109	0	160	26	1,547	112	142	1,777	39
Build Alt. Diversion (Ellet Road)	16		7				3	-3				24
Build Alt. Diversion (Crooked Creek Road)				0		24		-45	45	3	0	
2044 BUILD TRAFFIC VOLUMES	171	0	111	109	0	184	29	1,499	157	145	1,777	63

*Notes:

 $\label{light orange-shaded volumes} \textit{ are the diverted trips of the six driveways located just south of the current interchange.}$

Blue-shaded volumes for the S-48/Columbia Avenue through movements derived from the existing I-26 EB Ramps/Ellet Road intersection and the diverted trips of the six driveways located just south of the current interchange.

S-48/Columbia Avenue at I-26 EB Ramps

TRAFFIC CONTROL: Unsignalized

DATE COUNTED: Wednesday, January 15, 2020

AM PEAK HOUR	EBL	EBT	EBR	EBR2	SEBL	SEBT	SEBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 RAW TRAFFIC VOLUMES	12	4	62	1	1	2	1	7	0	22	1	322	645	19	690	4
Balance Adjustment												4			4	
2020 EXISTING TRAFFIC VOLUMES	12	4	62	1	1	2	1	7	0	22	1	326	645	19	694	4
Years To Buildout (2024)	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Yearly Growth Rate	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Background Traffic Growth	1	0	4	0	0	0	0	0	0	1	0	20	39	1	42	0
Balance Adjustment			-1									-1	-10		-8	
Chapin Comm. Village Vested Volumes	21											211		127	182	
Chapin Tech. Park Vested Volumes			68									36	258		454	
2024 NO-BUILD TRAFFIC VOLUMES	34	4	133	1	1	2	1	7	0	23	1	592	932	147	1,364	4
Build Alt. Diversion (Ellet Road)			1	-1	-1	-2	-1				-1	1	2		4	-4
Build Alt. Diversion (Crooked Creek Road)								-7	0	-23		23	66	-1	1	
2024 BUILD TRAFFIC VOLUMES	34	4	134	0	0	0	0	0	0	0	0	616	1,000	146	1,369	0
Years To Buildout (2044)	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
Yearly Growth Rate	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Background Traffic Growth	4	1	22	0	0	1	0	3	0	8	0	118	232	7	250	1
Balance Adjustment			-7									-7	-57		-49	
Chapin Comm. Village Vested Volumes	21											211		127	182	
Chapin Tech. Park Vested Volumes			68									36	258		454	
2044 NO-BUILD TRAFFIC VOLUMES	37	5	145	1	1	3	1	10	0	30	1	684	1,078	153	1,531	5
Build Alt. Diversion (Ellet Road)			1	-1	-1	-3	-1				-1	1	3		5	-5
Build Alt. Diversion (Crooked Creek Road)								-10	0	-30		30	83	-1	1	
2044 BUILD TRAFFIC VOLUMES	37	5	146	0	0	0	0	0	0	0	0	715	1,164	152	1,537	0

PM PEAK HOUR	EBL	EBT	EBR	EBR2	SEBL	SEBT	SEBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 RAW TRAFFIC VOLUMES	20	5	73	6	4	8	5	0	0	6	2	228	462	37	864	12
Balance Adjustment																
2020 EXISTING TRAFFIC VOLUMES	20	5	73	6	4	8	5	0	0	6	2	228	462	37	864	12
Years To Buildout (2024)	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Yearly Growth Rate	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Background Traffic Growth	1	0	4	0	0	0	0	0	0	0	0	14	29	2	52	1
Balance Adjustment			-1									-1	-9		-8	
Chapin Comm. Village Vested Volumes	33											332		198	283	
Chapin Tech. Park Vested Volumes			60									84	562		392	
2024 NO-BUILD TRAFFIC VOLUMES	54	5	136	6	4	8	5	0	0	6	2	657	1,044	237	1,583	13
Build Alt. Diversion (Ellet Road)			6	-6	-4	-8	-5				-2	4	8		13	-13
Build Alt. Diversion (Crooked Creek Road)								0	0	-6		6	-22	-2	2	
2024 BUILD TRAFFIC VOLUMES	54	5	142	0	0	0	0	0	0	0	0	667	1,030	235	1,598	0
Years To Buildout (2044)	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
Yearly Growth Rate	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Background Traffic Growth	7	2	26	2	1	3	2	0	0	2	1	82	167	13	311	4
Balance Adjustment			-5									-8	-50		-46	
Chapin Comm. Village Vested Volumes	33											332		198	283	
Chapin Tech. Park Vested Volumes			60									84	562		392	
2044 NO-BUILD TRAFFIC VOLUMES	60	7	154	8	5	11	7	0	0	8	3	718	1,141	248	1,804	16
Build Alt. Diversion (Ellet Road)			8	-8	-5	-11	-7				-3	5	11		16	-16
Build Alt. Diversion (Crooked Creek Road)								0		-8		8	-29	-3	3	
2044 BUILD TRAFFIC VOLUMES	60	7	162	0	0	0	0	0	0	0	0	731	1,123	245	1,823	0

S-48/Columbia Avenue at I-26 WB Ramps

TRAFFIC CONTROL: Unsignalized

DATE COUNTED: Wednesday, January 15, 2020

AM PEAK HOUR		EBR	WBL	WBT	WBR	NBL	NBT	SBT	SBR
2020 RAW TRAFFIC VOLUMES			414	1	14	86	275	299	68
Balance Adjustment			2					2	
2020 EXISTING TRAFFIC VOLUMES			416	1	14	86	275	301	68
Years To Buildout (2024)			4	4	4	4	4	4	4
Yearly Growth Rate			1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Background Traffic Growth			25	0	1	5	17	18	4
Balance Adjustment			-8			-1			
Chapin Comm. Village Vested Volumes					148		232	309	18
Chapin Tech. Park Vested Volumes			454			36			
2024 NO-BUILD TRAFFIC VOLUMES			887	1	163	126	524	628	90
Build Alt. Diversion (New Loop)		887	-887						
2024 BUILD TRAFFIC VOLUMES		887	0	1	163	126	524	628	90
Years To Buildout (2044)			24	24	24	24	24	24	24
Yearly Growth Rate			1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Background Traffic Growth			149	0	5	31	99	109	24
Balance Adjustment			-49			-7			
Chapin Comm. Village Vested Volumes					148		232	309	18
Chapin Tech. Park Vested Volumes			454			36			
2044 NO-BUILD TRAFFIC VOLUMES			970	1	167	146	606	719	110
Build Alt. Diversion (New Loop)		970	-970						
2044 BUILD TRAFFIC VOLUMES		970	0	1	167	146	606	719	110

PM PEAK HOUR	EBR	WBL	WBT	WBR	NBL	NBT	SBT	SBR
2020 RAW TRAFFIC VOLUMES		747	0	13	70	186	164	19
Balance Adjustment		1			1	1	1	
2020 EXISTING TRAFFIC VOLUMES		748	0	13	71	187	165	19
Years To Buildout (2024)		4	4	4	4	4	4	4
Yearly Growth Rate		1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Background Traffic Growth		45	0	1	4	11	10	1
Balance Adjustment		-8			-1			
Chapin Comm. Village Vested Volumes				233		365	481	27
Chapin Tech. Park Vested Volumes		392			84			
2024 NO-BUILD TRAFFIC VOLUMES		1,177	0	247	158	563	656	47
Build Alt. Diversion (New Loop)	1,177	-1,177						
2024 BUILD TRAFFIC VOLUMES	1,177	0	0	247	158	563	656	47
Years To Buildout (2044)		24	24	24	24	24	24	24
Yearly Growth Rate		1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Background Traffic Growth		269	0	5	25	67	59	7
Balance Adjustment		-46			-8			
Chapin Comm. Village Vested Volumes				233		365	481	27
Chapin Tech. Park Vested Volumes		392			84			
2044 NO-BUILD TRAFFIC VOLUMES		1,363	0	251	172	619	705	53
Build Alt. Diversion (New Loop)	1,363	-1,363						
2044 BUILD TRAFFIC VOLUMES	1,363	0	0	251	172	619	705	53

S-48/Columbia Avenue at Comalander Drive

TRAFFIC CONTROL: Unsignalized

DATE COUNTED: Thursday, January 30, 2020

AM PEAK HOUR	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 RAW TRAFFIC VOLUMES	27	255	0	0	320	3	0	0	0	2	0	22
Balance Adjustment	1	6			25							2
2020 EXISTING TRAFFIC VOLUMES	28	261	0	0	345	3	0	0	0	2	0	24
Years To Buildout (2024)	4	4	4	4	4	4	4	4	4	4	4	4
Yearly Growth Rate	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.59
Background Traffic Growth	2	16	0	0	21	0	0	0	0	0	0	1
Balance Adjustment												
Chapin Comm. Village Vested Volumes	190		190				163					164
Chapin Tech. Park Vested Volumes												
2024 NO-BUILD TRAFFIC VOLUMES	220	277	190	0	366	3	163	0	0	2	0	189
Build Alt. Diversion (Ellet Road)												
Build Alt. Diversion (Crooked Creek Road)												
2024 BUILD TRAFFIC VOLUMES	220	277	190	0	366	3	163	0	0	2	0	189
Years To Buildout (2044)	24	24	24	24	24	24	24	24	24	24	24	24
Yearly Growth Rate	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.59
Background Traffic Growth	10	94	0	0	124	1	0	0	0	1	0	9
Balance Adjustment												
Chapin Comm. Village Vested Volumes	190		190				163					164
Chapin Tech. Park Vested Volumes												
2044 NO-BUILD TRAFFIC VOLUMES	228	355	190	0	469	4	163	0	0	3	0	197
Build Alt. Diversion (Ellet Road)												
Build Alt. Diversion (Crooked Creek Road)												
2044 BUILD TRAFFIC VOLUMES	228	355	190	0	469	4	163	0	0	3	0	197

PM PEAK HOUR	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
2020 RAW TRAFFIC VOLUMES	14	158	0	0	139	5	0	0	0	1	0	25
Balance Adjustment	2	26			17							3
2020 EXISTING TRAFFIC VOLUMES	16	184	0	0	156	5	0	0	0	1	0	28
Years To Buildout (2024)	4	4	4	4	4	4	4	4	4	4	4	4
Yearly Growth Rate	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Background Traffic Growth	1	11	0	0	9	0	0	0	0	0	0	2
Balance Adjustment												
Chapin Comm. Village Vested Volumes	299		299				254					254
Chapin Tech. Park Vested Volumes												
2024 NO-BUILD TRAFFIC VOLUMES	316	195	299	0	165	5	254	0	0	1	0	284
Build Alt. Diversion (Ellet Road)												
Build Alt. Diversion (Crooked Creek Road)												
2024 BUILD TRAFFIC VOLUMES	316	195	299	0	165	5	254	0	0	1	0	284
Years To Buildout (2044)	24	24	24	24	24	24	24	24	24	24	24	24
Yearly Growth Rate	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%	1.5%
Background Traffic Growth	6	66	0	0	56	2	0	0	0	0	0	10
Balance Adjustment												
Chapin Comm. Village Vested Volumes	299		299				254					254
Chapin Tech. Park Vested Volumes												
2044 NO-BUILD TRAFFIC VOLUMES	321	250	299	0	212	7	254	0	0	1	0	292
Build Alt. Diversion (Ellet Road)												
Build Alt. Diversion (Crooked Creek Road)												
2044 BUILD TRAFFIC VOLUMES	321	250	299	0	212	7	254	0	0	1	0	292

I-26 EB On Ramp at Crooked Creek Road

TRAFFIC CONTROL: Unsignalized

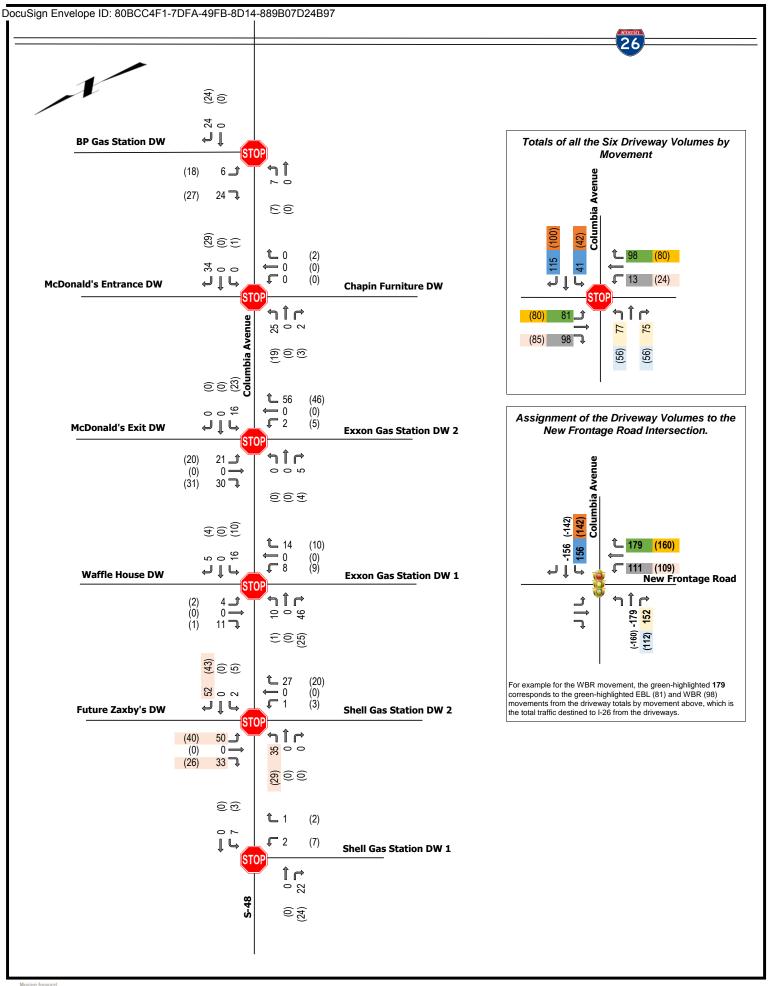
DATE COUNTED: Wednesday, January 15, 2020

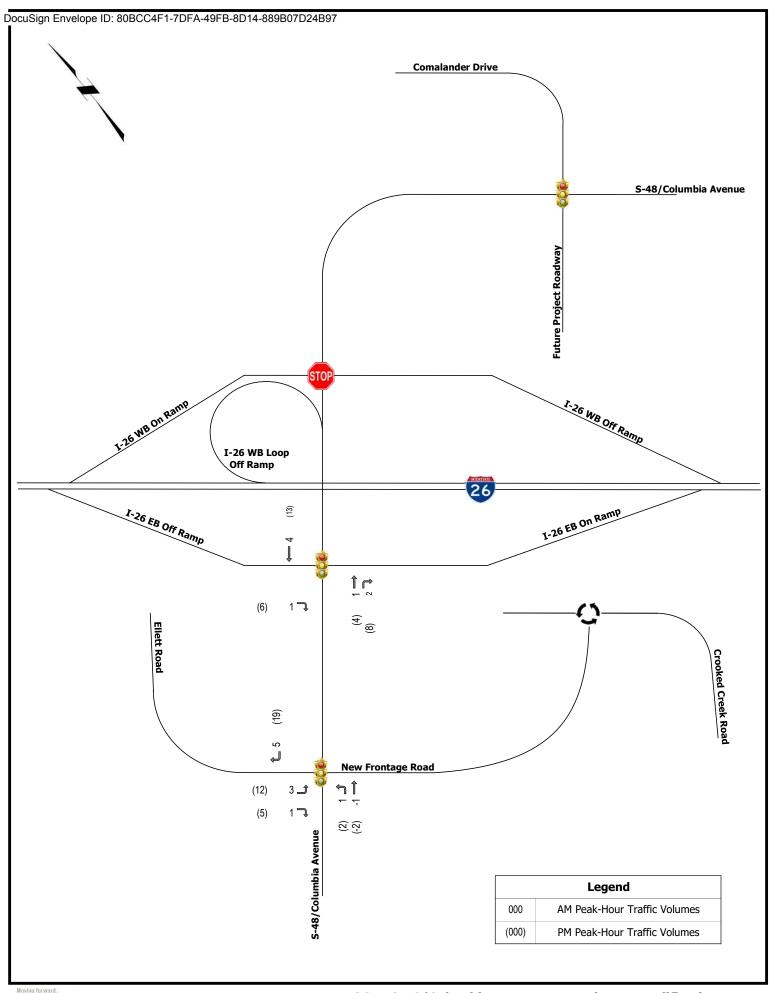
AM PEAK HOUR	EBT	EBR	N	BL	NBR		
2020 RAW TRAFFIC VOLUMES	654	16	2	29	77		
Balance Adjustment							
2020 EXISTING TRAFFIC VOLUMES	654	16	2	29	77		
Years To Buildout (2024)	4	4		4	4		
Yearly Growth Rate	1.5%	1.5%	1.	5%	1.5%		
Background Traffic Growth	39	1		1	5		
Balance Adjustment	-10						
Chapin Comm. Village Vested Volumes	127						
Chapin Tech. Park Vested Volumes	258						
2024 NO-BUILD TRAFFIC VOLUMES	1,068	17	3	30	82		
Build Alt. Diversion (Ellet Road)							
Build Alt. Diversion (Crooked Creek Road)		-17	-:	30	-82		
2024 BUILD TRAFFIC VOLUMES		0		0	0		
Years To Buildout (2044)	24	24	2	24	24		
Yearly Growth Rate	1.5%	1.5%	1.	5%	1.5%		
Background Traffic Growth	235	6	1	10	28		
Balance Adjustment	-57						
Chapin Comm. Village Vested Volumes	127						
Chapin Tech. Park Vested Volumes	258						
2044 NO-BUILD TRAFFIC VOLUMES	1,217	22	3	19	105		
Build Alt. Diversion (Ellet Road)							
Build Alt. Diversion (Crooked Creek Road)		-22	-:	39	-105		
2044 BUILD TRAFFIC VOLUMES		0		0	0		

PM PEAK HOUR	EBT	EBR		NBL	NBR		
2020 RAW TRAFFIC VOLUMES	477	35		6	12		
Balance Adjustment							
2020 EXISTING TRAFFIC VOLUMES	477	35		6	12		
Years To Buildout (2024)	4	4		4	4		
Yearly Growth Rate	1.5%	1.5%		1.5%	1.5%		
Background Traffic Growth	29	2		0	1		
Balance Adjustment	-9						
Chapin Comm. Village Vested Volumes	198						
Chapin Tech. Park Vested Volumes	562						
2024 NO-BUILD TRAFFIC VOLUMES	1,257	37		6	13		
Build Alt. Diversion (Ellet Road)							
Build Alt. Diversion (Crooked Creek Road)		-37		-6	-13		
2024 BUILD TRAFFIC VOLUMES		0		0	0		
Years To Buildout (2044)	24	24		24	24		
Yearly Growth Rate	1.5%	1.5%		1.5%	1.5%		
Background Traffic Growth	172	13		2	4		
Balance Adjustment	-50						
Chapin Comm. Village Vested Volumes	198						
Chapin Tech. Park Vested Volumes	562						
2044 NO-BUILD TRAFFIC VOLUMES	1,359	48		8	16		
Build Alt. Diversion (Ellet Road)							
Build Alt. Diversion (Crooked Creek Road)		-48		-8	-16		
2044 BUILD TRAFFIC VOLUMES		0		0	0		

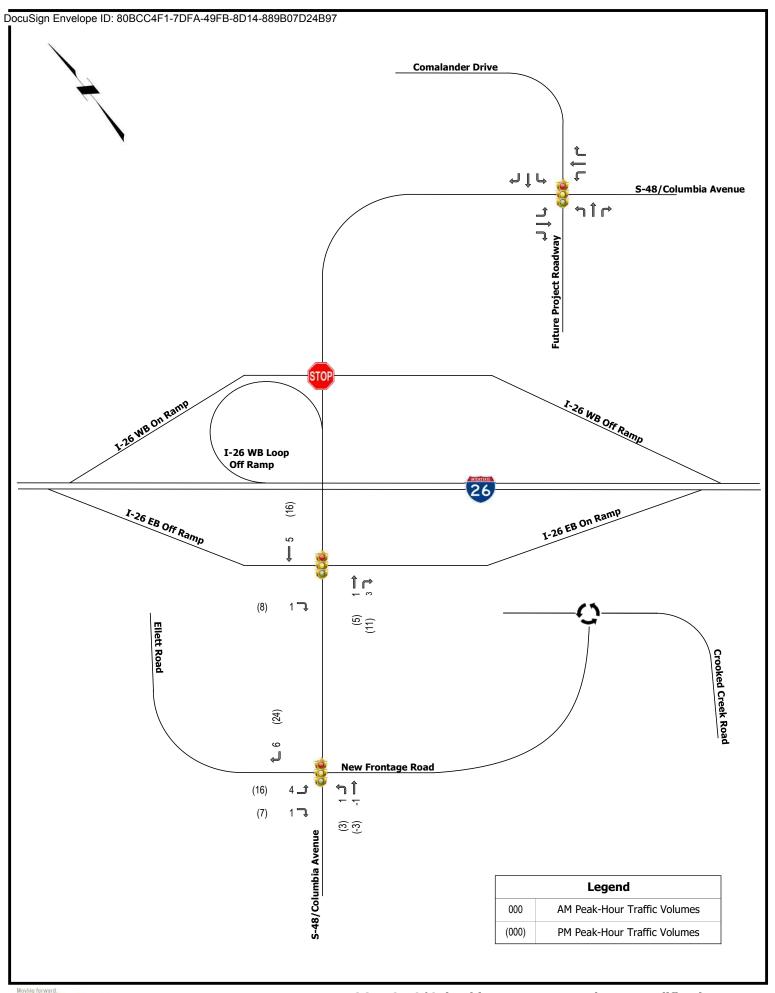
New Frontage Road at Crooked Creek Road

TRAFFIC CONTROL: Roundabout

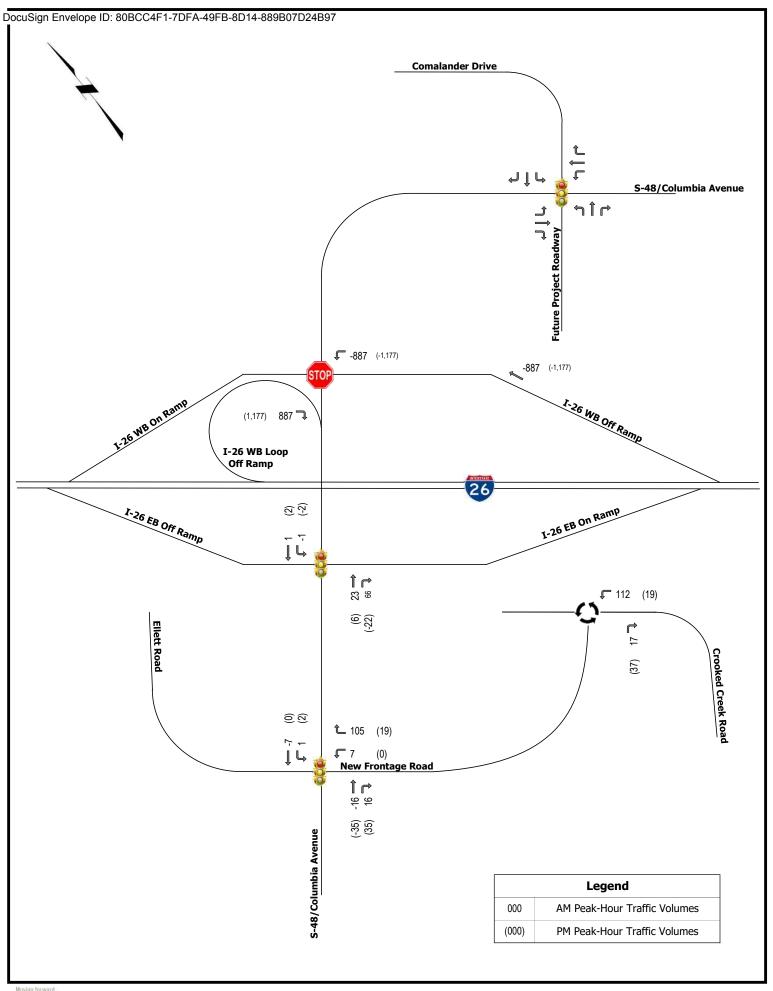

AM PEAK HOUR	EBT	EBR	WBL	WBT	NBL	NBR		
2020 RAW TRAFFIC VOLUMES								
Balance Adjustment								
2020 EXISTING TRAFFIC VOLUMES								
Years To Buildout (2024)								
Yearly Growth Rate								
Background Traffic Growth								
Balance Adjustment								
Chapin Comm. Village Vested Volumes								
Chapin Tech. Park Vested Volumes								
2024 NO-BUILD TRAFFIC VOLUMES								
Build Alt. Diversion (Ellet Road)								
Build Alt. Diversion (Crooked Creek Road)			112			17		
2024 BUILD TRAFFIC VOLUMES	0	0	112	0	0	17		
Years To Buildout (2044)								
Yearly Growth Rate								
Background Traffic Growth								
Balance Adjustment								
Chapin Comm. Village Vested Volumes								
Chapin Tech. Park Vested Volumes								
2044 NO-BUILD TRAFFIC VOLUMES								
Build Alt. Diversion (Ellet Road)								
Build Alt. Diversion (Crooked Creek Road)			144			22		
2044 BUILD TRAFFIC VOLUMES	0	0	144	0	0	22		

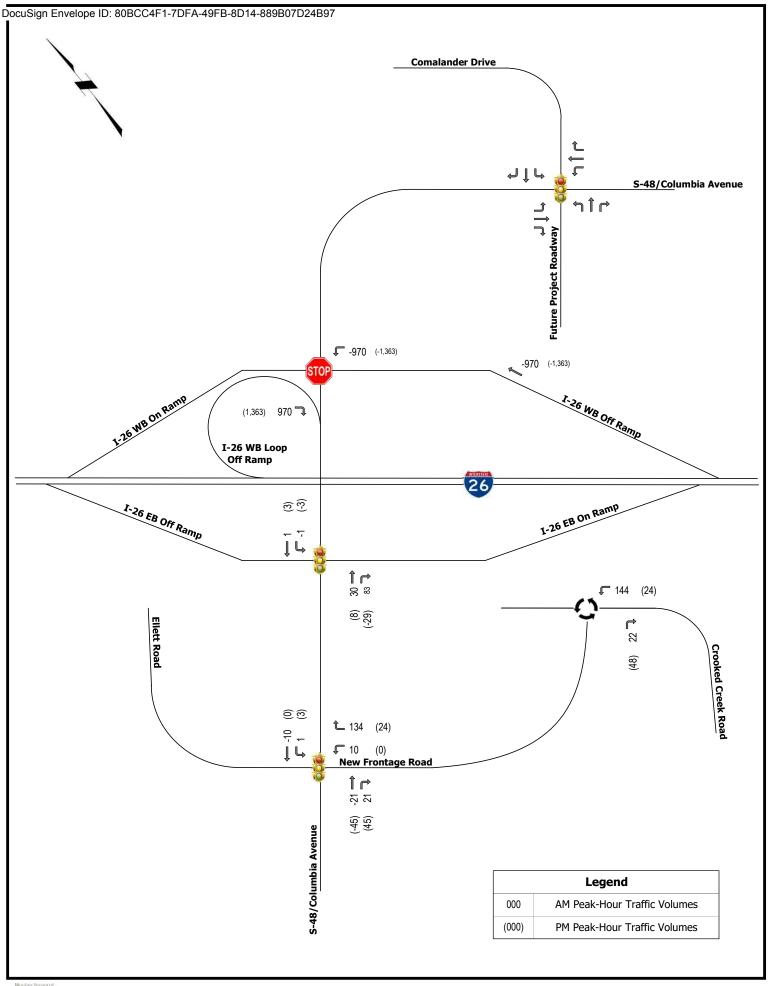

PM PEAK HOUR	EBT	EBR	WBL	WBT	NBL	NBR		
2020 RAW TRAFFIC VOLUMES								
Balance Adjustment								
2020 EXISTING TRAFFIC VOLUMES								
Years To Buildout (2024)								
Yearly Growth Rate								
Background Traffic Growth								
Balance Adjustment								
Chapin Comm. Village Vested Volumes								
Chapin Tech. Park Vested Volumes								
2024 NO-BUILD TRAFFIC VOLUMES								
Build Alt. Diversion (Ellet Road)								
Build Alt. Diversion (Crooked Creek Road)			19			37		
2024 BUILD TRAFFIC VOLUMES	0	0	19	0	0	37		
Years To Buildout (2044)								
Yearly Growth Rate								
Background Traffic Growth								
Balance Adjustment								
Chapin Comm. Village Vested Volumes								
Chapin Tech. Park Vested Volumes								
2044 NO-BUILD TRAFFIC VOLUMES								
Build Alt. Diversion (Ellet Road)								
Build Alt. Diversion (Crooked Creek Road)			24			48		
2044 BUILD TRAFFIC VOLUMES	0	0	24	0	0	48		

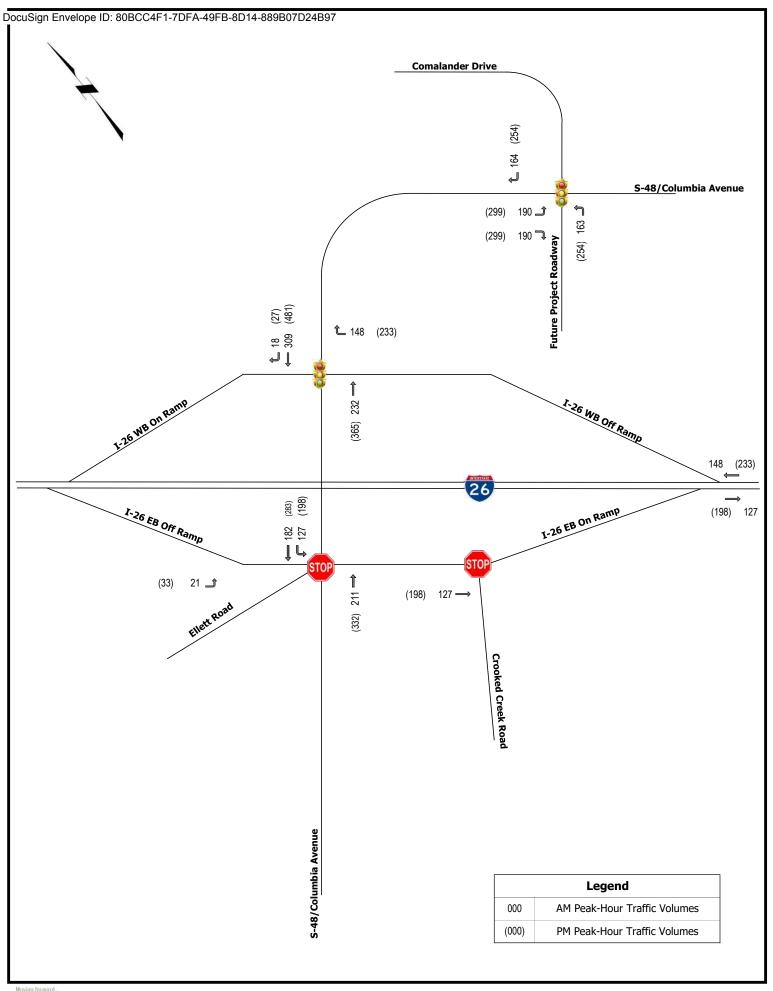
I-26

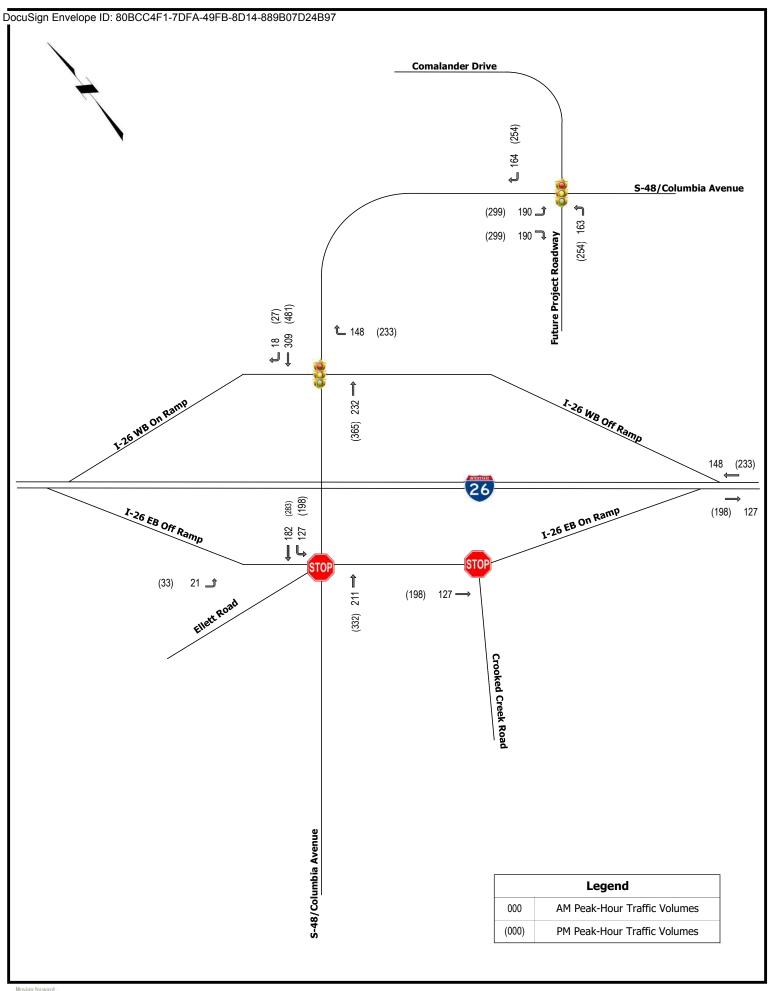

	E	B Mainlir	ne		WB M	ainline						
AM PEAK HOUR	N of S-48	Btwn Ramps	S of S-48	N of S-48	Btwn Ramps	Btwn Ramps	S of S-48	WB Off	WB Loop Off	WB On	EB Off	EB On
2014 TRAFFIC VOLUMES (AECOM)			1,981				1,195					
Years To Existing (2020)			6				6					
Yearly Growth Rate			2.0%				2.0%					
Background Traffic Growth			238				143					
2020 EXISTING TRAFFIC VOLUMES	1,567	1,488	2,219	1,062		907	1,338	431		155	79	731
Years To Buildout (2024)			4				4					
Yearly Growth Rate			2.0%				2.0%					
Background Traffic Growth			178				107					
Balance Adjustment												
Chapin Comm. Village Vested Volumes			127				148					
Chapin Tech. Park Vested Volumes			258				454					
2024 NO-BUILD TRAFFIC VOLUMES	1,804	1,632	2,782	1,213		996	2,047	1,051		217	172	1,150
Build Alt. Diversion (New Loop)								-887	887			
2024 BUILD TRAFFIC VOLUMES	1,804	1,632	2,782	1,213	996	1,883	2,047	164	887	217	172	1,150
Years To Buildout (2044)			24				24					
Yearly Growth Rate			2.0%				2.0%					
Background Traffic Growth			1,065				642					
Balance Adjustment												
Chapin Comm. Village Vested Volumes			127				148					
Chapin Tech. Park Vested Volumes			258				454					
2044 NO-BUILD TRAFFIC VOLUMES	2,535	2,347	3,669	1,701		1,444	2,582	1,138		257	188	1,322
Build Alt. Diversion (New Loop)								-970	970			
	-								-70			

		B Mainlir	ne		WB M	ainline		7					
PM PEAK HOUR	N of S-48	Btwn Ramps	S of S-48	N of S-48	Btwn Ramps	Btwn Ramps	S of S-48	WB Off	WB Loop Off	WB On	EB Off	EB On	
2014 TRAFFIC VOLUMES (AECOM)		Kamps	1,804		Kamps	Kamps	1,870		OII				
Years To Existing (2020)			6				6						
Yearly Growth Rate			2.0%				2.0%						
Background Traffic Growth			216				224						
2020 EXISTING TRAFFIC VOLUMES	1,635	1,531	2,020	1,423		1,333	2,094	761		90	104	489	
Years To Buildout (2024)			4				4						
Yearly Growth Rate			2.0%				2.0%						
Background Traffic Growth			162				168						
Balance Adjustment													
Chapin Comm. Village Vested Volumes			198				233						
Chapin Tech. Park Vested Volumes			562				392						
2024 NO-BUILD TRAFFIC VOLUMES	1,873	1,672	2,942	1,668		1,463	2,887	1,424		205	201	1,270	
Build Alt. Diversion (New Loop)								-1,177	1,177				
2024 BUILD TRAFFIC VOLUMES	1,873	1,672	2,942	1,668	1,463	2,640	2,887	247	1,177	205	201	1,270	
Years To Buildout (2044)			24				24						
Yearly Growth Rate			2.0%				2.0%						
Background Traffic Growth			970				1,005						
Balance Adjustment													
Chapin Comm. Village Vested Volumes			198				233						
Chapin Tech. Park Vested Volumes			562				392						
2044 NO-BUILD TRAFFIC VOLUMES	2,604	2,375	3,750	2,335		2,110	3,724	1,614		225	229	1,375	
Build Alt. Diversion (New Loop)								-1,363	1,363				
2044 BUILD TRAFFIC VOLUMES	2.604	2.375	3.750	2.335	2.110	3,473	3.724	251	1.363	225	229	1,37	

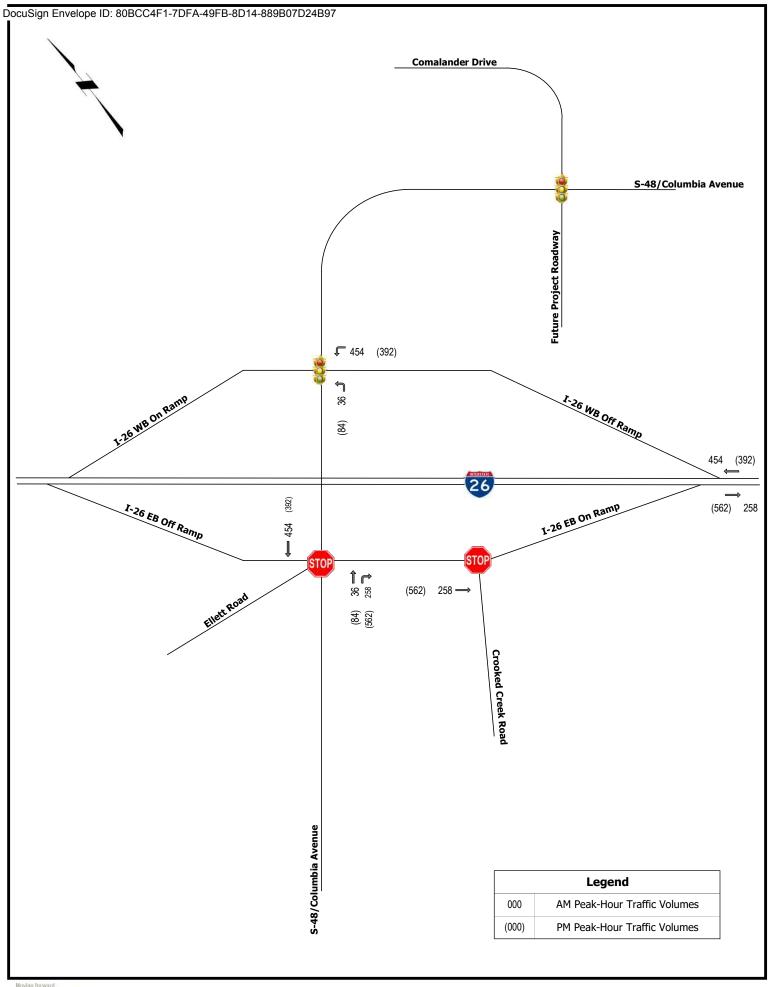


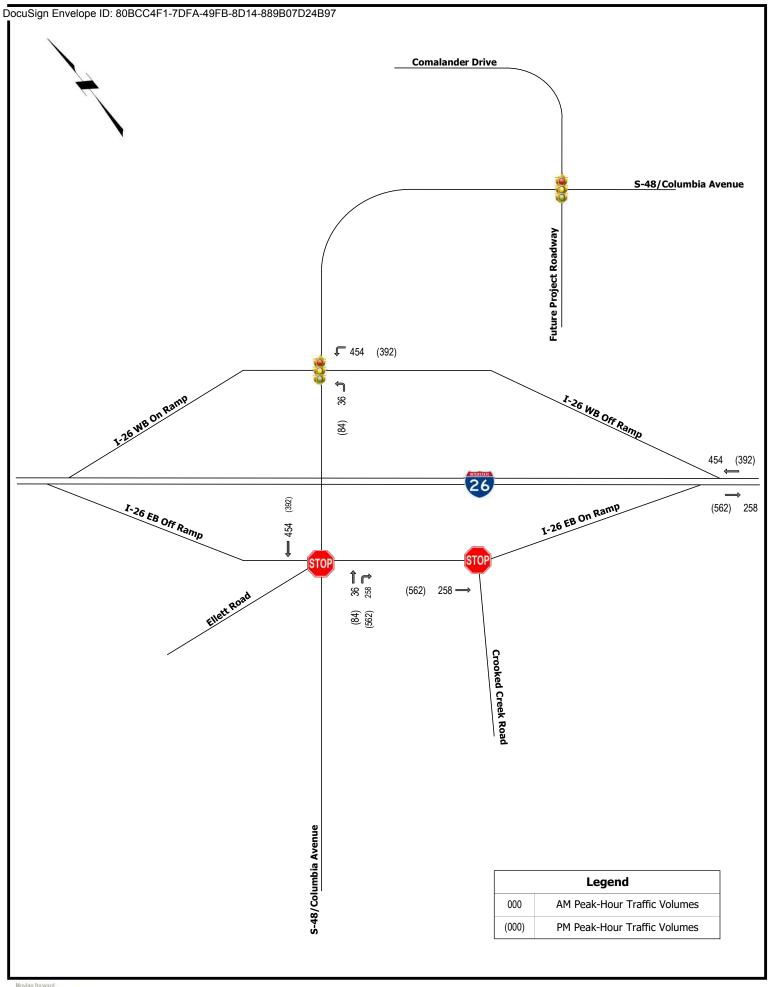






I-26 at S-48/Columbia Avenue - Interchange Modification Report Figure 4C - New I-26 WB Off Loop/Crooked Creek Road 2024 Traffic Diversions





DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 RAMEY KEMP ASSOCIATES

Moving forward.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

APPENDIX D

Freeway Analysis Worksheets

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM EB FWYSegment 85-91D.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1155 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 71.7 mi/h 16.1 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 Lane Width 12 ft Segment Length ft Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 1567 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2323

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

Demand Volume, V	1567	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1155	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

	acc opeca and benezely and		
Demand Flow Rate, vp	1155	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.7	mi/h	
Density, D	16.1	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:37:32

FREEWAY DIVERGE ANALYSIS File Name: AM EB Diverge 91 OffRamp.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln 14.3 Level of Service, LOS В Average Flow in Outer Lanes, vOA pc/h/ln Average Speed in Ramp Influence Area, SR 63.1 mi/h Average Speed in Outer Lanes of Freeway, SO 80.2 mi/h Average Speed for Off-Ramp (Diverge) Junction, S 63.1 mi/h Density Across All Lanes, D 17.4 pc/mi/ln _Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates_ Freeway Data Number of Freeway Lanes 1n 2 Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 1488 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n Ramp Free-Flow Speed, SFR 45.0 mi/h Right Ramp Side Length of First Deceleration Lane, LD or LD1 979 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp Demand Volume, V 79 veh/h 1488 0.95 Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 8.00 Percent SUTs % Percent TTs % Prop.Total Trucks, PT 0.2000 0.0800 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.862 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2194 96 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 2194 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violati	Lon?
vF	2194	4646	No	
vR	96	2033	No	
v12	2194	4400	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	ρο,
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather	•	Non-Severe Weath	er
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Step 4: Estimate Density in Rar Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	np influence Area an 2194 979 14.3 12.3 B	a Determir	ne LUS	pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	Vicinity of Ramp-Fr	eeway Jund	ctions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	•		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	2194			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2194			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for Off-Ramp, DS	0.321			
Average Speed in Ramp Influence Area, SR	63.1			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	80.2			mi/h
Avenage Speed for Off Rama Junction S	62 1			mi/h

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:31:07

63.1

17.4

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM EB FWYSegment 91D M.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1097 Adjusted Capacity, cadj pc/h/ln 2217 Speed, S 59.0 mi/h 18.6 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 1488 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Incident Type Incident Type CAF Final Capacity Adjustment Factor, CAF

Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	Adiust	Demand	Volume
3 LED	4.	AUTUST	Dellialiu	vorume

2217

Demand Volume, V	1488	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1097	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	zinace opeca ana sensety ana		
Demand Flow Rate, vp	1097	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	18.6	pc/mi/ln	
Level of Service, LOS	С	·	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:38:21

FREEWAY MERGE ANALYSIS AM_EB_Merge_910nRamp.xuf File Name: Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR pc/mi/ln 19.1 Level of Service, LOS Average Flow in Outer Lanes, vOA pc/h/ln Average Speed in Ramp Influence Area, SR 64.8 mi/h Average Speed in Outer Lanes of Freeway, SO 73.1 mi/h Average Speed for On-Ramp (Merge) Junction, S 64.8 mi/h Density Across All Lanes, D 23.1 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates___ Freeway Data Number of Freeway Lanes ln 2 Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Freeway Multilane Highway or C-D Roadway? Demand Volume, V 1488 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n Ramp Free-Flow Speed, SFR 45.0 mi/h Right Ramp Side Length of First Acceleration Lane, LA or LA1 1500 ft ft Length of Second Acceleration Lane, LA2 Junction Components Freeway Ramp Demand Volume, V veh/h 1488 731 0.95 Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 2.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2194 800 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for On-Ramps Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFM 1.000 Flow Rate in Lanes 1 and 2, v12 2194 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum		Violation	1?
vFO	2994	4646		No	
vR	800	2033		No	
vR12	2994	4600		No	
VICE	2334	4000		110	
	Freeway		Ramp		
Unadiusted Canacity and	4800		2100		nc/h
Unadjusted Capacity, cmd				milian	pc/h
Driver Population	Mostly Familiar		Mostly Fa	mitital.	
Driver Population CAF	0.968		0.968		
Weather Type	Non-Severe Weather	•	Non-Sever	e weather	
Weather Type CAF	1.000		1.000		
Incident Type	No Incident		-		
Final Capacity Adj. Factor, CAF	0.968		0.968		
Adjusted Capacity, cmda	4646		2033		pc/h
Step 4: Estimate Density in Ran Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	np Influence Area an 800 2194 1500 19.1 18.4 B	d Determir	ne LOS		pc/h pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the Freeway Free-Flow Speed, FFS	Vicinity of Ramp-Fr 75.0	eeway Junc	tions		 mi/h
Ramp Free-Flow Speed, SFR	45.0				mi/h
Length of Acceleration Lane, LA	1500				ft
Driver Population	Mostly Familiar				
Driver Population SAF	0.975				
Weather Type	Non-Severe Weather	,			
Weather Type SAF	1.000				
Final Speed Adjustment Factor, SAF	0.975				/l-
Demand Flow Rate on Freeway, vF	2194				pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2194				pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	2994				pc/h
Number of Outer Lanes on Freeway, NO	0				ln
Speed Index for On-Ramp, MS	0.267				
Average Speed in Ramp Influence Area, SR	64.8				mi/h
Average Flow in Outer Lanes, vOA	-				pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	73.1				mi/h
Average Speed in Outer Lanes of Freeway, 30	64.9				1111/11 mi/h

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:45:47

64.8

23.1

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

	BASIC FREEWAY SEGMENT ANALYSIS	
File Name:	AM_EB_FWYSegment_91M-97.xuf	
	RKA	
	RKA	
9 ,	Lexington County	
	04/8/2020	
	Existing (2020)	
	AM Peak-Hour	
-	I-26 at Columbia Avenue	
	Jnited States Customary	
	•	
	LOS and Performance Measures	
Flow Rate, vp	1636	pc/h/ln
Adjusted Capacity, cadj	2323	pc/h/ln
Speed, S	67.6	mi/h
Density, D	24.2	pc/mi/ln
Level of Service, LOS	С	
	Step 1: Input Data	
Number of Lanes, N	step 1. Input bata2	ln
Lane Width	12	ft
Segment Length	 -	ft
Terrain Type	Rolling	-
Percent Grade	-	%
Grade Length	-	mi
Right-Side Lateral Clearance	10	ft
Total Ramp Density, TRD	0.37	ramps/mi
		•
Demand Volume	2219	veh/h
Peak Hour Factor, PHF	0.95	
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
	Step 2: Estimate and Adjust FFS	
Estimating FFS	Step 2. Estimate and Adjust 113	
Measured or Base FFS	Base	
Base Free-Flow Speed, BFFS	75.0	mi/h
Lane Width	12	ft
Lane Width Adjustment, fLW	0.0	mi/h
Right-Side Lateral Clearance	10	ft
Right-Side Lateral Clearance Adj., f	RLC 0.0	mi/h
Total Ramp Density, TRD	0.37	ramps/mi
TRD Adjustment	1.4	mi/h
Free-Flow Speed, FFS	73.6	mi/h
Chood Addustmonts		
Speed Adjustments	Mastl., F	
Driver Population	Mostly Familiar	
Driver Population SAF	0.975	
Weather Type	Non-Severe Weather	
Weather Type SAF	1.000	
Final Speed Adjustment Factor, SAF	0.975 71.8	mi/h
Adjusted Free-Flow Speed, FFSadj	/1.0	1111/11
Adjusted Enga flow Speed FFSadj	_Step 3: Estimate and Adjust Capacity	 mi/h
Adjusted Free-flow Speed, FFSadj	71.8	
Capacity, c	2400	pc/h/ln
Capacity Adjustments		
Driver Population	Mostly Familiar	
Driver Population CAF	0.968	

0.968

Driver Population CAF

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2323

pc/h/ln

Sten	4.	Adiust	Demand	Volume

Demand Volume, V	2219	veh/h	
Peak Hour Factor, PHF	0.95		
Number of Lanes, N	2	ln	
Terrain Type	Rolling		
Percent Grade	-	%	
Grade Length	-	mi	
Percent Total Trucks	20.00	%	
Percent Single-Unit Trucks, SUT	-	%	
Percent Tractor-Trailers, TT	-	%	
Proportion of Total Trucks, PT	0.2000		
Heavy Vehicle PCE, ET	3.000		
Heavy Vehicle Adjustment, fHV	0.714		
Demand Adjustment Factor, DAF	1.000		
Demand Flow Rate, vp	1636	pc/h/ln	

Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1636	pc/h/ln
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h
Capacity Adjustment Factor, CAF	0.968	
Adjusted Capacity, cadj	2323	pc/h/ln
Breakpoint, BP	1057	pc/h/ln
Density at Capacity, Dc	45	pc/mi/ln
Mean Speed under Base Conditions, S	67.6	mi/h
Density, D	24.2	pc/mi/ln
Level of Service, LOS	С	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:38:50

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 97-91DR.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 986 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 71.6 mi/h 13.8 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.43 ramps/mi Demand Volume 1338 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.43 ramps/mi TRD Adjustment 1.6 mi/h 73.4 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.6 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.6 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	Adiust	Demand	Volume
3 LED	4.	AUTUST	Dellialiu	vorume

2323

Demand Volume, V	1338	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	986	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

		- C C C C C C C C C C C C C C C C C C C	
Demand Flow Rate, vp	986	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.6	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1064	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.6	mi/h	
Density, D	13.8	pc/mi/ln	
Level of Service, LOS	В	·	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:01:44

FREEWAY DIVERGE ANALYSIS File Name: AM WB Diverge 91 OffRamp.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln 5.2 Level of Service, LOS Α Average Flow in Outer Lanes, vOA pc/h/ln Average Speed in Ramp Influence Area, SR 62.0 mi/h Average Speed in Outer Lanes of Freeway, SO 80.2 mi/h Average Speed for Off-Ramp (Diverge) Junction, S 62.0 mi/h Density Across All Lanes, D 10.8 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates_ Freeway Data Number of Freeway Lanes 2 ln Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1469 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 907 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n mi/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Deceleration Lane, LD or LD1 1176 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp Demand Volume, V 907 veh/h 431 Peak Hour Factor, PHF 0.95 0.95 % Percent Total Trucks 20.00 5.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0500 3.000 Heavy Vehicle PCE, ET 3.000 0.909 Heavy Vehicle Adj., fHV 0.714 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 1337 499 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 1337 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violation	1?
vF	1337	4646	No	
vR	499	2033	No	
v12	1337	4400	No	
111	1337	1100	110	
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	F - /
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather	•	Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Step 4: Estimate Density in Rar	mp Influence Area an	d Determir	ne LOS	
Demand Flow Rate in Lanes 1 and 2, v12	1337			pc/h
Length of Deceleration Lane, LA	1176			ft
Density in Off-Ramp Influence Area, DR	5.2			pc/mi/ln
Density in Off-Ramp Influence Area, DR	4.7			veh/mi/ln
Level of Service, LOS	Α			
Step 5: Estimate Speeds in the	-	eeway Junc	tions	.,,
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	•		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	1337			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1337			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for Off-Ramp, DS	0.357			
Average Speed in Ramp Influence Area, SR	62.0			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	80.2			mi/h
Avenage Speed for Off Rama Junction S	62.0			mi/h

This Freeway Diverge Segment text report was created in HCS $^{\text{\tiny{IM}}}$ Freeways Version 7.8 on 4/9/2020 08:31:37

62.0

10.8

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 91D-91M.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 668 Adjusted Capacity, cadj pc/h/ln 2217 Speed, S 59.0 mi/h pc/mi/ln Density, D 11.3 Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 907 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Sten	4:	Adiust	Demand	Volume

Demand Volume, V	907	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	668	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

		- C C C C C C C C C C C C C C C C C C C	
Demand Flow Rate, vp	668	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	11.3	pc/mi/ln	
Level of Service, LOS	В	·	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:39:28

	FRFFWAY MF	RGE ANALYSIS			
File Name:	AM_WB_Merge_910nRa				
	RKA	•			
	RKA				
0 ,	Lexington County				
	04/8/2020				
	Existing (2020)				
	AM Peak-Hour				
	I-26 at Columbia A	venue			
	United States Cust	omary			
		rmance Measures			
Density in On-Ramp (Merge) Influence Ar	ea, DR	9.6	pc/mi/ln		
Level of Service, LOS		Α			
Average Flow in Outer Lanes, vOA		-	pc/h/ln		
Average Speed in Ramp Influence Area, S		65.9	mi/h		
Average Speed in Outer Lanes of Freeway		73.1	mi/h		
Average Speed for On-Ramp (Merge) Junct	ion, S	65.9	mi/h		
Density Across All Lanes, D		11.5	pc/mi/ln		
	Inputs and Convert	Demand Volumes	to Demand Flow	Rates	
Freeway Data		2			1
Number of Freeway Lanes		2			ln
Freeway Free-Flow Speed, FFS		75.0			mi/h
Segment Length		1469			ft
Multilane Highway or C-D Roadway?		Freeway			
Demand Volume, V		907			veh/h
Peak Hour Factor, PHF		0.95			
Ramp Data					-
Number of Ramp Lanes		1			ln
Ramp Free-Flow Speed, SFR		45.0			mi/h
Ramp Side		Right			
Length of First Acceleration Lane, LA o		1227			ft
Length of Second Acceleration Lane, LA2		-			ft
Junatian Company		F. 10. 10. 10. 1		Dama	
Junction Components		Freeway		Ramp	
Demand Volume, V		907		155	veh/h
Peak Hour Factor, PHF		0.95		0.95	v=11/11
					%
Percent Total Trucks		20.00		5.00	
Percent SUTs		-		-	% %
Percent TTs		- 2000		- 0500	/0
Prop.Total Trucks, PT		0.2000		0.0500	
Heavy Vehicle PCE, ET		3.000		3.000	
Heavy Vehicle Adj., fHV		0.714		0.909	
Terrain Type		Rolling		Rolling	0/
Percent Grade		-		-	%
Grade Length		-		-	mi
Demand Adj.Factor, DAF		1.000		1.000	/1
Demand Flow Rate, v		1337		179	pc/h
<u> </u>	## # !	bina class b s	du laces d	2	
	timate the Approac	ning Flow Rate	in Lanes 1 and	۷	
Estimating Flow in Lanes 1 and 2 for On	· · · · · · · · · · · · · · · · · · ·				£+
Adjacent Upstream Off-Ramp Equilibrium		_			ft £+
Adjacent Downstream Off-Ramp Equilibriu		-			ft
Prop. Freeway Veh. in Lanes 1 and 2, PF	M	1.000			
Flow Rate in Lanes 1 and 2, v12		1337			pc/h
C. 3 - · · ·	c c				

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violatio	n?
vFO	1516	4646	No	
vR	179	2033	No	
vR12	1516	4600	No	
***************************************	1310	1000	110	
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	pe/
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather		Non-Severe Weather	
Weather Type CAF	1.000		1.000	
• •	No Incident		-	
Incident Type	0.968			
Final Capacity Adj. Factor, CAF			0.968	nc/h
Adjusted Capacity, cmda	4646		2033	pc/h
Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	179 1337 1227 9.6 8.7			pc/h pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	e Vicinity of Ramp-Fr	eeway Junc	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Length of Acceleration Lane, LA	1227			ft
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather			
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	1337			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1337			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	1516			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for On-Ramp, MS	0.231			
	65.9			mi/h
Average Speed in Ramp Influence Area, SR	03.3			mi/n pc/h/ln
Average Flow in Outer Lanes, vOA	- 70 1			
Average Speed in Outer Lanes of Freeway, SO	73.1			mi/h

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:45:36

65.9

11.5

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 91M-85.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 783 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 71.8 mi/h 10.9 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 1062 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2323

pc/h/ln

	_		-	
Stan	4.	Adiuct	Demand	Volume

Demand Volume, V	1062	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	783	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	imate opeca and benoley and		
Demand Flow Rate, vp	783	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.8	mi/h	
Density, D	10.9	pc/mi/ln	
Level of Service, LOS	Α		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:40:00

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 85-91D.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1205 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 71.5 mi/h 16.9 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 1635 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adjust Deman	ıd Vo⊥ume	5
----------------------	-----------	---

2323

Demand Volume, V	1635	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	<u>-</u>	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1205	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	.zacc speca ana sensety ana		
Demand Flow Rate, vp	1205	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.5	mi/h	
Density, D	16.9	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:42:22

FREEWAY DIVERGE ANALYSIS File Name: PM_EB_Diverge_91_OffRamp.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln 14.9 Level of Service, LOS В Average Flow in Outer Lanes, vOA pc/h/ln Average Speed in Ramp Influence Area, SR 63.1 mi/h Average Speed in Outer Lanes of Freeway, SO 80.2 mi/h Average Speed for Off-Ramp (Diverge) Junction, S 63.1 mi/h Density Across All Lanes, D 17.9 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates_ Freeway Data Number of Freeway Lanes 2 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V veh/h 1531 Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n mi/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Deceleration Lane, LD or LD1 979 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp Demand Volume, V veh/h 1531 104 0.95 Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 5.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0500 3.000 Heavy Vehicle PCE, ET 3.000 0.909 Heavy Vehicle Adj., fHV 0.714 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2257 120 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 2257 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum		Violation	?
vF	2257	4646		No	
vR	120	2033		No	
v12	2257	4400		No	
	Freeway		Ramp		
Unadjusted Capacity, cmd	4800		2100		pc/h
Driver Population	Mostly Familiar		Mostly Fa	amiliar	F - /
Driver Population CAF	0.968		0.968		
Weather Type	Non-Severe Weather	,		re Weather	
Weather Type CAF	1.000		1.000		
Incident Type	No Incident		-		
Final Capacity Adj. Factor, CAF	0.968		0.968		
Adjusted Capacity, cmda	4646		2033		pc/h
, and a seed capacity, canad	10 10		2033		pe/
Step 4: Estimate Density in Rar	np Influence Area an	d Determir	ne LOS		
Demand Flow Rate in Lanes 1 and 2, v12	2257				pc/h
Length of Deceleration Lane, LA	979				ft
Density in Off-Ramp Influence Area, DR	14.9				pc/mi/ln
Density in Off-Ramp Influence Area, DR	13.5				veh/mi/ln
Level of Service, LOS	В				
Step 5: Estimate Speeds in the	-	eeway Juno	tions		
Freeway Free-Flow Speed, FFS	75.0				mi/h
Ramp Free-Flow Speed, SFR	45.0				mi/h
Driver Population	Mostly Familiar				
Driver Population SAF	0.975				
Weather Type	Non-Severe Weather	`			
Weather Type SAF	1.000				
Final Speed Adjustment Factor, SAF	0.975				
Demand Flow Rate on Freeway, vF	2257				pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2257				pc/h
Number of Outer Lanes on Freeway, NO	0				ln
Speed Index for Off-Ramp, DS	0.323				
Average Speed in Ramp Influence Area, SR	63.1				mi/h
Average Flow in Outer Lanes, vOA	-				pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	80.2				mi/h
Average Speed In Outer Lanes of Freeway, 50	60.2				III1/11

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:00:24

63.1

17.9

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 91D M.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1128 Adjusted Capacity, cadj pc/h/ln 2217 Speed, S 59.0 mi/h 19.1 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 1531 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Sten	4:	Adiust	Demand	Volume

Demand Volume, V	1531	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1128	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1128	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	19.1	pc/mi/ln	
Level of Service, LOS	С		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:42:38

FREEWAY MERGE ANALYSIS PM_EB_Merge_910nRamp.xuf File Name: Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR pc/mi/ln 17.7 Level of Service, LOS В Average Flow in Outer Lanes, vOA pc/h/ln Average Speed in Ramp Influence Area, SR 65.2 mi/h Average Speed in Outer Lanes of Freeway, SO 73.1 mi/h Average Speed for On-Ramp (Merge) Junction, S 65.2 mi/h Density Across All Lanes, D 21.4 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates___ Freeway Data Number of Freeway Lanes ln 2 Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V veh/h 1531 Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n mi/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Acceleration Lane, LA or LA1 1500 ft ft Length of Second Acceleration Lane, LA2 Junction Components Freeway Ramp Demand Volume, V veh/h 1531 489 Peak Hour Factor, PHF 0.95 0.95 % Percent Total Trucks 20.00 2.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2257 535 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for On-Ramps Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFM 1.000 Flow Rate in Lanes 1 and 2, v12 2257 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum		Violation	1?
vFO	2792	4646		No	
vR	535	2033		No	
vR12	2792	4600		No	
VICE	2132	4000		NO	
	Freeway		Ramp		
Unadiusted Canacity and	4800		2100		nc/h
Unadjusted Capacity, cmd				milian	pc/h
Driver Population	Mostly Familiar		Mostly Fa	mitital.	
Driver Population CAF	0.968		0.968		
Weather Type	Non-Severe Weather	•	Non-Sever	e weather	
Weather Type CAF	1.000		1.000		
Incident Type	No Incident		-		
Final Capacity Adj. Factor, CAF	0.968		0.968		
Adjusted Capacity, cmda	4646		2033		pc/h
Step 4: Estimate Density in Ran Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	mp Influence Area an 535 2257 1500 17.7 17.0 B	d Determir	ne LOS		pc/h pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the Freeway Free-Flow Speed, FFS	Vicinity of Ramp-Fr 75.0	eeway Junc	tions		mi/h
Ramp Free-Flow Speed, SFR	45.0				mi/h
Length of Acceleration Lane, LA	1500				ft
Driver Population	Mostly Familiar				
Driver Population SAF	0.975				
Weather Type	Non-Severe Weather	<u>,</u>			
Weather Type SAF	1.000				
Final Speed Adjustment Factor, SAF	0.975				
Demand Flow Rate on Freeway, vF	2257				pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2257				pc/h
	2792				•
Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO	0				pc/h ln
Number of outer Lanes on Freeway, No	v				±11
Speed Index for On-Ramp, MS	0.253				
Average Speed in Ramp Influence Area, SR	65.2				mi/h
Average Flow in Outer Lanes, vOA	-				pc/h/ln
	73.1				mi/h
Average Speed in Outer Lanes of Freeway, SO	/3.1 65.2				III1/11

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:45:22

65.2

21.4

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 91M-97.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1489 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 69.5 mi/h 21.4 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 2020 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	∆diust	Demand	Volume

2323

Demand Volume, V	2020	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1489	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1489	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	69.5	mi/h	
Density, D	21.4	pc/mi/ln	
Level of Service, LOS	С		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:42:02

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 97-91DR.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1544 Adjusted Capacity, cadj pc/h/ln 2323 68.7 mi/h Speed, S 22.5 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.43 ramps/mi Demand Volume 2094 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.43 ramps/mi TRD Adjustment 1.6 mi/h 73.4 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.6 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.6 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Incident Type
Incident Type CAF
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4	: Ad	iust	Demand	Volume
--------	------	------	--------	--------

2323

Demand Volume, V	2094	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1544	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	camace speed and sensely and		
Demand Flow Rate, vp	1544	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.6	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1064	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	68.7	mi/h	
Density, D	22.5	pc/mi/ln	
Level of Service, LOS	С		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:43:35

FREEWAY DIVERGE ANALYSIS File Name: PM_WB_Diverge_91_OffRamp.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln 10.6 Level of Service, LOS В Average Flow in Outer Lanes, vOA pc/h/ln Average Speed in Ramp Influence Area, SR 61.1 mi/h Average Speed in Outer Lanes of Freeway, SO 80.2 mi/h Average Speed for Off-Ramp (Diverge) Junction, S 61.1 mi/h Density Across All Lanes, D 16.1 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates__ Freeway Data Number of Freeway Lanes 2 ln Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1469 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V veh/h 1333 Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n mi/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Deceleration Lane, LD or LD1 1176 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp Demand Volume, V veh/h 1333 761 0.95 Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 2.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 1965 833 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 1965 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violati	on?
vF	1965	4646	No	
vR	833	2033	No	
v12	1965	4400	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	, ,
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather	•	Non-Severe Weathe	r
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Step 4: Estimate Density in Ran Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	mp Influence Area an 1965 1176 10.6 10.2 B	d Determir	ne LOS	pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the Freeway Free-Flow Speed, FFS Ramp Free-Flow Speed, SFR Driver Population Driver Population SAF Weather Type	75.0 45.0 Mostly Familiar 0.975 Non-Severe Weather		tions	mi/h mi/h
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			,,
Demand Flow Rate on Freeway, vF	1965			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1965			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for Off-Ramp, DS	0.387			
Average Speed in Ramp Influence Area, SR	61.1			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes, VOA Average Speed in Outer Lanes of Freeway, SO	80.2			mi/h
Average Speed In Outer Lanes of Freeway, 50	61.1			1111/11 mi/h

This Freeway Diverge Segment text report was created in HCS $^{\text{\tiny{IM}}}$ Freeways Version 7.8 on 4/9/2020 08:35:52

61.1

16.1

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

	DACTO EDEFINAL OFONELLE ANNUALE	
File Name:	BASIC FREEWAY SEGMENT ANALYSIS	
	PM_WB_FWYSegment_91D-91M.xuf	
•	RKA	
0 J ·	RKA	
	Lexington County	
	04/8/2020	
	Existing (2020)	
•	PM Peak-Hour	
Project Description:	I-26 at Columbia Avenue	
Units:	Jnited States Customary	
	LOS and Performance Measures	
Flow Rate, vp	982	pc/h/ln
Adjusted Capacity, cadj	2217	pc/h/ln
Speed, S	59.0	mi/h
Density, D	16.6	pc/mi/ln
Level of Service, LOS	В	
	Ston 1. Innet Data	
Number of Lanes, N	Step 1: Input Data	ln
	2	
Lane Width	12	ft
Segment Length	-	ft
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Right-Side Lateral Clearance	10	ft
Total Ramp Density, TRD	6.00	ramps/mi
Demand Volume	1333	veh/h
Peak Hour Factor, PHF	0.95	
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
	Step 2: Estimate and Adjust FFS	
Estimating FFS		
Measured or Base FFS	Base	
Base Free-Flow Speed, BFFS	75.0	mi/h
Lane Width	12	ft
Lane Width Adjustment, fLW	0.0	mi/h
Right-Side Lateral Clearance	10	ft
Right-Side Lateral Clearance Adj., f	RLC 0.0	mi/h
Total Ramp Density, TRD	6.00	ramps/mi
TRD Adjustment	14.5	mi/h
Free-Flow Speed, FFS	60.5	mi/h
Speed Adjustments		
Speed Adjustments	M-143 F 131	
Driver Population	Mostly Familiar	
Driver Population SAF	0.975	
Weather Type	Non-Severe Weather	
Weather Type SAF	1.000	
Final Speed Adjustment Factor, SAF	0.975	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h
	_Step 3: Estimate and Adjust Capacity	
Adjusted Free-flow Speed, FFSadj	59.0	mi/h
Capacity, c	2290	pc/h/ln
Capacity Adjustments		
Driver Population	Mostly Familiar	
Driver Denulation CAE	a 060	

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Sten	4:	∆diust	Demand	Volume

Demand Volume, V	1333	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	982	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	acc opeca and benezely and		
Demand Flow Rate, vp	982	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	16.6	pc/mi/ln	
Level of Service, LOS	В	•	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:44:05

		ERGE ANALYSIS		
File Name:	PM_WB_Merge_910nRa	amp.xuf		
Analyst:	RKA			
Agency:	RKA			
urisdiction:	Lexington County			
Date:	04/8/2020			
Analysis Year:	Existing (2020)			
Time Period Analyzed:	PM Peak-Hour			
Project Description:	I-26 at Columbia	Avenue		
Jnits:	United States Cus	tomary		
		·		
		ormance Measures		
Density in On-Ramp (Merge) Influence A	Area, DR	13.9	pc/mi/ln	
evel of Service, LOS		В		
verage Flow in Outer Lanes, vOA		=	pc/h/ln	
verage Speed in Ramp Influence Area,	SR	65.5	mi/h	
verage Speed in Outer Lanes of Freewa	ay, SO	73.1	mi/h	
verage Speed for On-Ramp (Merge) June		65.5	mi/h	
Density Across All Lanes, D	, .	15.8	pc/mi/ln	
remotely hereoso har fames, b		13.0	pc,1, 111	
	/ Inputs and Conver	t Demand Volumes	s to Demand Flow Rates	
reeway Data				
Number of Freeway Lanes		2		ln
reeway Free-Flow Speed, FFS		75.0		mi/h
Segment Length		1469		ft
Multilane Highway or C-D Roadway?		Freeway		
Demand Volume, V		1333		veh/h
Peak Hour Factor, PHF		0.95		VCII/ II
Ramp Data				
Number of Ramp Lanes		1		ln
·				
Ramp Free-Flow Speed, SFR		45.0		mi/h
Ramp Side		Right		
ength of First Acceleration Lane, LA		1227		ft
ength of Second Acceleration Lane, LA	A2	-		ft
Junction Components		Freeway	Ramp	
Demand Volume, V		1333	90	veh/h
eak Hour Factor, PHF		0.95	0.95	- ,
ercent Total Trucks		20.00	3.00	%
Percent SUTs		-	-	% %
		-	-	% %
Percent TTs		-	-	/0
rop.Total Trucks, PT		0.2000	0.0300	
eavy Vehicle PCE, ET		3.000	3.000	
leavy Vehicle Adj., fHV		0.714	0.943	
errain Type		Rolling	Rolling	
Percent Grade		-	-	%
Grade Length		_	-	mi
Demand Adj.Factor, DAF		1.000	1.000	
Demand Flow Rate, v		1965	100	pc/h
Cindina i 100 Nace, v		1707	100	ρε/ π
Cton 2. I	Estimate the Approa	ching Flow Pata	in lanes 1 and 2	
stimating Flow in Lanes 1 and 2 for (CHINE LION VOLE	III Lailes I allu Z	
.scamacang raow an concs a one 2 for C	Telephone in the contract of t	_		ft
diacent Unethern Off Dama Equilibrium		-		
	um Distance, LEQ	-		ft
djacent Downstream Off-Ramp Equilibri		1.000		
Adjacent Downstream Off-Ramp Equilibri Prop. Freeway Veh. in Lanes 1 and 2, F	PFM			
Adjacent Upstream Off-Ramp Equilibrium Adjacent Downstream Off-Ramp Equilibri Prop. Freeway Veh. in Lanes 1 and 2, F Flow Rate in Lanes 1 and 2, v12	PFM	1965		pc/h

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violati	on?
vFO	2065	4646	No	
vR	100	2033	No	
vR12	2065	4600	No	
VICE	2003	4000	140	
	Freeway		Ramp	
Unadjusted Canacity and	4800		2100	nc/h
Unadjusted Capacity, cmd				pc/h
Driver Population	Mostly Familiar		Mostly Familiar	
Driver Population CAF	0.968	_	0.968	
Weather Type	Non-Severe Weather	•	Non-Severe Weathe	i.
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Step 4: Estimate Density in F Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12	Ramp Influence Area an 100 1965	d Determin	ne LOS	pc/h pc/h
Length of Acceleration Lane, LA	1227			ft
Density in On-Ramp Influence Area, DR	13.9			pc/mi/ln
Density in On-Ramp Influence Area, DR	13.1			veh/mi/ln
Level of Service, LOS	13.1 B			veii/iii1/ 111
Level of Service, Los	В			
Step 5: Estimate Speeds in the	•	eeway Junc	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Length of Acceleration Lane, LA	1227			ft
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	•		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	1965			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1965			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	2065			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for On Page MS	0.244			
Speed Index for On-Ramp, MS	0.244			
Average Speed in Ramp Influence Area, SR	65.5			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	73.1			mi/h

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:45:03

65.5

15.8

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 91M-85.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Existing (2020) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1049 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 71.8 mi/h 14.6 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 1423 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

2323

Demand Volume, V	1423	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1049	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1049	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.8	mi/h	
Density, D	14.6	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:43:50

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM EB FWYSegment 85-91D.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1330 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 70.9 mi/h 18.8 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 1804 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	∆diust	Demand	Volume

2323

Demand Volume, V	1804	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1330	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1330	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	70.9	mi/h	
Density, D	18.8	pc/mi/ln	
Level of Service, LOS	С		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:41:00

FREEWAY DIVERGE ANALYSIS File Name: AM EB Diverge 91 OffRamp.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln 16.1 Level of Service, LOS В Average Flow in Outer Lanes, vOA pc/mi/ln Average Speed in Ramp Influence Area, SR 62.8 mi/h Average Speed in Outer Lanes of Freeway, SO mi/h Average Speed for Off-Ramp (Diverge) Junction, S 62.8 mi/h Density Across All Lanes, D 19.2 pc/mi/ln _Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates_ Freeway Data Number of Freeway Lanes 2 ln Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V veh/h 1632 Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n mi/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Deceleration Lane, LD or LD1 979 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp Demand Volume, V veh/h 1632 172 0.95 Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 8.00 Percent SUTs % Percent TTs % Prop.Total Trucks, PT 0.2000 0.0800 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.862 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2406 210 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 2406 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violatio	n?
vF	2406	4646	No	
vR	210	2033	No	
v12	2406	4400	No	
· 				
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather	,	Non-Severe Weather	•
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
	4646			nc/h
Adjusted Capacity, cmda	4040		2033	pc/h
Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	2406 979 16.1 13.9 B			pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the		eeway Jund	tions	/h
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	•		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	2406			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2406			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for Off-Ramp, DS	0.331			
Average Speed in Ramp Influence Area, SR	62.8			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	_			mi/h
Avenage Speed for Off Rama Junction S	63.0			, m i /h

This Freeway Diverge Segment text report was created in HCS $^{\text{\tiny{IM}}}$ Freeways Version 7.7 on 4/9/2020 09:19:41

62.8

19.2

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM EB FWYSegment 91D M.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1203 Adjusted Capacity, cadj pc/h/ln 2217 Speed, S 59.0 mi/h 20.4 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 1632 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment

Final Capacity Adjustment Factor, CAF Adjusted Capacity, cadj Non-Severe Weather

1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adiust Demand	Volum	Р
-----------------------	-------	---

2217

Demand Volume, V	1632	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1203	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1203	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	20.4	pc/mi/ln	
Level of Service, LOS	С		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:42:03

File Name:		MERGE ANALYSIS		
	AM_EB_Merge_910r RKA	maiiip. xu i		
Analyst:				
Agency:	RKA			
Jurisdiction:	Lexington County	/		
Date:	04/8/2020			
Analysis Year:	No Build (2024)			
Γime Period Analyzed:	AM Peak-Hour			
Project Description:	I-26 at Columbia	a Avenue		
Jnits:	United States Co	ustomary		
Danaity in On Dana (Manas) Influen		rformance Measures		
Density in On-Ramp (Merge) Influen	ce Area, DR	24.1	pc/mi/ln	
evel of Service, LOS		С		
verage Flow in Outer Lanes, vOA		-	pc/h/ln	
werage Speed in Ramp Influence Ar		62.5	mi/h	
verage Speed in Outer Lanes of Fro	eeway, SO	73.1	mi/h	
verage Speed for On-Ramp (Merge)		62.5	mi/h	
Density Across All Lanes, D	· , -	29.3	pc/mi/ln	
			pc,±, ±11	
	cify Inputs and Conv	ert Demand Volumes	s to Demand Flow Rates	
reeway Data		2		7
Number of Freeway Lanes		2		ln
Freeway Free-Flow Speed, FFS		75.0		mi/h
Segment Length		1500		ft
Multilane Highway or C-D Roadway?		Freeway		
Demand Volume, V		1632		veh/h
Peak Hour Factor, PHF		0.95		VC11/11
Ramp Data				
Number of Ramp Lanes		1		ln
•				
Ramp Free-Flow Speed, SFR		45.0		mi/h
Ramp Side		Right		_
		:		<i>c</i> .
ength of First Acceleration Lane,		1500		ft
Length of First Acceleration Lane,		1500 -		ft
ength of First Acceleration Lane, ength of Second Acceleration Lane		1500 - Freeway	Ramp	
ength of First Acceleration Lane, ength of Second Acceleration Lane unction Components		- Freeway	·	ft
ength of First Acceleration Lane, ength of Second Acceleration Lane unction Components Demand Volume, V		- Freeway 1632	1150	
ength of First Acceleration Lane, ength of Second Acceleration Lane unction Components Demand Volume, V Peak Hour Factor, PHF		- Freeway 1632 0.95	1150 0.95	ft veh/h
Length of First Acceleration Lane, Length of Second Acceleration Lane Dunction Components Demand Volume, V Peak Hour Factor, PHF Percent Total Trucks		- Freeway 1632	1150 0.95 2.00	ft veh/h %
ength of First Acceleration Lane, ength of Second Acceleration Lane unction Components Demand Volume, V Peak Hour Factor, PHF		- Freeway 1632 0.95	1150 0.95	ft veh/h % %
Length of First Acceleration Lane, Length of Second Acceleration Lane Dunction Components Demand Volume, V Peak Hour Factor, PHF Percent Total Trucks		- Freeway 1632 0.95 20.00	1150 0.95 2.00	ft veh/h %
Length of First Acceleration Lane, Length of Second Acceleration Lane Junction Components Demand Volume, V Peak Hour Factor, PHF Percent Total Trucks Percent SUTs Percent TTs		- Freeway 1632 0.95 20.00	1150 0.95 2.00	ft veh/h % %
Length of First Acceleration Lane, Length of Second Acceleration Lane Dunction Components Demand Volume, V Deak Hour Factor, PHF Dercent Total Trucks Percent SUTs Percent TTs Prop.Total Trucks, PT		- Freeway 1632 0.95 20.00 - - 0.2000	1150 0.95 2.00 -	ft veh/h % %
Length of First Acceleration Lane, Length of Second Acceleration Lane Junction Components Demand Volume, V Peak Hour Factor, PHF Percent Total Trucks Percent SUTs Percent TTS Prop.Total Trucks, PT Heavy Vehicle PCE, ET		- Freeway 1632 0.95 20.00 - - 0.2000 3.000	1150 0.95 2.00 - - 0.0200 3.000	ft veh/h % %
Length of First Acceleration Lane, Length of Second Acceleration Lane Junction Components Demand Volume, V Peak Hour Factor, PHF Percent Total Trucks Percent SUTs Percent TTS Prop.Total Trucks, PT Heavy Vehicle PCE, ET Heavy Vehicle Adj., fHV		- Freeway 1632 0.95 20.00 0.2000 3.000 0.714	1150 0.95 2.00 - - 0.0200 3.000 0.962	ft veh/h % %
Length of First Acceleration Lane, Length of Second Acceleration Lane Dunction Components Demand Volume, V Deak Hour Factor, PHF Dercent Total Trucks Percent SUTS Percent TTS Prop.Total Trucks, PT Heavy Vehicle PCE, ET Heavy Vehicle Adj., fHV Terrain Type		- Freeway 1632 0.95 20.00 - - 0.2000 3.000	1150 0.95 2.00 - - 0.0200 3.000	ft veh/h % % %
Length of First Acceleration Lane, Length of Second Acceleration Lane Dunction Components Demand Volume, V Deak Hour Factor, PHF Dercent Total Trucks Percent SUTS Percent TTS Prop.Total Trucks, PT Heavy Vehicle PCE, ET Heavy Vehicle Adj., fHV Terrain Type Percent Grade		- Freeway 1632 0.95 20.00 0.2000 3.000 0.714	1150 0.95 2.00 - - 0.0200 3.000 0.962	ft veh/h % % %
Length of First Acceleration Lane, Length of Second Acceleration Lane Dunction Components Demand Volume, V Deak Hour Factor, PHF Dercent Total Trucks Percent SUTs Percent TTs Prop.Total Trucks, PT Heavy Vehicle PCE, ET Heavy Vehicle Adj., fHV Terrain Type Percent Grade Grade Length		Freeway 1632 0.95 20.00 0.2000 3.000 0.714 Rolling -	1150 0.95 2.00 - - 0.0200 3.000 0.962	veh/h % % %
Length of First Acceleration Lane, Length of Second Acceleration Lane Dunction Components Demand Volume, V Deak Hour Factor, PHF Dercent Total Trucks Percent SUTS Percent TTS Prop.Total Trucks, PT Heavy Vehicle PCE, ET Heavy Vehicle Adj., fHV Terrain Type Percent Grade Grade Length		- Freeway 1632 0.95 20.00 0.2000 3.000 0.714	1150 0.95 2.00 - - 0.0200 3.000 0.962	ft veh/h % % %
Length of First Acceleration Lane, Length of Second Acceleration Lane Junction Components Demand Volume, V Deak Hour Factor, PHF Dercent Total Trucks Percent SUTs Percent TTs Prop.Total Trucks, PT Heavy Vehicle PCE, ET Heavy Vehicle Adj., fHV Jerrain Type Percent Grade Grade Length Demand Adj.Factor, DAF		Freeway 1632 0.95 20.00 0.2000 3.000 0.714 Rolling -	1150 0.95 2.00 - - 0.0200 3.000 0.962 Rolling	ft veh/h % % %
Length of First Acceleration Lane, Length of Second Acceleration Lane Lunction Components Demand Volume, V Leak Hour Factor, PHF Lercent Total Trucks Percent SUTs Percent TTs Lerop.Total Trucks, PT Leavy Vehicle PCE, ET Leavy Vehicle Adj., fHV Lerrain Type Percent Grade Grade Length Lemand Adj.Factor, DAF Lemand Flow Rate, v	, LA2	- Freeway 1632 0.95 20.00 0.2000 3.000 0.714 Rolling - 1.000 2406	1150 0.95 2.00 - 0.0200 3.000 0.962 Rolling - 1.000 1258	veh/h % % % mi
Length of First Acceleration Lane, Length of Second Acceleration Lane Dunction Components Demand Volume, V Deak Hour Factor, PHF Dercent Total Trucks Percent SUTS Percent TTS Drop.Total Trucks, PT Deavy Vehicle PCE, ET Deavy Vehicle Adj., fHV Terrain Type Percent Grade Grade Length Demand Adj.Factor, DAF Demand Flow Rate, v	, LA2 2: Estimate the Appr	- Freeway 1632 0.95 20.00 0.2000 3.000 0.714 Rolling - 1.000 2406	1150 0.95 2.00 - 0.0200 3.000 0.962 Rolling - 1.000 1258	veh/h % % % mi
Length of First Acceleration Lane, Length of Second Acceleration Lane Dunction Components Demand Volume, V Deak Hour Factor, PHF Dercent Total Trucks Percent SUTS Percent TTS Drop.Total Trucks, PT Deavy Vehicle PCE, ET Deavy Vehicle Adj., fHV Derrain Type Percent Grade Grade Length Demand Adj.Factor, DAF Demand Flow Rate, v Step Estimating Flow in Lanes 1 and 2 fe	2: Estimate the Approor On-Ramps	- Freeway 1632 0.95 20.00 0.2000 3.000 0.714 Rolling - 1.000 2406	1150 0.95 2.00 - 0.0200 3.000 0.962 Rolling - 1.000 1258	veh/h % % mi pc/h
Length of First Acceleration Lane, Length of Second Acceleration Lane Dunction Components Demand Volume, V Deak Hour Factor, PHF Dercent Total Trucks Percent SUTS Percent TTS Drop.Total Trucks, PT Deavy Vehicle PCE, ET Deavy Vehicle Adj., fHV Derrain Type Percent Grade Grade Length Demand Adj.Factor, DAF Demand Flow Rate, v Step Estimating Flow in Lanes 1 and 2 fe	2: Estimate the Approor On-Ramps	- Freeway 1632 0.95 20.00 0.2000 3.000 0.714 Rolling - 1.000 2406	1150 0.95 2.00 - 0.0200 3.000 0.962 Rolling - 1.000 1258	ft veh/h % % % mi
Length of First Acceleration Lane, Length of Second Acceleration Lane Lunction Components Demand Volume, V Deak Hour Factor, PHF Dercent Total Trucks Percent SUTS Percent TTS Drop.Total Trucks, PT Heavy Vehicle PCE, ET Heavy Vehicle Adj., fHV Terrain Type Percent Grade Grade Length Demand Adj.Factor, DAF Demand Flow Rate, v Step Estimating Flow in Lanes 1 and 2 for Estimating Flow in Lanes 1 and 2 for Estimating Flow of Frame Equilibrium.	2: Estimate the Approor On-Ramps rium Distance, LEQ	- Freeway 1632 0.95 20.00 0.2000 3.000 0.714 Rolling - 1.000 2406 coaching Flow Rate	1150 0.95 2.00 - 0.0200 3.000 0.962 Rolling - 1.000 1258	veh/h % % mi pc/h
Length of First Acceleration Lane, Length of Second Acceleration Lane, Dunction Components Demand Volume, V Deak Hour Factor, PHF Dercent Total Trucks Percent SUTs Percent TTs Prop.Total Trucks, PT Heavy Vehicle PCE, ET Heavy Vehicle Adj., fHV Terrain Type Percent Grade Grade Length Demand Adj.Factor, DAF Demand Flow Rate, v Step Estimating Flow in Lanes 1 and 2 for Adjacent Upstream Off-Ramp Equilibration	2: Estimate the Approor On-Ramps rium Distance, LEQ ibrium Distance, LEQ	- Freeway 1632 0.95 20.00 0.2000 3.000 0.714 Rolling - 1.000 2406 coaching Flow Rate	1150 0.95 2.00 - 0.0200 3.000 0.962 Rolling - 1.000 1258	ft veh/h % % mi pc/h
Length of First Acceleration Lane, Length of Second Acceleration Lane, Dunction Components Demand Volume, V Peak Hour Factor, PHF Percent Total Trucks Percent SUTs Percent TTs Prop.Total Trucks, PT Heavy Vehicle PCE, ET Heavy Vehicle Adj., fHV Terrain Type Percent Grade Grade Length Demand Adj.Factor, DAF Demand Flow Rate, v Step Estimating Flow in Lanes 1 and 2 for Adjacent Upstream Off-Ramp Equilib	2: Estimate the Approor On-Ramps rium Distance, LEQ ibrium Distance, LEQ	- Freeway 1632 0.95 20.00 0.2000 3.000 0.714 Rolling - 1.000 2406 coaching Flow Rate	1150 0.95 2.00 - 0.0200 3.000 0.962 Rolling - 1.000 1258	ft veh/h % % mi pc/h

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violatio	1?
vFO	3664	4646	No	
vR	1258	2033	No	
vR12	3664	4600	No	
VILLE	3004	4000	NO	
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	F - /
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather		Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Augustea capacity, emau	4040		2033	ре/п
Step 4: Estimate Density in Rad Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	amp Influence Area an 1258 2406 1500 24.1 23.2	d Determin	e LOS	pc/h pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	· Vicinity of Ramp-Fr	eeway Junc	tions	
Freeway Free-Flow Speed, FFS	75.0	-		mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Length of Acceleration Lane, LA	1500			ft
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	1		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	2406			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2406			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	3664			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for On-Ramp, MS	0.341			
Average Speed in Ramp Influence Area, SR	62.5			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
	73.1			mi/h
Average Speed in Outer Lanes of Freeway, SO	/3.1 62 E			M1/N

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:19:18

62.5

29.3

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM EB FWYSegment 91M-97.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 2050 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 59.4 mi/h 34.5 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 2782 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	∆diust	Demand	Volume

2323

Demand Volume, V	2782	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	<u>-</u>	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	2050	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	2050	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.4	mi/h	
Density, D	34.5	pc/mi/ln	
Level of Service, LOS	D		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:42:28

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 97-91DR.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1509 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 69.1 mi/h 21.8 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.43 ramps/mi Demand Volume 2047 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.43 ramps/mi TRD Adjustment 1.6 mi/h 73.4 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.6 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.6 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2323

pc/h/ln

Step 4	: Ad	iust	Demand	Volume
--------	------	------	--------	--------

47 veh/h
95
ln
lling
%
mi
.00 %
%
%
2000
000
714
000
09 pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	acc opeca and benezely and		
Demand Flow Rate, vp	1509	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.6	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1064	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	69.1	mi/h	
Density, D	21.8	pc/mi/ln	
Level of Service, LOS	С	•	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:44:55

FREEWAY DIVERGE ANALYSIS File Name: AM_WB_Diverge_91_OffRamp.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln 6.3 Level of Service, LOS Α Average Flow in Outer Lanes, vOA pc/mi/ln Average Speed in Ramp Influence Area, SR 60.0 mi/h Average Speed in Outer Lanes of Freeway, SO mi/h Average Speed for Off-Ramp (Diverge) Junction, S 60.0 mi/h Density Across All Lanes, D 12.2 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates_ Freeway Data Number of Freeway Lanes 2 ln Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1469 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 996 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1n 1 mi/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Deceleration Lane, LD or LD1 1176 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp Demand Volume, V 996 veh/h 1051 Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks % 20.00 5.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0500 3.000 Heavy Vehicle PCE, ET 3.000 0.909 Heavy Vehicle Adj., fHV 0.714 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 1468 pc/h 1217 Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 1468 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violatio	on?
vF	1468	4646	No	
vR	1217	2033	No	
v12	1468	4400	No	
111	1100	1100		
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	F - /
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather		Non-Severe Weathe	^
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Step 4: Estimate Density in Rar Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR	np Influence Area an 1468 1176 6.3	d Determir	ne LOS	pc/h ft pc/mi/ln
Density in Off-Ramp Influence Area, DR	5.7			veh/mi/ln
Level of Service, LOS	Α			
Step 5: Estimate Speeds in the Freeway Free-Flow Speed, FFS Ramp Free-Flow Speed, SFR Driver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO	Vicinity of Ramp-Fr 75.0 45.0 Mostly Familiar 0.975 Non-Severe Weather 1.000 0.975 1468 1468		tions	mi/h mi/h pc/h pc/h
Namber of outer Lanes on Treeway, No	0			±11
Speed Index for Off-Ramp, DS	0.422			
Average Speed in Ramp Influence Area, SR	60.0			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	_			mi/h
Average Coard for Off Dame Turnstien C	60.0			,

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:38:39

60.0

12.2

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 91D-91M.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 734 Adjusted Capacity, cadj 2217 pc/h/ln 59.0 mi/h Speed, S 12.4 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 996 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments

Driver Population
Driver Population CAF

Mostly Familiar 0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Sten	⊿.	Adiust	Demand	Volume
3160	→.	Aujust	Dellialia	VOTUILE

Demand Volume, V	996	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	734	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	- mate opeca and benoley and		
Demand Flow Rate, vp	734	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	12.4	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:43:25

AM_WB_Merge_910nRamp.xuf File Name: Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR pc/mi/ln 11.1 Level of Service, LOS В Average Flow in Outer Lanes, vOA pc/mi/ln Average Speed in Ramp Influence Area, SR 65.8 mi/h Average Speed in Outer Lanes of Freeway, SO mi/h Average Speed for On-Ramp (Merge) Junction, S 65.8 mi/h Density Across All Lanes, D 13.1 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates__ Freeway Data Number of Freeway Lanes 2 ln Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1469 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 996 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n \min/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Acceleration Lane, LA or LA1 1227 ft ft Length of Second Acceleration Lane, LA2 Junction Components Freeway Ramp Demand Volume, V 996 veh/h 217 Peak Hour Factor, PHF 0.95 0.95 % Percent Total Trucks 20.00 5.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0500 3.000 Heavy Vehicle PCE, ET 3.000 0.909 Heavy Vehicle Adj., fHV 0.714 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 1468 251 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for On-Ramps Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFM 1.000 Flow Rate in Lanes 1 and 2, v12 1468 pc/h Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

FREEWAY MERGE ANALYSIS

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violation	1?
vFO	1719	4646	No	
vR	251	2033	No	
vR12	1719	4600	No	
··· 	_, _,			
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather		Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		_	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Step 4: Estimate Density in Rad Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	251 1468 1227 11.1 10.1 B	u betermin	E LU3	pc/h pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	e Vicinity of Ramp-Fr	eeway Juno	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Length of Acceleration Lane, LA	1227			ft
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	`		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	1468			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1468			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	1719			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for On-Ramp, MS	0.235			
Average Speed in Ramp Influence Area, SR	65.8			mi/h
Average Flow in Outer Lanes, vOA	=			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	-			mi/h
Avenage Speed In Odder Lands of Freehalf, 50	6E 0			mi/h

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:54:03

65.8

13.1

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 91M-85.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 894 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 71.8 mi/h 12.5 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 1213 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	∆diust	Demand	Volume

2323

Demand Volume, V	1213	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	894	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	zima ce opeca ana benozej ana		
Demand Flow Rate, vp	894	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.8	mi/h	
Density, D	12.5	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:44:22

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 85-91D.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1380 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 70.5 mi/h 19.6 pc/mi/ln Density, D Level of Service, LOS C _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 1873 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	∆diust	Demand	Volume

2323

Demand Volume, V	1873	veh/h	
Peak Hour Factor, PHF	0.95		
Number of Lanes, N	2	ln	
Terrain Type	Rolling		
Percent Grade	-	%	
Grade Length	-	mi	
Percent Total Trucks	20.00	%	
Percent Single-Unit Trucks, SUT	-	%	
Percent Tractor-Trailers, TT	-	%	
Proportion of Total Trucks, PT	0.2000		
Heavy Vehicle PCE, ET	3.000		
Heavy Vehicle Adjustment, fHV	0.714		
Demand Adjustment Factor, DAF	1.000		
Demand Flow Rate, vp	1380	pc/h/ln	

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

ezmace opeca ana ocnosely ana		
1380	pc/h/ln	
71.8	mi/h	
0.968		
2323	pc/h/ln	
1057	pc/h/ln	
45	pc/mi/ln	
70.5	mi/h	
19.6	pc/mi/ln	
С	•	
	1380 71.8 0.968 2323 1057 45 70.5	71.8 mi/h 0.968 2323 pc/h/ln 1057 pc/h/ln 45 pc/mi/ln 70.5 mi/h

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:45:35

FREEWAY DIVERGE ANALYSIS File Name: PM_EB_Diverge_91_OffRamp.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln 16.6 Level of Service, LOS В Average Flow in Outer Lanes, vOA pc/h/ln Average Speed in Ramp Influence Area, SR 62.7 mi/h Average Speed in Outer Lanes of Freeway, SO 80.2 mi/h Average Speed for Off-Ramp (Diverge) Junction, S 62.7 mi/h Density Across All Lanes, D 19.7 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates_ Freeway Data Number of Freeway Lanes 2 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V veh/h 1672 Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n mi/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Deceleration Lane, LD or LD1 979 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp Demand Volume, V veh/h 1672 201 Peak Hour Factor, PHF 0.95 0.95 % Percent Total Trucks 20.00 5.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0500 3.000 Heavy Vehicle PCE, ET 3.000 0.909 Heavy Vehicle Adj., fHV 0.714 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2465 233 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 2465 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum		Violation	?
vF	2465	4646		No	
vR	233	2033		No	
v12	2465	4400		No	
	Freeway		Ramp		
Unadjusted Capacity, cmd	4800		2100		pc/h
Driver Population	Mostly Familiar		Mostly Fa	miliar	ρ σ /
Driver Population CAF	0.968		0.968	IIII	
Weather Type	Non-Severe Weather			e Weather	
Weather Type CAF	1.000		1.000	c weather	
Incident Type	No Incident		-		
Final Capacity Adj. Factor, CAF	0.968		0.968		
Adjusted Capacity, cmda	4646		2033		nc/h
Adjusted Capacity, Cilida	4040		2033		pc/h
Step 4: Estimate Density in Ramp Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	p Influence Area and 2465 979 16.6 15.1 B	d Determino	e LOS		pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	Vicinity of Ramp-Fre	eway Junc	tions		
Freeway Free-Flow Speed, FFS	75.0				mi/h
Ramp Free-Flow Speed, SFR	45.0				mi/h
Driver Population	Mostly Familiar				
Driver Population SAF	0.975				
Weather Type	Non-Severe Weather				
Weather Type SAF	1.000				
Final Speed Adjustment Factor, SAF	0.975				
Demand Flow Rate on Freeway, vF	2465				pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2465				pc/h
Number of Outer Lanes on Freeway, NO	0				ln
Speed Index for Off-Ramp, DS	0.333				
Average Speed in Ramp Influence Area, SR	62.7				mi/h
	04.7				•
Average Flow in Outer Lanes, vOA	-				pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	80.2				mi/h

This Freeway Diverge Segment text report was created in HCS $^{\text{\tiny{TM}}}$ Freeways Version 7.8 on 4/9/2020 09:15:58

62.7

19.7

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 91D M.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1232 Adjusted Capacity, cadj pc/h/ln 2217 Speed, S 59.0 mi/h 20.9 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 1672 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments

Driver Population
Driver Population CAF

Mostly Familiar 0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Step 4: Adjust Deman	ıd Vo⊥ume	5
----------------------	-----------	---

Demand Volume, V	1672	veh/h	
Peak Hour Factor, PHF	0.95		
Number of Lanes, N	2	ln	
Terrain Type	Rolling		
Percent Grade	-	%	
Grade Length	-	mi	
Percent Total Trucks	20.00	%	
Percent Single-Unit Trucks, SUT	-	%	
Percent Tractor-Trailers, TT	-	%	
Proportion of Total Trucks, PT	0.2000		
Heavy Vehicle PCE, ET	3.000		
Heavy Vehicle Adjustment, fHV	0.714		
Demand Adjustment Factor, DAF	1.000		
Demand Flow Rate, vp	1232	pc/h/ln	

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1232	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	20.9	pc/mi/ln	
Level of Service, LOS	С		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:47:12

Capacity Checks

PM_EB_Merge_910nRamp.xuf File Name: Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR pc/mi/ln 25.6 Level of Service, LOS C Average Flow in Outer Lanes, vOA pc/mi/ln Average Speed in Ramp Influence Area, SR 61.5 mi/h Average Speed in Outer Lanes of Freeway, SO mi/h Average Speed for On-Ramp (Merge) Junction, S 61.5 mi/h Density Across All Lanes, D 31.3 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates__ Freeway Data Number of Freeway Lanes ln 2 Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Freeway Multilane Highway or C-D Roadway? Demand Volume, V veh/h 1672 Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1n 1 \min/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Acceleration Lane, LA or LA1 1500 ft ft Length of Second Acceleration Lane, LA2 Junction Components Freeway Ramp Demand Volume, V veh/h 1672 1270 Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks % 20.00 2.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2465 1390 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for On-Ramps Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFM 1.000 Flow Rate in Lanes 1 and 2, v12 2465 pc/h Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

FREEWAY MERGE ANALYSIS

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum		Violation	1?
vFO	3855	4646		No	
vR	1390	2033		No	
vR12	3855	4600		No	
VILLE	3033	4000		110	
	Freeway		Ramp		
Unadjusted Capacity, cmd	4800		2100		pc/h
Driver Population	Mostly Familiar		Mostly Fa	milian	рс/п
Driver Population CAF	0.968		0.968	IIIIIIII	
Weather Type	Non-Severe Weather	•		e Weather	
	1.000		1.000	e weather	
Weather Type CAF					
Incident Type	No Incident		-		
Final Capacity Adj. Factor, CAF	0.968		0.968		41
Adjusted Capacity, cmda	4646		2033		pc/h
Step 4: Estimate Density in Ran Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	np Influence Area an 1390 2465 1500 25.6 24.6	d Determir	e LOS		pc/h pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	Vicinity of Ramp-Fr	eeway Juno	tions		
Freeway Free-Flow Speed, FFS	75.0	-			mi/h
Ramp Free-Flow Speed, SFR	45.0				mi/h
Length of Acceleration Lane, LA	1500				ft
Driver Population	Mostly Familiar				
Driver Population SAF	0.975				
Weather Type	Non-Severe Weather	•			
Weather Type SAF	1.000				
Final Speed Adjustment Factor, SAF	0.975				
Demand Flow Rate on Freeway, vF	2465				pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2465				pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	3855				pc/h
Number of Outer Lanes on Freeway, NO	0				ln
- ·					
Speed Index for On-Ramp, MS	0.373				
Average Speed in Ramp Influence Area, SR	61.5				mi/h
Average Flow in Outer Lanes, vOA	-				pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	_				mi/h
Avenage Speed for On Dawn Junction S	61 E				mi/h

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:54:28

61.5

31.3

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

```
BASIC FREEWAY SEGMENT ANALYSIS
File Name:
                                       PM EB FWYSegment 91M-97.xuf
Analyst:
                                       RKA
Agency:
                                       RKA
Jurisdiction:
                                       Lexington County
Date:
                                       04/8/2020
Analysis Year:
                                       No Build (2024)
Time Period Analyzed:
                                       PM Peak-Hour
Project Description:
                                       I-26 at Columbia Avenue
Units:
                                       U.S. Customary
                                           LOS and Performance Measures
Flow Rate, vp
                                                                                        pc/h/ln
                                                           2168
Adjusted Capacity, cadj
                                                           2323
                                                                                        pc/h/ln
Speed, S
                                                           56.3
                                                                                        mi/h
                                                           38.5
                                                                                        pc/mi/ln
Density, D
Level of Service, LOS
                                                _Step 1: Input Data_
                                                                                        ln
Number of Lanes, N
                                                           2
                                                                                        ft
Lane Width
                                                           12
                                                                                        ft
Segment Length
Terrain Type
                                                           Rolling
                                                                                        %
  Percent Grade
   Grade Length
                                                                                        шi
Right-Side Lateral Clearance
                                                           10
                                                                                        ft
Total Ramp Density, TRD
                                                           0.37
                                                                                        ramps/mi
Demand Volume
                                                           2942
                                                                                        veh/h
                                                           0.95
Peak Hour Factor, PHF
                                                                                        %
Percent Total Trucks
                                                           20.00
                                                                                        %
  Percent Single-Unit Trucks, SUT
                                                                                        %
  Percent Tractor-Trailers, TT
                             Step 2: Estimate and Adjust FFS
Estimating FFS
Measured or Base FFS
                                                           Base
Base Free-Flow Speed, BFFS
                                                                                        mi/h
                                                           75.0
Lane Width
                                                           12
                                                                                        ft
   Lane Width Adjustment, fLW
                                                          0.0
                                                                                        mi/h
Right-Side Lateral Clearance
                                                           10
                                                                                        ft
   Right-Side Lateral Clearance Adj., fRLC
                                                           0.0
                                                                                        mi/h
Total Ramp Density, TRD
                                                           0.37
                                                                                        ramps/mi
   TRD Adjustment
                                                           1.4
                                                                                        mi/h
                                                           73.6
Free-Flow Speed, FFS
                                                                                        mi/h
Speed Adjustments
                                                           Mostly Familiar
Driver Population
  Driver Population SAF
                                                           0.975
Weather Type
                                                           Non-Severe Weather
  Weather Type SAF
                                                           1.000
Final Speed Adjustment Factor, SAF
                                                           0.975
Adjusted Free-Flow Speed, FFSadj
                                                           71.8
                                                                                        mi/h
                                     Step 3: Estimate and Adjust Capacity__
Adjusted Free-flow Speed, FFSadj
                                                           71.8
                                                                                        mi/h
                                                           2400
Capacity, c
                                                                                        pc/h/ln
Capacity Adjustments
```

Driver Population
Driver Population CAF

Mostly Familiar 0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4	: Ad	iust	Demand	Volume
--------	------	------	--------	--------

2323

Demand Volume, V	2942	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	2168	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	2168	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	56.3	mi/h	
Density, D	38.5	pc/mi/ln	
Level of Service, LOS	E	·	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:47:38

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 97-91DR.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 2128 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 57.3 mi/h 37.1 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.43 ramps/mi Demand Volume 2887 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.43 ramps/mi TRD Adjustment 1.6 mi/h 73.4 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.6 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.6 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

2323

Demand Volume, V	2887	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	2128	pc/h/ln

Steps 5 and 6:	Estimate Speed	and Density	and Determine LOS
----------------	----------------	-------------	-------------------

czmace speed and semsie, and s		
2128	pc/h/ln	
71.6	mi/h	
0.968		
2323	pc/h/ln	
1064	pc/h/ln	
45	pc/mi/ln	
57.3	mi/h	
37.1	pc/mi/ln	
E		
	2128 71.6 0.968 2323 1064 45 57.3	71.6 mi/h 0.968 2323 pc/h/ln 1064 pc/h/ln 45 pc/mi/ln 57.3 mi/h

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:51:42

FREEWAY DIVERGE ANALYSIS File Name: PM_WB_Diverge_91_OffRamp.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln 12.2 Level of Service, LOS В Average Flow in Outer Lanes, vOA pc/mi/ln Average Speed in Ramp Influence Area, SR 59.0 mi/h Average Speed in Outer Lanes of Freeway, SO mi/h Average Speed for Off-Ramp (Diverge) Junction, S 59.0 mi/h Density Across All Lanes, D 18.3 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates_ Freeway Data Number of Freeway Lanes 2 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1469 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 1463 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1n 1 mi/h Ramp Free-Flow Speed, SFR 45.0 Ramp Side Right Length of First Deceleration Lane, LD or LD1 1176 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp Demand Volume, V veh/h 1463 1424 0.95 Peak Hour Factor, PHF 0.95 Percent Total Trucks % 20.00 2.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2157 1558 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 2157 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violation	1?
vF	2157	4646	No	
vR	1558	2033	No	
v12	2157	4400	No	
· 				
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather	•	Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		_	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Step 4: Estimate Density in Rar Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	np Influence Area an 2157 1176 12.2 11.7 B	d Determir	e LOS	pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	-	eeway Juno	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	•		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	2157			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2157			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for Off-Ramp, DS	0.453			
Average Speed in Ramp Influence Area, SR	59.0			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	-			mi/h
Avenage Speed for Off Bamp Junction S	FO 0			mi/h

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:39:59

59.0

18.3

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 91D-91M.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1078 Adjusted Capacity, cadj pc/h/ln 2217 59.0 mi/h Speed, S 18.3 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 1463 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4	: Adjust	Demand	Volume
--------	----------	--------	--------

2217

Demand Volume, V	1463	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1078	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1078	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	18.3	pc/mi/ln	
Level of Service, LOS	С		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:48:44

Capacity Checks

PM_WB_Merge_910nRamp.xuf File Name: Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR pc/mi/ln 16.4 Level of Service, LOS В Average Flow in Outer Lanes, vOA pc/mi/ln Average Speed in Ramp Influence Area, SR 65.1 mi/h Average Speed in Outer Lanes of Freeway, SO mi/h Average Speed for On-Ramp (Merge) Junction, S 65.1 mi/h Density Across All Lanes, D 18.3 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates__ Freeway Data Number of Freeway Lanes ln 2 Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1469 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 1463 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n \min/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Acceleration Lane, LA or LA1 1227 ft ft Length of Second Acceleration Lane, LA2 Junction Components Freeway Ramp Demand Volume, V veh/h 1463 205 0.95 Peak Hour Factor, PHF 0.95 Percent Total Trucks % 20.00 3.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0300 3.000 Heavy Vehicle PCE, ET 3.000 0.943 Heavy Vehicle Adj., fHV 0.714 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2157 229 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for On-Ramps Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFM 1.000 Flow Rate in Lanes 1 and 2, v12 2157 pc/h Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

FREEWAY MERGE ANALYSIS

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum		Violation	1?
vFO	2386	4646		No	
vR	229	2033		No	
vR12	2386	4600		No	
VILLE	2300	4000		110	
	Freeway		Ramp		
Unadjusted Capacity, cmd	4800		2100		pc/h
Driver Population	Mostly Familiar		Mostly Fa	miliar	рс/п
Driver Population CAF	0.968		0.968	IIIIIIII	
Weather Type	Non-Severe Weather	•		e Weather	
	1.000		1.000	e weather	
Weather Type CAF					
Incident Type	No Incident		-		
Final Capacity Adj. Factor, CAF	0.968		0.968		41
Adjusted Capacity, cmda	4646		2033		pc/h
Step 4: Estimate Density in Ran Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	mp Influence Area an 229 2157 1227 16.4 15.5 B	d Determir	ne LOS		pc/h pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	Vicinity of Ramp-Fr	eeway Junc	tions		
Freeway Free-Flow Speed, FFS	75.0	-			mi/h
Ramp Free-Flow Speed, SFR	45.0				mi/h
Length of Acceleration Lane, LA	1227				ft
Driver Population	Mostly Familiar				
Driver Population SAF	0.975				
Weather Type	Non-Severe Weather				
Weather Type SAF	1.000				
Final Speed Adjustment Factor, SAF	0.975				
Demand Flow Rate on Freeway, vF	2157				pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2157				pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	2386				pc/h
Number of Outer Lanes on Freeway, NO	0				ln
	-				
Speed Index for On-Ramp, MS	0.256				
Average Speed in Ramp Influence Area, SR	65.1				mi/h
Average Flow in Outer Lanes, vOA	-				pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	_				mi/h
Avenage Speed for On Dawn Junction S	CF 1				mi/h

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:55:22

65.1

18.3

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 91M-85.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1230 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 71.4 mi/h 17.2 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 1668 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	Adiust	Demand	Volume
3 LED	4.	AUTUST	Dellialiu	vorume

2323

Demand Volume, V	1668	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1230	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1230	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.4	mi/h	
Density, D	17.2	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 08:50:55

	DACTO EDEFLIAN CECMENT ANALYSTS	
E.1 N	BASIC FREEWAY SEGMENT ANALYSIS	
	AM_EB_FWYSegment_85-91D.xuf	
•	RKA	
0 J ·	RKA	
Jurisdiction:	exington County	
Date:	04/8/2020	
Analysis Year:	Build (2024)	
-	AM Peak-Hour	
-	I-26 at Columbia Avenue	
	United States Customary	
onics.	onitica scaces cascomary	
	LOS and Performance Measures	
Flow Rate, vp	887	pc/h/ln
Adjusted Capacity, cadj	2323	pc/h/ln
Speed, S	71.7	mi/h
Density, D	12.4	pc/mi/ln
Level of Service, LOS	В	pe/ m1/ 111
Level of Service, Los	U	
Number of Lanes N	Step 1: Input Data	1n
Number of Lanes, N	3	
Lane Width	12	ft
Segment Length	-	ft
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Right-Side Lateral Clearance	10	ft
Total Ramp Density, TRD	0.38	ramps/mi
Total Ramp Delisity, TRD	0.36	1 amps/ m1
Demand Volume	1804	veh/h
Peak Hour Factor, PHF	0.95	- ,
Percent Total Trucks	20.00	%
	20.00	
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Estimating FFS	Step 2: Estimate and Adjust FFS	
Measured or Base FFS	Base	
		//-
Base Free-Flow Speed, BFFS	75.0	mi/h
Lane Width	12	ft
Lane Width Adjustment, fLW	0.0	mi/h
Right-Side Lateral Clearance	10	ft
Right-Side Lateral Clearance Adj., f	RLC 0.0	mi/h
Total Ramp Density, TRD	0.38	ramps/mi
TRD Adjustment	1.4	mi/h
Free-Flow Speed, FFS	73.6	mi/h
, -		•
Speed Adjustments		
Driver Population	Mostly Familiar	
Driver Population SAF	0.975	
Weather Type	Non-Severe Weather	
Weather Type SAF	1.000	
The state of the s		
Final Speed Adjustment Factor, SAF	0.975	
Adjusted Free-Flow Speed, FFSadj	71.7	mi/h
Adjusted Free-flow Speed, FFSadj	_Step 3: Estimate and Adjust Capacity 71.7	mi/h
		·
Capacity, c	2400	pc/h/ln
Capacity Adjustments		
Capacity Adjustments	M±1 6 111	
Driver Population	Mostly Familiar	

Driver Population
Driver Population CAF

Mostly Familiar 0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

2323

Demand Volume, V	1804	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	887	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	zima ce opeca ana benozej ana		
Demand Flow Rate, vp	887	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.7	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1061	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.7	mi/h	
Density, D	12.4	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:36:48

FREEWAY DIVERGE ANALYSIS_

File Name: AM_EB_Diverge_91_OffRamp.xuf

Analyst: RKA
Agency: RKA
Jurisdiction: Lexi

Terrain Type

Demand Flow Rate, v

Jurisdiction:Lexington CountyDate:04/8/2020Analysis Year:Build (2024)Time Period Analyzed:AM Peak-Hour

Project Description: I-26 at Columbia Avenue Units: United States Customary

Density in Off-Ramp (Diverge) Influence Area, DR	10.9	pc/mi/ln	
Level of Service, LOS	В		
Average Flow in Outer Lanes, vOA	681	pc/h/ln	
Average Speed in Ramp Influence Area, SR	66.7	mi/h	
Average Speed in Outer Lanes of Freeway, SO	80.2	mi/h	
Average Speed for Off-Ramp (Diverge) Junction, S	70.0	mi/h	
Density Across All Lanes, D	11.5	pc/mi/ln	

Step 1: Specify Inputs and Convert Demand Volumes	; to	Volumes t	Demand	Flow	Rates	
---	------	-----------	--------	------	-------	--

Step 1: Specify Inputs and Conv	ert Demand Volumes to Dema	and Flow Rates	
Freeway Data			
Number of Freeway Lanes	3		ln
Freeway Free-Flow Speed, FFS	75.0		mi/h
Segment Length	1500		ft
Multilane Highway or C-D Roadway?	Freeway		
Demand Volume, V	1632		veh/h
Peak Hour Factor, PHF	0.95		
Ramp Data			
Number of Ramp Lanes	1		ln
Ramp Free-Flow Speed, SFR	55.0		mi/h
Ramp Side	Right		
Length of First Deceleration Lane, LD or LD1	910		ft
Length of Second Deceleration Lane, LD2	-		ft
,			
Junction Components	Freeway	Ramp	
	,		
Demand Volume, V	1632	172	veh/h
Peak Hour Factor, PHF	0.95	0.95	,
Percent Total Trucks	20.00	8.00	%
Percent SUTs	-	-	%
Percent TTs	_	-	%
Prop.Total Trucks, PT	0.2000	0.0800	
Heavy Vehicle PCE, ET	3.000	3.000	
Heavy Vehicle Adj., fHV	0.714	0.862	
Terrain Type	Rolling	Rolling	
Percent Grade	-	-	%
Grade Length	-	-	mi
Demand Adj.Factor, DAF	1.000	1.000	
Demand Flow Rate, v	2406	210	pc/h
Demarka 1 Ion Race, 1	2100	220	pe/
Adjacent Ramps	Upstream	Downstream	
Segment Type	Merge	Merge	
Distance to Ramp, LUP/LDOWN	27505	4602	ft
Demand Volume, V	261	1150	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	2.00	2.00	
Heavy Vehicle Adj., fHV	0.962	0.962	
Tanasia Tanas	D-111	D-114	

Rolling

286

Rolling

pc/h

1259

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	2588.6	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	-	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.690	
Flow Rate in Lanes 1 and 2, v12	1725	pc/h

Capacity Checks				
	Actual	Maximum	Violatio	on?
vF	2406	6970	No	
vR	210	2130	No	
v12	1725	4400	No	
	Freeway	R	amp	
Unadjusted Capacity, cmd	7200	2	200	pc/h
Oriver Population	Mostly Familia	ar M	Nostly Familiar	
Driver Population CAF	0.968	6	.968	
Weather Type	Non-Severe Wea	ather N	lon-Severe Weathe	r
Weather Type CAF	1.000	1	000	
Incident Type	No Incident	-		
Final Capacity Adj. Factor, CAF	0.968	6	.968	
Adjusted Capacity, cmda	6970	2	130	pc/h
Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	10.9 9.4 B			pc/mi/ln veh/mi/lr
Step 5: Estimate Speeds	_	mp-Freeway Juncti	ons	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
	M+1 F11.	ar		
·	Mostly Familia			
Driver Population SAF	0.975	a+han		
Driver Population SAF Weather Type	0.975 Non-Severe Wea	ather		
Driver Population SAF Weather Type Weather Type SAF	0.975 Non-Severe Wea 1.000	ather		
Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF	0.975 Non-Severe Wea 1.000 0.975	ather		nc/h
Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF	0.975 Non-Severe Wea 1.000 0.975 2406	ather		pc/h
Driver Population SAF Neather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12	0.975 Non-Severe Wea 1.000 0.975 2406 1725	ather		pc/h
Driver Population SAF Neather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12	0.975 Non-Severe Wea 1.000 0.975 2406	ather		
Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS	0.975 Non-Severe Wes 1.000 0.975 2406 1725 1	ather		pc/h ln
Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR	0.975 Non-Severe Wes 1.000 0.975 2406 1725 1 0.205 66.7	ather		pc/h ln mi/h
Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	0.975 Non-Severe Wes 1.000 0.975 2406 1725 1 0.205 66.7 681	ather		pc/h ln mi/h pc/h/ln
Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO	0.975 Non-Severe Wes 1.000 0.975 2406 1725 1 0.205 66.7 681 80.2	ather		mi/h pc/h/ln mi/h
Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	0.975 Non-Severe Wes 1.000 0.975 2406 1725 1 0.205 66.7 681	ather		pc/h ln mi/h pc/h/ln

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:33:18

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM EB FWYSegment 91D M.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 802 Adjusted Capacity, cadj 2292 pc/h/ln Speed, S 66.8 mi/h 12.0 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 2.30 ramps/mi Demand Volume 1632 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 2.30 ramps/mi TRD Adjustment 6.5 mi/h Free-Flow Speed, FFS 68.5 mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 66.8 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 66.8 mi/h 2368 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2292

pc/h/ln

Sten	4:	Adiust	Demand	Volume
3 LED	4.	AUTUST	Dellialiu	vorume

Demand Volume, V	1632	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	802	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	-mate speed and sensely and		
Demand Flow Rate, vp	802	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	66.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2292	pc/h/ln	
Breakpoint, BP	1244	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	66.8	mi/h	
Density, D	12.0	pc/mi/ln	
Level of Service, LOS	В	·	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:37:42

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

FREEWAY MERGE ANALYSIS File Name: AM EB Merge 910nRamp.xuf Analyst: RKA Agency: RKA Lexington County Jurisdiction: 04/8/2020 Date: Build (2024) Analysis Year: Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue United States Customary Units: LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR 20.6 pc/mi/ln Level of Service, LOS C Average Flow in Outer Lanes, vOA 958 pc/h/ln Average Speed in Ramp Influence Area, SR 64.2 mi/h Average Speed in Outer Lanes of Freeway, SO 71.5 mi/h Average Speed for On-Ramp (Merge) Junction, S 66.0 mi/h Density Across All Lanes, D 18.5 pc/mi/ln Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates Freeway Data Number of Freeway Lanes 3 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 1632 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1n 1 Ramp Free-Flow Speed, SFR 55.0 mi/h Right Ramp Side Length of First Acceleration Lane, LA or LA1 873 ft Length of Second Acceleration Lane, LA2 ft Junction Components Freeway Ramp Demand Volume, V 1632 1150 veh/h 0.95 Peak Hour Factor, PHF 0.95 Percent Total Trucks 20.00 2.00 % Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2406 pc/h 1258 Adjacent Ramps Upstream Downstream Segment Type Diverge Diverge Distance to Ramp, LUP/LDOWN 4602 27505 ft Demand Volume, V 172 238 veh/h Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks 8.00 2.00

0.862

210

Rolling

0.962

261

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for On-Ramps		
Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ	1573.1	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	1283.4	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFM	0.602	
Flow Rate in Lanes 1 and 2, v12	1448	pc/h

	p-Freeway Junction and	d Compare F	low Rates	
Capacity Checks				
	Actual	Maximum	Violatio	n?
vF0	3664	6970	No	
vR	1258	2130	No	
vR12	2706	4600	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2200	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather	r	Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		2130	pc/h
Stan 4. Estimata Dansitu in l	Dawn Tafluanaa Amaa a	d Dotomi	105	
Step 4: Estimate Density in F Demand Flow Rate on Ramp, vR	1258	ia pereriliti	ie Lus	pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1448			pc/h
Length of Acceleration Lane, LA	873			ft
Density in On-Ramp Influence Area, DR	20.6			pc/mi/ln
Density in On-Ramp Influence Area, DR	19.8			veh/mi/ln
Level of Service, LOS	С			
Step 5: Estimate Speeds in the	ho Vicinity of Bomn Fr	nooway June	-tions	
Freeway Free-Flow Speed, FFS	75.0	eeway June	. C10115	 mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Length of Acceleration Lane, LA	873			ft
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	r		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
	2406			nc/h
Demand Flow Rate on Freeway, vF	2406			pc/h
	2406 1448			
Demand Flow Rate in Lanes 1 and 2, v12				pc/h
Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12	1448			
Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS	1448 2706 1 0.286			pc/h pc/h ln
Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR	1448 2706 1 0.286 64.2			pc/h pc/h ln mi/h
Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	1448 2706 1 0.286 64.2 958			pc/h pc/h ln mi/h pc/h/ln
Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO	1448 2706 1 0.286 64.2 958 71.5			pc/h pc/h ln mi/h pc/h/ln mi/h
Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO Average Speed for On-Ramp Junction, S Density Across All Lanes, D	1448 2706 1 0.286 64.2 958			pc/h pc/h ln mi/h pc/h/ln

	DACTO EDEFLIAN CECUFAIT ANNALES	
	BASIC FREEWAY SEGMENT ANALYSIS	
	AM_EB_FWYSegment_91M-97.xuf	
,	RKA	
0 J	RKA	
	Lexington County	
Date:	04/8/2020	
Analysis Year:	Build (2024)	
Time Period Analyzed:	AM Peak-Hour	
Project Description:	I-26 at Columbia Avenue	
· · · · · · · · · · · · · · · · · · ·	Jnited States Customary	
	·	
	LOS and Performance Measures	
Flow Rate, vp	1367	pc/h/ln
Adjusted Capacity, cadj	2323	pc/h/ln
Speed, S	70.4	mi/h
Density, D	19.4	pc/mi/ln
Level of Service, LOS	С	. , ,
	-	
Number of Land	Step 1: Input Data	
Number of Lanes, N	3	ln
Lane Width	12	ft
Segment Length	-	ft
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Right-Side Lateral Clearance	10	ft
Total Ramp Density, TRD	0.46	ramps/mi
, , , , , , , , , , , , , , , , , , ,		- F-/
Demand Volume	2782	yoh/h
		veh/h
Peak Hour Factor, PHF	0.95	0/
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Fatiguation FFG	Step 2: Estimate and Adjust FFS	
Estimating FFS	_	
Measured or Base FFS	Base	
Base Free-Flow Speed, BFFS	75.0	mi/h
Lane Width	12	ft
Lane Width Adjustment, fLW	0.0	mi/h
Right-Side Lateral Clearance	10	ft
Right-Side Lateral Clearance Adj., f	RLC 0.0	mi/h
Total Ramp Density, TRD	0.46	ramps/mi
TRD Adjustment	1.7	mi/h
Free-Flow Speed, FFS	73.3	mi/h
Speed Adjustments	_	
Driver Population	Mostly Familiar	
Driver Population SAF	0.975	
Weather Type	Non-Severe Weather	
Weather Type SAF	1.000	
Final Speed Adjustment Factor, SAF	0.975	
Adjusted Free-Flow Speed, FFSadj	71.5	mi/h
	_Step 3: Estimate and Adjust Capacity	
Adjusted Free-flow Speed, FFSadj	71.5	mi/h
Capacity, c	2400	pc/h/ln
Capacity Adjustments		
Driver Population	Mostly Familiar	
-	-	

Driver Population
Driver Population CAF

Mostly Familiar 0.968

Incident Type CAF
Incident Type CAF
Final Capacity Adjustment Fa

Final Capacity Adjustment Factor, CAF Adjusted Capacity, cadj

Non-Severe Weather

1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	Adiust	Demand	Volume
3 LED	4.	AUTUST	Dellialiu	vorume

2323

Demand Volume, V	2782	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1367	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1367	pc/h/ln
Adjusted Free-Flow Speed, FFSadj	71.5	mi/h
Capacity Adjustment Factor, CAF	0.968	
Adjusted Capacity, cadj	2323	pc/h/ln
Breakpoint, BP	1068	pc/h/ln
Density at Capacity, Dc	45	pc/mi/ln
Mean Speed under Base Conditions, S	70.4	mi/h
Density, D	19.4	pc/mi/ln
Level of Service, LOS	С	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:37:50

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 97-91DR.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1006 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 71.6 mi/h 14.1 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.43 ramps/mi Demand Volume 2047 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.43 ramps/mi TRD Adjustment 1.6 mi/h 73.4 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.6 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.6 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	⊿.	Adiust	Demand	Volume
3160	→.	Aujust	Dellialia	VOTUILE

2323

Demand Volume, V	2047	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1006	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	cimate speed and bensity and be	rei ilitile roz	
Demand Flow Rate, vp	1006	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.6	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1064	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.6	mi/h	
Density, D	14.1	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:38:23

FREEWAY DIVERGE ANALYSIS_

File Name: AM_WB_Diverge_91_OffRamp.xuf

Analyst: RKA
Agency: RKA
Jurisdiction: Lexi

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

Jurisdiction:Lexington CountyDate:04/8/2020Analysis Year:Build (2024)Time Period Analyzed:AM Peak-Hour

Project Description: I-26 at Columbia Avenue Units: United States Customary

Density in Off-Ramp (Diverge) Influence Area, DR	19.3	pc/mi/ln
Level of Service, LOS	В	
Average Flow in Outer Lanes, vOA	796	pc/h/ln
Average Speed in Ramp Influence Area, SR	66.6	mi/h
Average Speed in Outer Lanes of Freeway, SO	80.2	mi/h
Average Speed for Off-Ramp (Diverge) Junction, S	70.0	mi/h
Density Across All Lanes, D	13.2	pc/mi/ln

Step 1: Specify Inputs and Co	nvert Demand Volumes to D	Demand Flow Rates	
Freeway Data			
Number of Freeway Lanes	3		ln
Freeway Free-Flow Speed, FFS	75.0		mi/h
Segment Length	1500		ft
Multilane Highway or C-D Roadway?	Freeway		
Demand Volume, V	1883		veh/h
Peak Hour Factor, PHF	0.95		
Ramp Data			
Number of Ramp Lanes	1		ln
Ramp Free-Flow Speed, SFR	55.0		mi/h
Ramp Side	Right		
Length of First Deceleration Lane, LD or LD1	217		ft
Length of Second Deceleration Lane, LD2	-		ft
Junction Components	Freeway	Ramp	
Demand Volume, V	1883	164	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	20.00	20.00	%
Percent SUTs	_	-	%
Percent TTs	_	-	%
Prop.Total Trucks, PT	0.2000	0.2000	
Heavy Vehicle PCE, ET	3.000	3.000	
Heavy Vehicle Adj., fHV	0.714	0.714	
Terrain Type	Rolling	Rolling	
Percent Grade	-	-	%
Grade Length	_	_	mi
Demand Adj.Factor, DAF	1.000	1.000	шт
Demand Flow Rate, v	2776	242	pc/h
Adjacent Ramps	Upstream	Downstream	
Aujacent Kamps	opscream	DOWITS CITE AIII	
Segment Type	Merge	Diverge	
Distance to Ramp, LUP/LDOWN	24535	993	ft
Demand Volume, V	205	887	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	2.00	5.00	

0.962

224

Rolling

0.909

1027

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	1927.1	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	1056.8	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.686	
Flow Rate in Lanes 1 and 2, v12	1980	pc/h

Capacity Checks				
	Actual	Maximum	Violati	.on?
vF	2776	6970	No	
vR	242	2130	No	
v12	1980	4400	No	
	Freeway	F	Ramp	
Unadjusted Capacity, cmd	7200	2	2200	pc/h
Driver Population	Mostly Famili	ar M	Mostly Familiar	
Driver Population CAF	0.968	(0.968	
Weather Type	Non-Severe We	ather M	Non-Severe Weath	er
Weather Type CAF	1.000	=	1.000	
Incident Type	No Incident	-	-	
Final Capacity Adj. Factor, CAF	0.968	(0.968	
Adjusted Capacity, cmda	6970	2	2130	pc/h
Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	19.3 13.8 B			pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds	_	mp-Freeway Juncti	.ons	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Driver Population	Mostly Famili 0.975	ar.		
Driver Population SAF Weather Type	Non-Severe We	athon		
Weather Type SAF	1.000	aciici		
weather type sai				
Final Sneed Adiustment Factor, SAF	0.975			
	0.975 2776			nc/h
Demand Flow Rate on Freeway, vF	2776			pc/h nc/h
Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12				pc/h pc/h ln
Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO	2776 1980			pc/h
Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS	2776 1980 1			pc/h
Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR	2776 1980 1 0.208			pc/h ln
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO	2776 1980 1 0.208 66.6			pc/h ln mi/h
Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	2776 1980 1 0.208 66.6 796			pc/h ln mi/h pc/h/ln

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:33:53

	DACTO EDEFLIAN CECUFAT ANNUACE	
	BASIC FREEWAY SEGMENT ANALYSIS	
	AM_WB_FWYSegment_91DR-91DL.xuf	
,	RKA	
0 J ·	RKA	
Jurisdiction:	exington County	
Date:	04/8/2020	
Analysis Year:	Build (2024)	
-	AM Peak-Hour	
	I-26 at Columbia Avenue	
	United States Customary	
onics.	onitica states castomary	
	LOS and Performance Measures	
Flow Rate, vp	925	pc/h/ln
Adjusted Capacity, cadj	2217	pc/h/ln
Speed, S	59.0	mi/h
Density, D	15.7	pc/mi/ln
Level of Service, LOS	В	pc/111/111
Level of Service, Los	Ь	
Number of Lanes N	Step 1: Input Data	ln
Number of Lanes, N	3	
Lane Width	12	ft
Segment Length	-	ft
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Right-Side Lateral Clearance	10	ft
Total Ramp Density, TRD	6.00	ramps/mi
Total Namp Bensiey, The	0.00	1 diiip3/ iii1
Demand Volume	1883	veh/h
Peak Hour Factor, PHF	0.95	
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	20.00	%
	-	
Percent Tractor-Trailers, TT	-	%
Estimating EEC	Step 2: Estimate and Adjust FFS	
Estimating FFS	Paga	
Measured or Base FFS	Base	• 41
Base Free-Flow Speed, BFFS	75.0	mi/h
Lane Width	12	ft
Lane Width Adjustment, fLW	0.0	mi/h
Right-Side Lateral Clearance	10	ft
Right-Side Lateral Clearance Adj., f	RLC 0.0	mi/h
Total Ramp Density, TRD	6.00	ramps/mi
TRD Adjustment	14.5	mi/h
Free-Flow Speed, FFS	60.5	mi/h
rree-riow speed, rrs	00.3	1111111
Speed Adjustments		
Driver Population	Mostly Familiar	
Driver Population SAF	0.975	
Weather Type	Non-Severe Weather	
· · · · · · · · · · · · · · · · · · ·		
Weather Type SAF	1.000	
Final Speed Adjustment Factor, SAF	0.975	• 41
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h
Adjusted Free-flow Speed, FFSadj	_Step 3: Estimate and Adjust Capacity 59.0	mi/h
		·
Capacity, c	2290	pc/h/ln
Capacity Adjustments		
Capacity Adjustments	M	
Driver Population	Mostly Familiar	

Driver Population
Driver Population CAF

Mostly Familiar 0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident

1.000 0.968 2217

pc/h/ln

Step 4: Adjust Deman	ıd Vo⊥ume	5
----------------------	-----------	---

Demand Volume, V	1883	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	925	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

speed did beingley did		
925	pc/h/ln	
59.0	mi/h	
0.968		
2217	pc/h/ln	
1537	pc/h/ln	
45	pc/mi/ln	
59.0	mi/h	
15.7	pc/mi/ln	
В	·	
	925 59.0 0.968 2217 1537 45 59.0 15.7	59.0 mi/h 0.968 2217 pc/h/ln 1537 pc/h/ln 45 pc/mi/ln 59.0 mi/h 15.7 pc/mi/ln

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:38:08

FREEWAY DIVERGE ANALYSIS_

File Name: AM_WB_Diverge_91_OffLoop.xuf

Analyst: RKA Agency: RKA

Terrain Type

Demand Flow Rate, v

Jurisdiction:Lexington CountyDate:04/8/2020Analysis Year:Build (2024)Time Period Analyzed:AM Peak-Hour

Project Description: I-26 at Columbia Avenue Units: United States Customary

1.05	and	Performance	Measures

	ince ricasares		
Density in Off-Ramp (Diverge) Influence Area, DR	2.1	pc/mi/ln	
Level of Service, LOS	Α		
Average Flow in Outer Lanes, vOA	143	pc/h/ln	
Average Speed in Ramp Influence Area, SR	56.6	mi/h	
Average Speed in Outer Lanes of Freeway, SO	80.2	mi/h	
Average Speed for Off-Ramp (Diverge) Junction, S	58.3	mi/h	
Density Across All Lanes, D	8.4	pc/mi/ln	

Step 1: Specify Inputs and Co	nvert Demand Volumes to D	emand Flow Rates	
Freeway Data	_		•
Number of Freeway Lanes	3		ln · //
Freeway Free-Flow Speed, FFS	75.0		mi/h
Segment Length	1500		ft
Multilane Highway or C-D Roadway?	Freeway		
Demand Volume, V	996		veh/h
Peak Hour Factor, PHF	0.95		
Ramp Data			
Number of Ramp Lanes	1		ln
Ramp Free-Flow Speed, SFR	35.0		mi/h
Ramp Side	Right		
Length of First Deceleration Lane, LD or LD1	1500		ft
Length of Second Deceleration Lane, LD2	-		ft
Junction Components	Freeway	Ramp	
Demand Volume, V	996	887	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	20.00	5.00	%
Percent SUTs	-	-	%
Percent TTs	_	_	%
Prop.Total Trucks, PT	0.2000	0.0500	
Heavy Vehicle PCE, ET	3.000	3.000	
Heavy Vehicle Adj., fHV	0.714	0.909	
Terrain Type	Rolling	Rolling	
Percent Grade	-	-	%
Grade Length	- -	_	mi
Demand Adj.Factor, DAF	1.000	1.000	шт
Demand Flow Rate, v	1468	1027	pc/h
Deliand Flow Rate, V	1400	1027	рс/п
Adjacent Ramps	Upstream	Downstream	
Segment Type	Diverge	Merge	
Distance to Ramp, LUP/LDOWN	993	1184	ft
Demand Volume, V	164	217	veh/h
Peak Hour Factor, PHF	0.95	0.95	•
Percent Total Trucks	20.00	5.00	
Heavy Vehicle Adj., fHV	0.714	0.909	
Tonnain Tuna	Dolling	Dolling	

Rolling

242

Rolling

pc/h

251

Step 2: Estimate the Approach	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	-	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	-	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.676	
Flow Rate in Lanes 1 and 2, v12	1325	pc/h

Capacity Checks	f Ramp-Freeway Junctio			
capacity checks	Actual	Maximum	Violatio	on?
vF	1468	6970	No	
vR	1027	1936	No	
v12	1325	4400	No	
	Freeway	Ra	атр	
Unadjusted Capacity, cmd	7200	20	9 00	pc/h
Driver Population	Mostly Famili	ar Mo	ostly Familiar	
Driver Population CAF	0.968	0	.968	
Weather Type	Non-Severe We	eather No	on-Severe Weathe	r
Weather Type CAF	1.000	1	.000	
Incident Type	No Incident	-		
Final Capacity Adj. Factor, CAF	0.968	0	.968	
Adjusted Capacity, cmda	6970	19	936	pc/h
Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	2.1 1.9 A			pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds		mp-Freeway Junctio	ons	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	35.0			mi/h
Driver Population	Mostly Famili	.ar		
Driver Population SAF	0.975	 		
Weather Type	Non-Severe We	eather		
Weather Type SAF	1.000 0.975			
Final Speed Adjustment Factor, SAF				nc/h
Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12	1468 1325			pc/h pc/h
	1323			<u>.</u>
				ln
	-			
Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS	0.532			
Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR	0.532 56.6			mi/h
Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	0.532 56.6 143			pc/h/ln
Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO	0.532 56.6 143 80.2			pc/h/ln mi/h
Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	0.532 56.6 143			pc/h/ln

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:33:42

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 91DL-91M.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 489 Adjusted Capacity, cadj 2217 pc/h/ln 59.0 mi/h Speed, S 8.3 pc/mi/ln Density, D Level of Service, LOS Α _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 996 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments

Driver Population
Driver Population CAF

Mostly Familiar 0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Sten	4:	∆diust	Demand	Volume

Demand Volume, V	996	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	489	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

	speed did beingley did		
Demand Flow Rate, vp	489	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	8.3	pc/mi/ln	
Level of Service, LOS	Α		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:37:58

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

FREEWAY MERGE ANALYSIS File Name: AM WB Merge 910nRamp.xuf Analyst: RKA Agency: RKA Lexington County Jurisdiction: 04/8/2020 Date: Build (2024) Analysis Year: Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue United States Customary Units: LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR 7.4 pc/mi/ln Level of Service, LOS Α Average Flow in Outer Lanes, vOA 575 pc/h/ln Average Speed in Ramp Influence Area, SR 66.4 mi/h Average Speed in Outer Lanes of Freeway, SO 72.8 mi/h Average Speed for On-Ramp (Merge) Junction, S 68.4 mi/h Density Across All Lanes, D 8.4 pc/mi/ln Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates Freeway Data Number of Freeway Lanes 3 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1184 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 996 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1n 1 Ramp Free-Flow Speed, SFR 55.0 mi/h Right Ramp Side Length of First Acceleration Lane, LA or LA1 1102 ft Length of Second Acceleration Lane, LA2 ft Junction Components Freeway Ramp Demand Volume, V 996 217 veh/h Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks 20.00 5.00 % Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0500 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.909 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 1468 251 pc/h Adjacent Ramps Upstream Downstream Segment Type Diverge Diverge Distance to Ramp, LUP/LDOWN 1184 27580 ft Demand Volume, V 887 30 veh/h Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks 5.00 2.00

0.909

1027

Rolling

0.962

33

Rolling

pc/h

Step 2: Estimate the Approach	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for On-Ramps		
Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ	1258.5	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	144.4	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFM	0.608	
Flow Rate in Lanes 1 and 2, v12	893	pc/h

Capacity Checks				
	Actual	Maximum	Violatio	n?
vF0	1719	6970	No	
vR	251	2130	No	
vR12	1144	4600	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2200	pc/h
Oriver Population	Mostly Familiar		Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weathe	er	Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		2130	pc/h
Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	6.7 A			pc/mi/ln veh/mi/lr
Step 5: Estimate Speeds in the	-	reeway Jund	ctions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Length of Acceleration Lane, LA	1102			ft
Oriver Population Driver Population SAF	Mostly Familiar 0.975			
Weather Type	Non-Severe Weathe	nn.		
Weather Type SAF	1.000	:1		
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	1468			pc/h
Demand Flow Rate on Freeway, vi Demand Flow Rate in Lanes 1 and 2, v12	893			pc/h
Fotal Demand Flow Entering On-Ramp Infl. Area, vR12	1144			pc/h
Number of Outer Lanes on Freeway, NO	1			ln
Speed Index for On-Ramp, MS	0.215			
Average Speed in Ramp Influence Area, SR	66.4			mi/h
Average Flow in Outer Lanes, vOA	575			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	72.8			mi/h
Average Speed for On-Ramp Junction, S	68.4			mi/h

8.4

pc/mi/ln

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 91M-85.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2024) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 596 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 71.7 mi/h 8.3 pc/mi/ln Density, D Level of Service, LOS Α _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.38 ramps/mi Demand Volume 1213 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.38 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.7 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 71.7 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2323

pc/h/ln

Sten	⊿.	Adiust	Demand	Volume
3160	→.	Aujust	Dellialia	VOTUILE

Demand Volume, V	1213	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	596	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	cimate speed and bensity and t	e cei ilizile 203	
Demand Flow Rate, vp	596	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.7	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1061	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.7	mi/h	
Density, D	8.3	pc/mi/ln	
Level of Service, LOS	Α		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:38:16

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 85-91D.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 920 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 71.7 mi/h 12.8 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.38 ramps/mi Demand Volume 1873 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.38 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.7 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.7 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

2323

Demand Volume, V	1873	veh/h	
Peak Hour Factor, PHF	0.95		
Number of Lanes, N	3	ln	
Terrain Type	Rolling		
Percent Grade	-	%	
Grade Length	-	mi	
Percent Total Trucks	20.00	%	
Percent Single-Unit Trucks, SUT	-	%	
Percent Tractor-Trailers, TT	-	%	
Proportion of Total Trucks, PT	0.2000		
Heavy Vehicle PCE, ET	3.000		
Heavy Vehicle Adjustment, fHV	0.714		
Demand Adjustment Factor, DAF	1.000		
Demand Flow Rate, vp	920	pc/h/ln	

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	camace opeca and sensacy and s		
Demand Flow Rate, vp	920	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.7	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1061	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.7	mi/h	
Density, D	12.8	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:43:21

FREEWAY DIVERGE ANALYSIS_

File Name: PM_EB_Diverge_91_OffRamp.xuf

Analyst: RKA Agency: RKA

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

Jurisdiction: Lexington County
Date: 04/8/2020
Analysis Year: Build (2024)
Time Period Analyzed: PM Peak-Hour

Project Description: I-26 at Columbia Avenue Units: United States Customary

ice rieasules		
11.3	pc/mi/ln	
В		
696	pc/h/ln	
66.7	mi/h	
80.2	mi/h	
70.0	mi/h	
11.7	pc/mi/ln	
	11.3 B 696 66.7 80.2 70.0	B 696 pc/h/ln 66.7 mi/h 80.2 mi/h 70.0 mi/h

Step 1: Specify Inputs and Convert Demand Volumes	s to	lumes t	Demand F	Flow R	Rates
---	------	---------	----------	--------	-------

Step 1: Specify Inputs and Conver	t Demand Volumes to Demand Fi	low Rates	
Freeway Data			
Number of Freeway Lanes	3		ln
Freeway Free-Flow Speed, FFS	75.0		mi/h
Segment Length	1500		ft
Multilane Highway or C-D Roadway?	Freeway		
Demand Volume, V	1672		veh/h
Peak Hour Factor, PHF	0.95		
Ramp Data			
Number of Ramp Lanes	1		ln
Ramp Free-Flow Speed, SFR	55.0		mi/h
Ramp Side	Right		
Length of First Deceleration Lane, LD or LD1	910		ft
Length of Second Deceleration Lane, LD2	-		ft
Junction Components	Freeway	Ramp	
Demand Volume, V	1672	201	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	20.00	5.00	%
Percent SUTs	-	-	%
Percent TTs	-	-	%
Prop.Total Trucks, PT	0.2000	0.0500	
Heavy Vehicle PCE, ET	3.000	3.000	
Heavy Vehicle Adj., fHV	0.714	0.909	
Terrain Type	Rolling	Rolling	
Percent Grade	-	=	%
Grade Length	-	=	mi
Demand Adj.Factor, DAF	1.000	1.000	
Demand Flow Rate, v	2465	233	pc/h
Adjacent Ramps	Upstream	Downstream	
Segment Type	Merge	Merge	
Distance to Ramp, LUP/LDOWN	27505	4602	ft
Demand Volume, V	68	1270	veh/h
Peak Hour Factor, PHF	0.95	0.95	VC11/11
Percent Total Trucks	2.00	2.00	

0.962

74

Rolling

0.962

1390

Rolling

pc/h

Step 2: Estimate the Approac	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	676.8	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	-	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.688	
Flow Rate in Lanes 1 and 2, v12	1769	pc/h

Step 3: Estimate Capacity of	Ramp-Freeway Junction	and Compare F	low Rates	
Capacity Checks	Actual	Maximum	Violatio	on?
vF	2465	6970	No	
vR	233	2130	No	
v12	1769	4400	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2200	pc/h
Driver Population	Mostly Familia	ır	Mostly Familiar	·
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Wea	ither	Non-Severe Weather	r
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		2130	pc/h
Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	1769 910 11.3 10.3 B			pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in	n the Vicinity of Ram	p-Freeway Junc	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Driver Population	Mostly Familia	ır		
Driver Population SAF	0.975			
Weather Type	Non-Severe Wea	itner		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	2465			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1769			pc/h
Number of Outer Lanes on Freeway, NO	1			ln
Speed Index for Off-Ramp, DS	0.207			
Average Speed in Ramp Influence Area, SR	66.7			mi/h
Average Flow in Outer Lanes, vOA	696			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	80.2			mi/h
Average Speed for Off-Ramp Junction, S	70.0			mi/h
Density Across All Lanes, D	11.7			pc/mi/ln
,, -				p = ,= , =

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:35:13

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 91D M.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 822 Adjusted Capacity, cadj 2292 pc/h/ln Speed, S 66.8 mi/h 12.3 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 2.30 ramps/mi Demand Volume 1672 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 2.30 ramps/mi TRD Adjustment 6.5 mi/h Free-Flow Speed, FFS 68.5 mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 66.8 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 66.8 mi/h 2368 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2292

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

Demand Volume, V	1672	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	822	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

	acc opeca and benezely and		
Demand Flow Rate, vp	822	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	66.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2292	pc/h/ln	
Breakpoint, BP	1244	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	66.8	mi/h	
Density, D	12.3	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:43:36

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

FREEWAY MERGE ANALYSIS File Name: PM EB Merge 910nRamp.xuf Analyst: RKA Agency: RKA Lexington County Jurisdiction: 04/8/2020 Date: Build (2024) Analysis Year: Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue United States Customary Units: LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR 21.9 pc/mi/ln Level of Service, LOS Average Flow in Outer Lanes, vOA 981 pc/h/ln Average Speed in Ramp Influence Area, SR 63.9 mi/h Average Speed in Outer Lanes of Freeway, SO 71.4 mi/h Average Speed for On-Ramp (Merge) Junction, S 65.7 mi/h Density Across All Lanes, D 19.6 pc/mi/ln Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates Freeway Data Number of Freeway Lanes 3 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 1672 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1n 1 Ramp Free-Flow Speed, SFR 55.0 mi/h Right Ramp Side Length of First Acceleration Lane, LA or LA1 873 ft Length of Second Acceleration Lane, LA2 ft Junction Components Freeway Ramp Demand Volume, V 1672 1270 veh/h 0.95 Peak Hour Factor, PHF 0.95 Percent Total Trucks 20.00 2.00 % Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2465 pc/h 1390 Adjacent Ramps Upstream Downstream Segment Type Diverge Diverge Distance to Ramp, LUP/LDOWN 4602 27505 ft Demand Volume, V 201 301 veh/h Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks 5.00 2.00

0.909

233

Rolling

0.962

330

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for On-Ramps		
Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ	1613.9	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	1623.1	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFM	0.602	
Flow Rate in Lanes 1 and 2, v12	1484	pc/h

Capacity Checks				
	Actual	Maximum	Violatio	n?
vFO	3855	6970	No	
vR	1390	2130	No	
vR12	2874	4600	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2200	pc/h
Driver Population	Mostly Familiar	`	Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weat	her	Non-Severe Weather	•
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		2130	pc/h
Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	21.9 21.1 C			pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	•	-Freeway Junc	ctions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Length of Acceleration Lane, LA Driver Population	873			ft
Driver Population SAF	Mostly Familiar 0.975			
Weather Type	Non-Severe Weat	-hor		
Weather Type SAF	1.000	inci		
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	2465			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1484			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	2874			pc/h
Number of Outer Lanes on Freeway, NO	1			ln
Speed Index for On-Ramp, MS	0.296			
Average Speed in Ramp Influence Area, SR	63.9			mi/h
Average Flow in Outer Lanes, vOA	981			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	71.4			mi/h
Average Speed for On-Ramp Junction, S	65.7			mi/h
Density Across All Lanes D	19 6			nc/mi/ln

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 10:09:51

19.6

pc/mi/ln

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 91M-97.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1446 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 69.7 mi/h 20.7 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.46 ramps/mi Demand Volume 2942 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.46 ramps/mi TRD Adjustment 1.7 mi/h Free-Flow Speed, FFS 73.3 mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.5 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 71.5 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2323

pc/h/ln

Sten	4:	∆diust	Demand	Volume

Demand Volume, V	2942	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1446	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1446	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.5	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1068	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	69.7	mi/h	
Density, D	20.7	pc/mi/ln	
Level of Service, LOS	С		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:43:44

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 97-91DR.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1419 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 70.0 mi/h 20.3 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.43 ramps/mi Demand Volume 2887 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.43 ramps/mi TRD Adjustment 1.6 mi/h 73.4 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.6 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.6 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Incident Type
Incident Type CAF
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	Adiust	Demand	Volume
3 LED	4.	AUTUST	Dellialiu	vorume

2323

Demand Volume, V	2887	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1419	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1419	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.6	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1064	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	70.0	mi/h	
Density, D	20.3	pc/mi/ln	
Level of Service, LOS	С	·	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:45:56

FREEWAY DIVERGE ANALYSIS_

File Name: PM_WB_Diverge_91_OffRamp.xuf

Analyst: RKA RKA Agency: Jurisdiction:

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

Lexington County 04/8/2020 Date: Analysis Year: Build (2024) Time Period Analyzed: PM Peak-Hour

Project Description: I-26 at Columbia Avenue Units: United States Customary

1.05	and	Performance	Measures

Density in Off-Ramp (Diverge) Influence Area, DR	26.3	pc/mi/ln
Level of Service, LOS	C	ps,,
Average Flow in Outer Lanes, vOA	1105	pc/h/ln
Average Speed in Ramp Influence Area, SR	66.5	mi/h
Average Speed in Outer Lanes of Freeway, SO	79.8	mi/h
Average Speed for Off-Ramp (Diverge) Junction, S	69.8	mi/h
Density Across All Lanes, D	18.6	pc/mi/ln

C+00 1		-:	Tnnutc	204	Canvant	Domand	Valumas	+-	Domand	Flow Rate	_
STED	· Sne	CITV	Inniits	ana	CONVERT	Demana	volumes	TΩ	Demana	FIOW KATES	ς .

Step 1: Specify Inputs and Co	nvert Demand Volumes to D	emand Flow Rates	
Freeway Data			
Number of Freeway Lanes	3		ln
Freeway Free-Flow Speed, FFS	75.0		mi/h
Segment Length	1500		ft
Multilane Highway or C-D Roadway?	Freeway		
Demand Volume, V	2640		veh/h
Peak Hour Factor, PHF	0.95		
Ramp Data			
Number of Ramp Lanes	1		ln
Ramp Free-Flow Speed, SFR	55.0		mi/h
Ramp Side	Right		
Length of First Deceleration Lane, LD or LD1	217		ft
Length of Second Deceleration Lane, LD2	-		ft
Junction Components	Freeway	Ramp	
Demand Volume, V	2640	247	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	20.00	2.00	%
Percent SUTs	-	-	%
Percent TTs	-	-	%
Prop.Total Trucks, PT	0.2000	0.0200	
Heavy Vehicle PCE, ET	3.000	3.000	
Heavy Vehicle Adj., fHV	0.714	0.962	
Terrain Type	Rolling	Rolling	
Percent Grade	-	-	%
Grade Length	-	-	mi
Demand Adj.Factor, DAF	1.000	1.000	
Demand Flow Rate, v	3892	270	pc/h
Adjacent Ramps	Upstream	Downstream	
Segment Type	Merge	Diverge	
Distance to Ramp, LUP/LDOWN	24535	993	ft
Demand Volume, V	214	1177	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	2.00	2.00	

0.962

234

Rolling

0.962

1289

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	1673.4	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	1391.7	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.695	
Flow Rate in Lanes 1 and 2, v12	2787	pc/h

Step 3: Estimate Capacity of	Ramp-Freeway Junction	and Compare Fl	low Rates	
Capacity Checks	Actual	Maximum	Violati	on?
vF	3892	6970	No	
vR	270	2130	No	
v12	2787	4400	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2200	pc/h
Driver Population	Mostly Familia	ar	Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Wea	ather	Non-Severe Weathe	er
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		2130	pc/h
Step 4: Estimate Density Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	2787 217 26.3 25.3 C	a and betermine	E LUS	pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds i	n the Vicinity of Ram	np-Freeway Junct	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Driver Population	Mostly Familia	ar		
Driver Population SAF	0.975			
Weather Type	Non-Severe Wea	ather		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	3892			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2787			pc/h
Number of Outer Lanes on Freeway, NO	1			ln
Speed Index for Off-Ramp, DS	0.211			
Average Speed in Ramp Influence Area, SR	66.5			mi/h
Average Flow in Outer Lanes, vOA	1105			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	79.8			mi/h
Average Speed for Off-Ramp Junction, S	69.8			mi/h
Density Across All Lanes, D	18.6			pc/mi/ln

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:35:52

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 91DR-91DL.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1297 Adjusted Capacity, cadj pc/h/ln 2217 59.0 mi/h Speed, S 22.0 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 2640 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity_ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Incident Type
Incident Type CAF
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Sten	4:	∆diust	Demand	Volume

Demand Volume, V	2640	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1297	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

	acc opeca ana sensety ana .		
Demand Flow Rate, vp	1297	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	22.0	pc/mi/ln	
Level of Service, LOS	С		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:45:38

FREEWAY DIVERGE ANALYSIS_

File Name: PM_WB_Diverge_91_OffLoop.xuf

Analyst: RKA
Agency: RKA
Jurisdiction: Lexi

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

Jurisdiction:Lexington CountyDate:04/8/2020Analysis Year:Build (2024)Time Period Analyzed:PM Peak-Hour

Project Description: I-26 at Columbia Avenue Units: United States Customary

	iice neasures		
Density in Off-Ramp (Diverge) Influence Area, DR	6.7	pc/mi/ln	
Level of Service, LOS	Α		
Average Flow in Outer Lanes, vOA	307	pc/h/ln	
Average Speed in Ramp Influence Area, SR	55.8	mi/h	
Average Speed in Outer Lanes of Freeway, SO	80.2	mi/h	
Average Speed for Off-Ramp (Diverge) Junction, S	58.3	mi/h	
Density Across All Lanes, D	12.3	pc/mi/ln	

Step 1: Specify Inputs and Cor	nvert Demand Volumes to D	emand Flow Rates	
Freeway Data			
Number of Freeway Lanes	3		ln
Freeway Free-Flow Speed, FFS	75.0		mi/h
Segment Length	1500		ft
Multilane Highway or C-D Roadway?	Freeway		
Demand Volume, V	1463		veh/h
Peak Hour Factor, PHF	0.95		
Ramp Data			
Number of Ramp Lanes	1		ln
Ramp Free-Flow Speed, SFR	35.0		mi/h
Ramp Side	Right		
Length of First Deceleration Lane, LD or LD1	1500		ft
Length of Second Deceleration Lane, LD2	-		ft
Junction Components	Freeway	Ramp	
Demand Volume, V	1463	1177	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	20.00	2.00	%
Percent SUTs	-	-	%
Percent TTs	-	-	%
Prop.Total Trucks, PT	0.2000	0.0200	
Heavy Vehicle PCE, ET	3.000	3.000	
Heavy Vehicle Adj., fHV	0.714	0.962	
Terrain Type	Rolling	Rolling	
Percent Grade	-	-	%
Grade Length	-	-	mi
Demand Adj.Factor, DAF	1.000	1.000	
Demand Flow Rate, v	2157	1288	pc/h
Adjacent Ramps	Upstream	Downstream	
Segment Type	Diverge	Merge	
Distance to Ramp, LUP/LDOWN	993	1184	ft
Demand Volume, V	247	205	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	2.00	3.00	

0.962

270

Rolling

0.943

229

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	-	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	-	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.647	
Flow Rate in Lanes 1 and 2, v12	1850	pc/h

Step 3: Estimate Capacity of	Ramp-Freeway Junction	and Compare F	low Rates	
Capacity Checks	Actual	Maximum	Violati	on?
vF	2157	6970	No	
vR	1288	1936	No	
v12	1850	4400	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2000	pc/h
Driver Population	Mostly Familia	ar	Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Wea	ather	Non-Severe Weathe	er
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		1936	pc/h
Step 4: Estimate Density Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	in Ramp Influence Are 1850 1500 6.7 6.4 A	a and Determin	e LOS	pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds i	n the Vicinity of Ram	p-Freeway Junc	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	35.0			mi/h
Driver Population	Mostly Familia	ar		
Driver Population SAF	0.975			
Weather Type	Non-Severe Wea	ather		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	2157			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1850			pc/h
Number of Outer Lanes on Freeway, NO	1			ln
Speed Index for Off-Ramp, DS	0.556			
Average Speed in Ramp Influence Area, SR	55.8			mi/h
Average Flow in Outer Lanes, vOA	307			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	80.2			mi/h
Average Speed for Off-Ramp Junction, S	58.3			mi/h
Density Across All Lanes, D	12.3			pc/mi/ln

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:35:44

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 91DL-91M.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 719 Adjusted Capacity, cadj 2217 pc/h/ln 59.0 mi/h Speed, S 12.2 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 1463 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000

No Incident 1.000 0.968 2217

pc/h/ln

Sten	4:	∆diust	Demand	Volume

Demand Volume, V	1463	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	719	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	719	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	12.2	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:45:26

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

FREEWAY MERGE ANALYSIS File Name: PM WB Merge 910nRamp.xuf Analyst: RKA Agency: RKA Lexington County Jurisdiction: 04/8/2020 Date: Build (2024) Analysis Year: Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue United States Customary Units: LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR 10.5 pc/mi/ln Level of Service, LOS Average Flow in Outer Lanes, vOA 846 pc/h/ln Average Speed in Ramp Influence Area, SR 66.2 mi/h Average Speed in Outer Lanes of Freeway, SO 71.9 mi/h Average Speed for On-Ramp (Merge) Junction, S 68.1 mi/h Density Across All Lanes, D 11.7 pc/mi/ln Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates Freeway Data Number of Freeway Lanes 3 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1184 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 1463 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1n 1 Ramp Free-Flow Speed, SFR 55.0 mi/h Right Ramp Side Length of First Acceleration Lane, LA or LA1 1102 ft Length of Second Acceleration Lane, LA2 ft Junction Components Freeway Ramp Demand Volume, V 1463 205 veh/h 0.95 Peak Hour Factor, PHF 0.95 Percent Total Trucks 20.00 3.00 % Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0300 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.943 Terrain Type Rolling Rolling % Percent Grade Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2157 229 pc/h Adjacent Ramps Upstream Downstream Segment Type Diverge Diverge Distance to Ramp, LUP/LDOWN 1184 27580 ft Demand Volume, V 1177 151 veh/h Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks 2.00 2.00

0.962

1289

Rolling

0.962

165

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for On-Ramps		
Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ	1401.2	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	726.6	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFM	0.608	
Flow Rate in Lanes 1 and 2, v12	1311	pc/h

Capacity Checks				
	Actual	Maximum	Violatio	n?
vF0	2386	6970	No	
vR	229	2130	No	
vR12	1540	4600	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2200	pc/h
Oriver Population	Mostly Familiar		Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weathe	r	Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		2130	pc/h
Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	10.5 9.9 B			pc/mi/ln veh/mi/lr
Step 5: Estimate Speeds in t	-	reeway Jund	ctions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Length of Acceleration Lane, LA	1102			ft
Driver Population	Mostly Familiar 0.975			
Driver Population SAF Weather Type	Non-Severe Weathe	n		
Weather Type SAF	1.000	1		
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	2157			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1311			pc/h
Fotal Demand Flow Entering On-Ramp Infl. Area, vR12	1540			pc/h
Number of Outer Lanes on Freeway, NO	1			ln
Speed Index for On-Ramp, MS	0.221			
Average Speed in Ramp Influence Area, SR	66.2			mi/h
Average Flow in Outer Lanes, vOA	846			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	71.9			mi/h
	40.4			
Average Speed for On-Ramp Junction, S	68.1 11 7			mi/h

11.7

pc/mi/ln

Density Across All Lanes, D

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 91M-85.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2024) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 820 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 71.7 mi/h 11.4 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.38 ramps/mi Demand Volume 1668 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.38 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.7 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.7 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	∆diust	Demand	Volume

2323

Demand Volume, V	1668	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	820	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	speed did beingley did		
Demand Flow Rate, vp	820	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.7	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1061	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.7	mi/h	
Density, D	11.4	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:45:46

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM EB FWYSegment 85-91D.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1868 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 63.5 mi/h 29.4 pc/mi/ln Density, D Level of Service, LOS D _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 2535 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adjust Deman	ıd Vo⊥ume	5
----------------------	-----------	---

2323

Demand Volume, V	2535	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1868	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

	camaca speed and sensacy and		
Demand Flow Rate, vp	1868	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	63.5	mi/h	
Density, D	29.4	pc/mi/ln	
Level of Service, LOS	D		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:04:05

FREEWAY DIVERGE ANALYSIS File Name: AM EB Diverge 91 OffRamp.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln Level of Service, LOS C Average Flow in Outer Lanes, vOA pc/h/ln Average Speed in Ramp Influence Area, SR 62.7 mi/h Average Speed in Outer Lanes of Freeway, SO 80.2 mi/h Average Speed for Off-Ramp (Diverge) Junction, S 62.7 mi/h Density Across All Lanes, D 27.6 pc/mi/ln _Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates_ Freeway Data Number of Freeway Lanes 2 ln Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 2347 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n mi/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Deceleration Lane, LD or LD1 979 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp Demand Volume, V 2347 veh/h 188 Peak Hour Factor, PHF 0.95 0.95 % Percent Total Trucks 20.00 8.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0800 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.862 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 3460 230 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 3460 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violati	on?
vF	3460	4646	No	
vR	230	2033	No	
v12	3460	4400	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	p 57
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather	`	Non-Severe Weathe	r
Weather Type CAF	1.000		1.000	•
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Step 4: Estimate Density in Ram Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	np Influence Area an 3460 979 25.2 21.7 C	d Determir	ne LOS	pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	Vicinity of Ramp-Fr	eeway Juno	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	`		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	3460			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	3460			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for Off-Ramp, DS	0.333			
Average Speed in Ramp Influence Area, SR	62.7			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	80.2			mi/h
Avenage Speed in Oder Lunes of Treemay, so	63.7			m= /h

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:03:17

62.7

27.6

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

	BASIC FREEWAY SEGMENT ANALYSIS	
File Name:	AM_EB_FWYSegment_91D_M.xuf	
Analyst:	RKA	
Agency:	RKA	
	Lexington County	
	04/8/2020	
	No Build (2044)	
	AM Peak-Hour	
	I-26 at Columbia Avenue	
3		
Units:	J.S. Customary	
	LOS and Performance Measures	
Flow Rate, vp	1730	pc/h/ln
Adjusted Capacity, cadj	2217	pc/h/ln
Speed, S	58.2	mi/h
Density, D	29.7	pc/mi/ln
		pc/111/111
Level of Service, LOS	D	
Number of Lanes, N	Step 1: Input Data 2	ln
Lane Width	12	ft
Segment Length	-	ft
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Right-Side Lateral Clearance	10	ft
Total Ramp Density, TRD	6.00	ramps/mi
		·
Demand Volume	2347	veh/h
Peak Hour Factor, PHF	0.95	VCII/ II
		0/
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Estimating FFS	Step 2: Estimate and Adjust FFS	
Measured or Base FFS	Base	
Base Free-Flow Speed, BFFS	75.0	mi/h
Lane Width	12	ft
Lane Width Adjustment, fLW	0.0	mi/h
Right-Side Lateral Clearance	10	ft
Right-Side Lateral Clearance Adj., f	RLC 0.0	mi/h
Total Ramp Density, TRD	6.00	ramps/mi
TRD Adjustment	14.5	mi/h
Free-Flow Speed, FFS	60.5	mi/h
Consideration !		
Speed Adjustments		
Driver Population	Mostly Familiar	
Driver Population SAF	0.975	
Weather Type	Non-Severe Weather	
Weather Type SAF	1.000	
Final Speed Adjustment Factor, SAF	0.975	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h
	_Step 3: Estimate and Adjust Capacity	
Adjusted Free-flow Speed, FFSadj	59.0	mi/h
Capacity, c	2290	pc/h/ln
•		• • •
Capacity Adjustments		
Driver Population	Mostly Familiar	
PLIVEL LOBOTACTON	LIOSCIA LAIIITITAL	

Driver Population
Driver Population CAF

Mostly Familiar 0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	∆diust	Demand	Volume

2217

Demand Volume, V	2347	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1730	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1730	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	58.2	mi/h	
Density, D	29.7	pc/mi/ln	
Level of Service, LOS	D		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:05:16

FREEWAY MERGE ANALYSIS AM_EB_Merge_910nRamp.xuf File Name: Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR pc/mi/ln 33.8 Level of Service, LOS F Average Flow in Outer Lanes, vOA pc/mi/ln Average Speed in Ramp Influence Area, SR 50.8 mi/h Average Speed in Outer Lanes of Freeway, SO mi/h Average Speed for On-Ramp (Merge) Junction, S mi/h Density Across All Lanes, D pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates__ Freeway Data Number of Freeway Lanes 2 ln Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 2347 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n \min/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Acceleration Lane, LA or LA1 1500 ft ft Length of Second Acceleration Lane, LA2 Junction Components Freeway Ramp Demand Volume, V 2347 veh/h 1322 Peak Hour Factor, PHF 0.95 0.95 % Percent Total Trucks 20.00 2.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 3460 1447 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for On-Ramps Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFM 1.000 Flow Rate in Lanes 1 and 2, v12 3460 pc/h Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violatio	1?
vFO	4907	4646	Yes	
vR	1447	2033	No	
vR12	4907	4600	Yes	
VNIZ	4307	4000	103	
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	•
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather		Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
				•
Step 4: Estimate Density in Ra	= -	d Determin	e LOS	
Demand Flow Rate on Ramp, vR	1447			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	3460			pc/h
Length of Acceleration Lane, LA	1500			ft
Density in On-Ramp Influence Area, DR	33.8			pc/mi/ln
Density in On-Ramp Influence Area, DR	-			veh/mi/ln
Level of Service, LOS	F			
Step 5: Estimate Speeds in the	a Vicinity of Ramn-Er	eeway lunc	tions	
Freeway Free-Flow Speed, FFS	75.0	ccway June		mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Length of Acceleration Lane, LA	1500			ft
Driver Population	Mostly Familiar			1.0
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather			
Weather Type SAF	1.000			
	0.975			
Final Speed Adjustment Factor, SAF				nc/h
Demand Flow Rate on Freeway, vF	3460			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	3460			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	4907			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for On-Ramp, MS	_			
Average Speed in Ramp Influence Area, SR	50.8			mi/h
Average Flow in Outer Lanes, vOA	- · · · · · · · · · · · · · · · · · · ·			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	_			mi/h
Average Speed in Odeel Edites of Treeway, 50				mi/h

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:16:37

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM EB FWYSegment 91M-97.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 2704 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S mi/h pc/mi/ln Density, D Level of Service, LOS F _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 3669 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments

Driver Population
Driver Population CAF

Mostly Familiar 0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

2323

Demand Volume, V	3669	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	2704	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	2704	pc/h/ln
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h
Capacity Adjustment Factor, CAF	0.968	
Adjusted Capacity, cadj	2323	pc/h/ln
Breakpoint, BP	1057	pc/h/ln
Density at Capacity, Dc	45	pc/mi/ln
Mean Speed under Base Conditions, S	-	mi/h
Density, D	-	pc/mi/ln
Level of Service, LOS	F	·

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:06:18

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 97-91DR.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1904 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 62.7 mi/h 30.4 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.43 ramps/mi Demand Volume 2582 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.43 ramps/mi TRD Adjustment 1.6 mi/h 73.4 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.6 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.6 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	∆diust	Demand	Volume

2323

Demand Volume, V	2582	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1904	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

	acc		
Demand Flow Rate, vp	1904	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.6	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1064	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	62.7	mi/h	
Density, D	30.4	pc/mi/ln	
Level of Service, LOS	D		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:10:05

FREEWAY DIVERGE ANALYSIS File Name: AM_WB_Diverge_91_OffRamp.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln 12.0 Level of Service, LOS В Average Flow in Outer Lanes, vOA pc/h/ln Average Speed in Ramp Influence Area, SR 59.7 mi/h Average Speed in Outer Lanes of Freeway, SO 80.2 mi/h Average Speed for Off-Ramp (Diverge) Junction, S 59.7 mi/h Density Across All Lanes, D 17.8 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates_ Freeway Data Number of Freeway Lanes 2 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1469 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 1444 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n mi/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Deceleration Lane, LD or LD1 1176 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp Demand Volume, V 1444 veh/h 1138 Peak Hour Factor, PHF 0.95 0.95 % Percent Total Trucks 20.00 5.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0500 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.909 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2129 1318 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 2129 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum		Violation	?
vF	2129	4646		No	
vR	1318	2033		No	
v12	2129	4400		No	
112	2123	4400		110	
	Freeway		Ramp		
Unadjusted Capacity, cmd	4800		2100		pc/h
Driver Population	Mostly Familiar		Mostly Fa	miliar	F - /
Driver Population CAF	0.968		0.968		
Weather Type	Non-Severe Weather	.	Non-Sever	e Weather	
Weather Type CAF	1.000		1.000		
Incident Type	No Incident		_		
Final Capacity Adj. Factor, CAF	0.968		0.968		
Adjusted Capacity, cmda	4646		2033		pc/h
Step 4: Estimate Density in Rar Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	np Influence Area an 2129 1176 12.0 10.9	d Determir	ne LOS		pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	Vicinity of Ramp-Fr	eeway Juno	tions		
Freeway Free-Flow Speed, FFS	75.0				mi/h
Ramp Free-Flow Speed, SFR	45.0				mi/h
Driver Population	Mostly Familiar				
Driver Population SAF	0.975				
Weather Type	Non-Severe Weather	`			
Weather Type SAF	1.000				
Final Speed Adjustment Factor, SAF	0.975				
Demand Flow Rate on Freeway, vF	2129				pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2129				pc/h
Number of Outer Lanes on Freeway, NO	0				ln
Speed Index for Off-Ramp, DS	0.431				
Average Speed in Ramp Influence Area, SR	59.7				mi/h
Average Flow in Outer Lanes, vOA	_				pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	80.2				mi/h
Average Speed for Off Dame Junction S	50.7				<u></u>

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:02:55

59.7

17.8

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 91D-91M.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1064 Adjusted Capacity, cadj pc/h/ln 2217 59.0 mi/h Speed, S 18.0 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 1444 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments

Driver Population
Driver Population CAF

Mostly Familiar 0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Step 4: Adjust Demand Volume	Step	4:	Adiust	Demand	Volume
------------------------------	------	----	--------	--------	--------

Demand Volume, V	1444	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1064	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	acc opeca and benezely and		
Demand Flow Rate, vp	1064	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	18.0	pc/mi/ln	
Level of Service, LOS	В	·	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:07:14

FREEWAY MERGE ANALYSIS AM_WB_Merge_910nRamp.xuf File Name: Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR pc/mi/ln 16.6 Level of Service, LOS В Average Flow in Outer Lanes, vOA pc/mi/ln Average Speed in Ramp Influence Area, SR 65.1 mi/h Average Speed in Outer Lanes of Freeway, SO mi/h Average Speed for On-Ramp (Merge) Junction, S 65.1 mi/h Density Across All Lanes, D 18.6 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates__ Freeway Data Number of Freeway Lanes ln 2 Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1469 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 1444 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n \min/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Acceleration Lane, LA or LA1 1227 ft ft Length of Second Acceleration Lane, LA2 Junction Components Freeway Ramp Demand Volume, V 1444 veh/h 257 Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks % 20.00 5.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0500 3.000 Heavy Vehicle PCE, ET 3.000 0.909 Heavy Vehicle Adj., fHV 0.714 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2129 298 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for On-Ramps Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFM 1.000 Flow Rate in Lanes 1 and 2, v12 2129 pc/h Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violatio	n?
vFO	2427	4646	No	
vR	298	2033	No	
vR12	2427	4600	No	
VIII	2427	4000	110	
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather	`	Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Step 4: Estimate Density in Rad Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	amp Influence Area an 298 2129 1227 16.6 15.1 B	d Determir	ne LOS	pc/h pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	e Vicinity of Ramp-Fr	eeway Junc	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Length of Acceleration Lane, LA	1227			ft
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	•		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	2129			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2129			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	2427			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for On-Ramp, MS	0.257			
Average Speed in Ramp Influence Area, SR	65.1			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	-			mi/h
Avenage Speed for On Pamp Junction S	6E 1			, mi/h

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:17:35

65.1

18.6

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 91M-85.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1254 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 71.3 mi/h 17.6 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 1701 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments

Driver Population
Driver Population CAF

Mostly Familiar 0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

2323

Demand Volume, V	1701	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1254	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

mate opeca and benozely and		
1254	pc/h/ln	
71.8	mi/h	
0.968		
2323	pc/h/ln	
1057	pc/h/ln	
45	pc/mi/ln	
71.3	mi/h	
17.6	pc/mi/ln	
В		
	1254 71.8 0.968 2323 1057 45 71.3	1254 pc/h/ln 71.8 mi/h 0.968 2323 pc/h/ln 1057 pc/h/ln 45 pc/mi/ln 71.3 mi/h 17.6 pc/mi/ln

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:09:09

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 85-91D.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1920 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 62.4 mi/h 30.8 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 2604 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2323

pc/h/ln

Sten	4:	∆diust	Demand	Volume

Demand Volume, V	2604	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1920	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1920	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	62.4	mi/h	
Density, D	30.8	pc/mi/ln	
Level of Service, LOS	D		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:10:58

FREEWAY DIVERGE ANALYSIS File Name: PM_EB_Diverge_91_OffRamp.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln Level of Service, LOS C Average Flow in Outer Lanes, vOA pc/h/ln Average Speed in Ramp Influence Area, SR 62.7 mi/h Average Speed in Outer Lanes of Freeway, SO 80.2 mi/h Average Speed for Off-Ramp (Diverge) Junction, S 62.7 mi/h Density Across All Lanes, D 27.9 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates__ Freeway Data Number of Freeway Lanes 2 ln Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 2375 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n mi/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Deceleration Lane, LD or LD1 979 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp 2375 Demand Volume, V 229 veh/h Peak Hour Factor, PHF 0.95 0.95 % Percent Total Trucks 20.00 5.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0500 3.000 Heavy Vehicle PCE, ET 3.000 0.909 Heavy Vehicle Adj., fHV 0.714 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 3501 265 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 3501 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Viol	ation?
vF	3501	4646	No	
vR	265	2033	No	
v12	3501	4400	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familia	•
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather		Non-Severe Wea	ther
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		_	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Step 4: Estimate Density in Ram Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	3501 979 25.5 23.2 C			pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	-	eeway Junc	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather			
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	3501			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	3501			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for Off-Ramp, DS	0.336			
Average Speed in Ramp Influence Area, SR	62.7			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	80.2			mi/h
Avenage Speed for Off Dama Junction S	62.7			mi/h

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:03:46

62.7

27.9

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 91D M.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1750 Adjusted Capacity, cadj pc/h/ln 2217 Speed, S 58.0 mi/h 30.2 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 2375 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Step	4:	Adjust	Demand	Volume_
		•		_

Demand Volume, V	2375	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1750	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	izima ce opeca ama bembie, ama		
Demand Flow Rate, vp	1750	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	58.0	mi/h	
Density, D	30.2	pc/mi/ln	
Level of Service, LOS	D	·	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:11:47

FREEWAY MERGE ANALYSIS PM_EB_Merge_910nRamp.xuf File Name: Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR pc/mi/ln 34.5 Level of Service, LOS F Average Flow in Outer Lanes, vOA pc/mi/ln Average Speed in Ramp Influence Area, SR 49.1 mi/h Average Speed in Outer Lanes of Freeway, SO mi/h Average Speed for On-Ramp (Merge) Junction, S mi/h Density Across All Lanes, D pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates___ Freeway Data Number of Freeway Lanes 2 ln Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 2375 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n \min/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Acceleration Lane, LA or LA1 1500 ft ft Length of Second Acceleration Lane, LA2 Junction Components Freeway Ramp Demand Volume, V 2375 veh/h 1375 Peak Hour Factor, PHF 0.95 0.95 % Percent Total Trucks 20.00 2.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 3501 1505 pc/h Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for On-Ramps Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFM 1.000 Flow Rate in Lanes 1 and 2, v12 3501 pc/h Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violatio	n?
vFO	5006	4646	Yes	
vR	1505	2033	No	
vR12	5006	4600	Yes	
VILLE	5000	4000	103	
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	F /
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather		Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Augusteu Capacity, Ciliua	4040		2033	рс/п
Step 4: Estimate Density in R Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	tamp Influence Area and 1505	d Determir	e LOS	pc/h pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in th	e Vicinity of Ramp-Fro	eeway Junc	tions	
Freeway Free-Flow Speed, FFS	75.0	-		mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Length of Acceleration Lane, LA	1500			ft
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather			
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	3501			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	3501			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	5006			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for On Page MS				
Speed Index for On-Ramp, MS	-			
Average Speed in Ramp Influence Area, SR	49.1			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	-			mi/h

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:18:10

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 91M-97.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 2764 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S mi/h pc/mi/ln Density, D Level of Service, LOS F _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 3750 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Incident Type CAF
Incident Type CAF
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2323

pc/h/ln

Step 4: /	Adjust	Demand	Volume
------------	--------	--------	---------

Demand Volume, V	3750	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	2764	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	2764	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	-	mi/h	
Density, D	-	pc/mi/ln	
Level of Service, LOS	F		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 09:24:12

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 97-91DR.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 2745 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S mi/h pc/mi/ln Density, D Level of Service, LOS F _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.43 ramps/mi Demand Volume 3724 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.43 ramps/mi TRD Adjustment 1.6 mi/h 73.4 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.6 mi/h Step 3: Estimate and Adjust Capacity_ Adjusted Free-flow Speed, FFSadj 71.6 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

2323

Demand Volume, V	3724	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	2745	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	2745	pc/h/ln
Adjusted Free-Flow Speed, FFSadj	71.6	mi/h
Capacity Adjustment Factor, CAF	0.968	
Adjusted Capacity, cadj	2323	pc/h/ln
Breakpoint, BP	1064	pc/h/ln
Density at Capacity, Dc	45	pc/mi/ln
Mean Speed under Base Conditions, S	-	mi/h
Density, D	-	pc/mi/ln
Level of Service, LOS	F	•

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:15:24

FREEWAY DIVERGE ANALYSIS File Name: PM_WB_Diverge_91_OffRamp.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Density in Off-Ramp (Diverge) Influence Area, DR pc/mi/ln Level of Service, LOS C Average Flow in Outer Lanes, vOA pc/h/ln Average Speed in Ramp Influence Area, SR 58.5 mi/h Average Speed in Outer Lanes of Freeway, SO 80.2 mi/h Average Speed for Off-Ramp (Diverge) Junction, S 58.5 mi/h Density Across All Lanes, D 26.6 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates_ Freeway Data Number of Freeway Lanes 2 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1469 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V veh/h 2110 Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n mi/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Deceleration Lane, LD or LD1 1176 ft ft Length of Second Deceleration Lane, LD2 Junction Components Freeway Ramp Demand Volume, V veh/h 2110 1614 0.95 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 2.00 Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 1766 pc/h 3111 Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for Off-Ramps Adjacent Upstream On-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFD 1.000 Flow Rate in Lanes 1 and 2, v12 3111 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Viola	tion?
vF	3111	4646	No	
vR	1766	2033	No	
v12	3111	4400	No	
	Freeway		Ramp	
	· · cemay		р	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	•
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather	.	Non-Severe Weat	her
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
Augusteu Capacity, Ciliua	4040		2033	рс/п
Step 4: Estimate Density in Ra		d Determin	ne LOS	
Demand Flow Rate in Lanes 1 and 2, v12	3111			pc/h
Length of Deceleration Lane, LA	1176			ft
Density in Off-Ramp Influence Area, DR	20.4			pc/mi/ln
Density in Off-Ramp Influence Area, DR	19.6			veh/mi/ln
Level of Service, LOS	С			
Step 5: Estimate Speeds in the	-	eeway Jund	ctions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	•		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	3111			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	3111			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for Off-Ramp, DS	0.471			
Average Speed in Ramp Influence Area, SR	58.5			mi/h
Average Flow in Outer Lanes, vOA	-			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	80.2			mi/h
Average Speed in Outer Lanes of Treeway, 50	50.2 F0 F			mi/h

This Freeway Diverge Segment text report was created in HCS $^{\text{\tiny{TM}}}$ Freeways Version 7.8 on 4/9/2020 09:03:38

58.5

26.6

mi/h

pc/mi/ln

Average Speed for Off-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 91D-91M.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1556 Adjusted Capacity, cadj pc/h/ln 2217 59.0 mi/h Speed, S 26.4 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 2110 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Step 4: Adjust	Demand	Volume
-----------------	--------	---------

Demand Volume, V	2110	veh/h	
Peak Hour Factor, PHF	0.95		
Number of Lanes, N	2	ln	
Terrain Type	Rolling		
Percent Grade	-	%	
Grade Length	-	mi	
Percent Total Trucks	20.00	%	
Percent Single-Unit Trucks, SUT	-	%	
Percent Tractor-Trailers, TT	-	%	
Proportion of Total Trucks, PT	0.2000		
Heavy Vehicle PCE, ET	3.000		
Heavy Vehicle Adjustment, fHV	0.714		
Demand Adjustment Factor, DAF	1.000		
Demand Flow Rate, vp	1556	pc/h/ln	

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

	acc		
Demand Flow Rate, vp	1556	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	26.4	pc/mi/ln	
Level of Service, LOS	D		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:13:15

FREEWAY MERGE ANALYSIS PM_WB_Merge_910nRamp.xuf File Name: Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR pc/mi/ln 24.0 Level of Service, LOS C Average Flow in Outer Lanes, vOA pc/mi/ln Average Speed in Ramp Influence Area, SR 63.0 mi/h Average Speed in Outer Lanes of Freeway, SO mi/h Average Speed for On-Ramp (Merge) Junction, S 63.0 mi/h Density Across All Lanes, D 26.7 pc/mi/ln __Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates___ Freeway Data Number of Freeway Lanes ln 2 Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1469 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V veh/h 2110 Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1 1n \min/h Ramp Free-Flow Speed, SFR 45.0 Right Ramp Side Length of First Acceleration Lane, LA or LA1 1227 ft ft Length of Second Acceleration Lane, LA2 Junction Components Freeway Ramp Demand Volume, V veh/h 2110 225 0.95 Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 3.00 Percent SUTs % Percent TTs % Prop.Total Trucks, PT 0.2000 0.0300 3.000 Heavy Vehicle PCE, ET 3.000 0.943 Heavy Vehicle Adj., fHV 0.714 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 251 pc/h 3111 Step 2: Estimate the Approaching Flow Rate in Lanes 1 and 2 Estimating Flow in Lanes 1 and 2 for On-Ramps Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ ft Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ ft Prop. Freeway Veh. in Lanes 1 and 2, PFM 1.000 Flow Rate in Lanes 1 and 2, v12 3111 pc/h

Step 3: Estimate Capacity of Ramp-Freeway Junction and Compare Flow Rates

Capacity Checks

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97	Actual	Maximum	Violatio	n?
vFO	3362	4646	No	
vR	251	2033	No	
vR12	3362	4600	No	
VIII	3302	4000	NO	
	Freeway		Ramp	
Unadjusted Capacity, cmd	4800		2100	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	•
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather		Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	4646		2033	pc/h
				·
Step 4: Estimate Density in Ra	amp Influence Area an 251	d Determin	ie LOS	pc/h
Demand Flow Rate on Ramp, vR	3111			•
Demand Flow Rate in Lanes 1 and 2, v12	1227			pc/h ft
Length of Acceleration Lane, LA				
Density in On-Ramp Influence Area, DR	24.0 22.6			pc/mi/ln
Density in On-Ramp Influence Area, DR	22.6 C			veh/mi/ln
Level of Service, LOS	C			
Step 5: Estimate Speeds in the	e Vicinity of Ramp-Fr	eeway Junc	tions_	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	45.0			mi/h
Length of Acceleration Lane, LA	1227			ft
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather			
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	3111			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	3111			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	3362			pc/h
Number of Outer Lanes on Freeway, NO	0			ln
Speed Index for On-Ramp, MS	0.326			
	63.0			mi/h
Average Speed in Ramp Influence Area, SR	03.0			•
Average Flow in Outer Lanes, vOA	-			pc/h/ln mi/h
Average Speed in Outer Lanes of Freeway, SO	-			mi/h

This Freeway Merge Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:18:33

63.0

26.7

mi/h

pc/mi/ln

Average Speed for On-Ramp Junction, S

Density Across All Lanes, D

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 91M-85.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: No Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: U.S. Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1721 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 66.3 mi/h 26.0 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 2 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.37 ramps/mi Demand Volume 2335 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.37 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.8 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.8 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Incident Type
Incident Type CAF
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	∆diust	Demand	Volume

2323

Demand Volume, V	2335	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	2	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1721	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

	zimace opeca ama semose, ama		
Demand Flow Rate, vp	1721	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1057	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	66.3	mi/h	
Density, D	26.0	pc/mi/ln	
Level of Service, LOS	С		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.7 on 4/9/2020 09:14:57

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM EB FWYSegment 85-91D.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1246 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 71.3 mi/h 17.5 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.38 ramps/mi Demand Volume 2535 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.38 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.7 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.7 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

2323

Demand Volume, V	2535	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	<u>-</u>	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1246	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1246	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.7	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1061	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.3	mi/h	
Density, D	17.5	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:50:02

FREEWAY DIVERGE ANALYSIS_

File Name: AM_EB_Diverge_91_OffRamp.xuf

Analyst: RKA RKA Agency:

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

Jurisdiction: Lexington County 04/8/2020 Date: Analysis Year: Build (2044) AM Peak-Hour Time Period Analyzed:

Project Description: I-26 at Columbia Avenue Units: United States Customary

LOS an	d Performance	Measures
--------	---------------	----------

ice rieasules		
16.5	pc/mi/ln	
В		
1089	pc/h/ln	
66.7	mi/h	
79.8	mi/h	
70.3	mi/h	
16.4	pc/mi/ln	
	B 1089 66.7 79.8 70.3	16.5 pc/mi/ln B 1089 pc/h/ln 66.7 mi/h 79.8 mi/h 70.3 mi/h

Step 1: Specify Inputs and Convert Demand Volumes	s to	lumes t	Demand F	Flow R	Rates
---	------	---------	----------	--------	-------

Step 1: Specify Inputs and Conve	ert Demand Volumes to Demand	flow Rates	
Freeway Data			
Number of Freeway Lanes	3		ln
Freeway Free-Flow Speed, FFS	75.0		mi/h
Segment Length	1500		ft
Multilane Highway or C-D Roadway?	Freeway		
Demand Volume, V	2347		veh/h
Peak Hour Factor, PHF	0.95		
Ramp Data			
Number of Ramp Lanes	1		ln
Ramp Free-Flow Speed, SFR	55.0		mi/h
Ramp Side	Right		
Length of First Deceleration Lane, LD or LD1	910		ft
Length of Second Deceleration Lane, LD2	-		ft
Junction Components	Freeway	Ramp	
Demand Volume, V	2347	188	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	20.00	8.00	%
Percent SUTs	-	-	%
Percent TTs	-	-	%
Prop.Total Trucks, PT	0.2000	0.0800	
Heavy Vehicle PCE, ET	3.000	3.000	
Heavy Vehicle Adj., fHV	0.714	0.862	
Terrain Type	Rolling	Rolling	
Percent Grade	-	-	%
Grade Length	-	-	mi
Demand Adj.Factor, DAF	1.000	1.000	
Demand Flow Rate, v	3460	230	pc/h
Adjacent Ramps	Upstream	Downstream	
Segment Type	Merge	Merge	
Distance to Ramp, LUP/LDOWN	27505	4602	ft
Demand Volume, V	261	1322	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	2.00	2.00	

0.962

286

Rolling

0.962

1447

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	2146.7	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	-	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.663	
Flow Rate in Lanes 1 and 2, v12	2371	pc/h

Capacity Checks				
	Actual	Maximum	Violatio	n?
vF	3460	6970	No	
vR	230	2130	No	
v12	2371	4400	No	
	Freeway	R	атр	
Unadjusted Capacity, cmd	7200	2	200	pc/h
Driver Population	Mostly Familia	ar M	ostly Familiar	
Driver Population CAF	0.968	0	.968	
Weather Type	Non-Severe Wea	ather N	on-Severe Weather	•
Weather Type CAF	1.000	1	.000	
Incident Type	No Incident	-		
Final Capacity Adj. Factor, CAF	0.968	0	.968	
Adjusted Capacity, cmda	6970	2	130	pc/h
Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	16.5 14.2 B			pc/mi/ln veh/mi/lr
Step 5: Estimate Speeds	_	np-Freeway Junctio	ons	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Driver Population	Mostly Familia 0.975	ar,		
Driver Population SAF	0.9/3	athon		
· · · · · · · · · · · · · · · · · · ·	Non Sayana Was			
Weather Type	Non-Severe Wea	aciici		
Weather Type SAF	1.000	a circi		
Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF	1.000 0.975			nc/h
Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF	1.000 0.975 3460			pc/h
Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12	1.000 0.975			pc/h pc/h ln
Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO	1.000 0.975 3460 2371 1			pc/h
Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS	1.000 0.975 3460 2371 1			pc/h ln
Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR	1.000 0.975 3460 2371 1			pc/h ln mi/h
Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	1.000 0.975 3460 2371 1 0.207 66.7			pc/h ln
Weather Type	1.000 0.975 3460 2371 1 0.207 66.7 1089			pc/h ln mi/h pc/h/ln

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:47:27

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM EB FWYSegment 91D M.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1153 Adjusted Capacity, cadj 2292 pc/h/ln Speed, S 66.8 mi/h 17.3 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 2.30 ramps/mi Demand Volume 2347 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 2.30 ramps/mi TRD Adjustment 6.5 mi/h Free-Flow Speed, FFS 68.5 mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 66.8 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 66.8 mi/h 2368 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

C+	4.	۸ ما ٿ ـ ـ ـ	Damand	Volume
STED	4:	AUTUST	Demand	vorume

2292

Demand Volume, V	2347	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1153	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1153	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	66.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2292	pc/h/ln	
Breakpoint, BP	1244	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	66.8	mi/h	
Density, D	17.3	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:49:47

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

FREEWAY MERGE ANALYSIS File Name: AM EB Merge 910nRamp.xuf Analyst: RKA Agency: RKA Lexington County Jurisdiction: 04/8/2020 Date: Build (2044) Analysis Year: Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue United States Customary Units: LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR 26.9 pc/mi/ln Level of Service, LOS C Average Flow in Outer Lanes, vOA 1377 pc/h/ln Average Speed in Ramp Influence Area, SR 61.9 mi/h Average Speed in Outer Lanes of Freeway, SO 69.9 mi/h Average Speed for On-Ramp (Merge) Junction, S 64.0 mi/h Density Across All Lanes, D 25.6 pc/mi/ln Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates Freeway Data Number of Freeway Lanes 3 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 2347 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1n 1 Ramp Free-Flow Speed, SFR 55.0 mi/h Right Ramp Side Length of First Acceleration Lane, LA or LA1 873 ft Length of Second Acceleration Lane, LA2 ft Junction Components Freeway Ramp 2347 Demand Volume, V 1322 veh/h 0.95 Peak Hour Factor, PHF 0.95 Percent Total Trucks 20.00 2.00 % Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 3460 pc/h 1447 Adjacent Ramps Upstream Downstream Segment Type Diverge Diverge Distance to Ramp, LUP/LDOWN 4602 27505 ft Demand Volume, V 188 238 veh/h Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks 8.00 2.00

0.862

230

Rolling

0.962

261

Rolling

pc/h

Step 2: Estimate the Approach	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for On-Ramps		
Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ	1839.1	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	1283.4	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFM	0.602	
Flow Rate in Lanes 1 and 2, v12	2083	pc/h

Step 3: Estimate Capacity of Rar	mp-Freeway Junction a	nd Compare F	low Rates	
Capacity Checks	A a to c 1	Manadam	\\:\cdot\	
	Actual	Maximum	Violatio	m:
vF0	4907	6970	No	
vR	1447	2130	No	
vR12	3530	4600	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2200	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weath	ier	Non-Severe Weather	•
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		2130	pc/h
Step 4: Estimate Density in	Ramp Influence Area	and Determin	e LOS	
Demand Flow Rate on Ramp, vR	1447			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2083			pc/h
Length of Acceleration Lane, LA	873			ft
Density in On-Ramp Influence Area, DR	26.9			pc/mi/ln
Density in On-Ramp Influence Area, DR	25.9			veh/mi/lr
Level of Service, LOS	С			
Step 5: Estimate Speeds in 1	the Vicinity of Ramp-	Freeway Junc	tions	
Freeway Free-Flow Speed, FFS	75.0	,		mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Length of Acceleration Lane, LA	873			ft
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weath	er		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	3460			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2083			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	3530			pc/h
Number of Outer Lanes on Freeway, NO	1			ln
Speed Index for On-Ramp, MS	0.360			
Average Speed in Ramp Influence Area, SR	61.9			mi/h
Average Flow in Outer Lanes, vOA	1377			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	69.9			mi/h
	64.0			mi/h
Average Speed for On-Ramp Junction, S Density Across All Lanes, D	25.6			pc/mi/ln

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM EB FWYSegment 91M-97.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1803 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 64.7 mi/h 27.9 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.46 ramps/mi Demand Volume 3669 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.46 ramps/mi TRD Adjustment 1.7 mi/h Free-Flow Speed, FFS 73.3 mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.5 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.5 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4:	Adjust	Demand	Volume
---------	--------	--------	--------

2323

Demand Volume, V	3669	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1803	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

	acc opeca ana sensety ana		
Demand Flow Rate, vp	1803	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.5	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1068	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	64.7	mi/h	
Density, D	27.9	pc/mi/ln	
Level of Service, LOS	D		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:50:13

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 97-91DR.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1269 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 71.1 mi/h 17.8 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.43 ramps/mi Demand Volume 2582 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.43 ramps/mi TRD Adjustment 1.6 mi/h 73.4 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.6 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.6 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

	_			
Sten	4:	Adrust	Demand	Volume

2323

Demand Volume, V	2582	veh/h	
Peak Hour Factor, PHF	0.95		
Number of Lanes, N	3	ln	
Terrain Type	Rolling		
Percent Grade	-	%	
Grade Length	-	mi	
Percent Total Trucks	20.00	%	
Percent Single-Unit Trucks, SUT	-	%	
Percent Tractor-Trailers, TT	-	%	
Proportion of Total Trucks, PT	0.2000		
Heavy Vehicle PCE, ET	3.000		
Heavy Vehicle Adjustment, fHV	0.714		
Demand Adjustment Factor, DAF	1.000		
Demand Flow Rate, vp	1269	pc/h/ln	

Steps 5 and 6: Estimate Speed and Density and Determine LOS

ace opeca and beingley and		
1269	pc/h/ln	
71.6	mi/h	
0.968		
2323	pc/h/ln	
1064	pc/h/ln	
45	pc/mi/ln	
71.1	mi/h	
17.8	pc/mi/ln	
В		
	1269 71.6 0.968 2323 1064 45 71.1 17.8	1269 pc/h/ln 71.6 mi/h 0.968 2323 pc/h/ln 1064 pc/h/ln 45 pc/mi/ln 71.1 mi/h 17.8 pc/mi/ln

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:53:03

FREEWAY DIVERGE ANALYSIS_

File Name: AM_WB_Diverge_91_OffRamp.xuf

Analyst: RKA
Agency: RKA
Jurisdiction: Lexi

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

Jurisdiction:Lexington CountyDate:04/8/2020Analysis Year:Build (2044)Time Period Analyzed:AM Peak-Hour

Project Description: I-26 at Columbia Avenue Units: United States Customary

LOS and Performance Meas	sures_	
--------------------------	--------	--

	ince ricasares		
Density in Off-Ramp (Diverge) Influence Area, DR	23.9	pc/mi/ln	
Level of Service, LOS	С		
Average Flow in Outer Lanes, vOA	1053	pc/h/ln	
Average Speed in Ramp Influence Area, SR	66.6	mi/h	
Average Speed in Outer Lanes of Freeway, SO	80.0	mi/h	
Average Speed for Off-Ramp (Diverge) Junction, S	70.1	mi/h	
Density Across All Lanes, D	16.9	pc/mi/ln	

Step 1: Specify Inputs and Co	nvert Demand Volumes to D	emand Flow Rates	
Freeway Data			
Number of Freeway Lanes	3		ln
Freeway Free-Flow Speed, FFS	75.0		mi/h
Segment Length	1500		ft
Multilane Highway or C-D Roadway?	Freeway		
Demand Volume, V	2414		veh/h
Peak Hour Factor, PHF	0.95		
Ramp Data			
Number of Ramp Lanes	1		ln
Ramp Free-Flow Speed, SFR	55.0		mi/h
Ramp Side	Right		
Length of First Deceleration Lane, LD or LD1	217		ft
Length of Second Deceleration Lane, LD2	-		ft
Junction Components	Freeway	Ramp	
Demand Volume, V	2414	168	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	20.00	20.00	%
Percent SUTs	-	-	%
Percent TTs	-	-	%
Prop.Total Trucks, PT	0.2000	0.2000	
Heavy Vehicle PCE, ET	3.000	3.000	
Heavy Vehicle Adj., fHV	0.714	0.714	
Terrain Type	Rolling	Rolling	
Percent Grade	-	-	%
Grade Length	-	-	mi
Demand Adj.Factor, DAF	1.000	1.000	
Demand Flow Rate, v	3559	248	pc/h
Adjacent Ramps	Upstream	Downstream	
Segment Type	Merge	Diverge	
Distance to Ramp, LUP/LDOWN	24535	993	ft
Demand Volume, V	205	970	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	2.00	5.00	

0.962

224

Rolling

0.909

1123

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	1674.7	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	1189.0	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.682	
Flow Rate in Lanes 1 and 2, v12	2506	pc/h

Capacity Checks	f Ramp-Freeway Junction			
capacity checks	Actual	Maximum	Violatio	on?
vF	3559	6970	No	
vR	248	2130	No	
v12	2506	4400	No	
	Freeway	Ra	атр	
Unadjusted Capacity, cmd	7200	22	200	pc/h
Driver Population	Mostly Famili	ar Mo	stly Familiar	
Driver Population CAF	0.968	0.	968	
Weather Type	Non-Severe We	ather No	on-Severe Weathe	r
Weather Type CAF	1.000	1.	.000	
Incident Type	No Incident	-		
Final Capacity Adj. Factor, CAF	0.968	0.	968	
Adjusted Capacity, cmda	6970	21	130	pc/h
Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	23.9 17.1 C			pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds	in the Vicinity of Ra	mp-Freeway Junctio	ns	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Driver Population	Mostly Famili	ar		
Driver Population SAF	0.975 Non-Severe We	a+han		
Weather Type SAF	1.000	ather.		
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	3559			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	2506			pc/h
Demand 110W Nate in Lanes I and 2, VIZ	1			ln
Number of Outer Lanes on Freeway, NO				
Number of Outer Lanes on Freeway, NO				
Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS	0.209			
Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR	66.6			mi/h
Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	66.6 1053			pc/h/ln
Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO	66.6 1053 80.0			•
Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	66.6 1053			pc/h/ln

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:47:08

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 91DR-91DL.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1186 Adjusted Capacity, cadj pc/h/ln 2217 59.0 mi/h Speed, S 20.1 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 2414 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity_ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4	: Ad	iust	Demand	Volume
--------	------	------	--------	--------

2217

Demand Volume, V	2414	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1186	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

	speed and sensely and		
Demand Flow Rate, vp	1186	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	20.1	pc/mi/ln	
Level of Service, LOS	С		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:53:13

FREEWAY DIVERGE ANALYSIS_

File Name: AM_WB_Diverge_91_OffLoop.xuf

Analyst: RKA
Agency: RKA
Jurisdiction: Lexi

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

Jurisdiction:Lexington CountyDate:04/8/2020Analysis Year:Build (2044)Time Period Analyzed:AM Peak-Hour

Project Description: I-26 at Columbia Avenue Units: United States Customary

ince neasares		
6.1	pc/mi/ln	
Α		
347	pc/h/ln	
56.3	mi/h	
80.2	mi/h	
59.2	mi/h	
12.0	pc/mi/ln	
	6.1 A 347 56.3 80.2 59.2	6.1 pc/mi/ln A 347 pc/h/ln 56.3 mi/h 80.2 mi/h 59.2 mi/h

Step 1: Specify Inputs and Convert Demand Volu	umes to Demand Flow Rates
--	---------------------------

Step 1: Specify Inputs and Conve	ert Demand Volumes to Demand	Flow Rates	
Freeway Data			
Number of Freeway Lanes	3		ln
Freeway Free-Flow Speed, FFS	75.0		mi/h
Segment Length	1500		ft
Multilane Highway or C-D Roadway?	Freeway		
Demand Volume, V	1444		veh/h
Peak Hour Factor, PHF	0.95		
Ramp Data			
Number of Ramp Lanes	1		ln
Ramp Free-Flow Speed, SFR	35.0		mi/h
Ramp Side	Right		111111111111111111111111111111111111111
Length of First Deceleration Lane, LD or LD1	1500		ft
Length of Second Deceleration Lane, LD2	-		ft
tengen or second beceleration take, tb2			1.0
Junatian Components	Francisco (Dame	
Junction Components	Freeway	Ramp	
Demand Volume, V	1444	970	veh/h
Peak Hour Factor, PHF	0.95	0.95	VEII/ II
Percent Total Trucks	20.00	5.00	%
Percent SUTs	-	-	% %
Percent TTs	-	-	% %
	- 0.2000	0.0500	/0
Prop.Total Trucks, PT			
Heavy Vehicle PCE, ET	3.000	3.000	
Heavy Vehicle Adj., fHV	0.714	0.909	
Terrain Type	Rolling	Rolling	0/
Percent Grade	-	-	% .
Grade Length	-	-	mi
Demand Adj.Factor, DAF	1.000	1.000	41
Demand Flow Rate, v	2129	1123	pc/h
Adjacont Pamps	Upstream	Downstream	
Adjacent Ramps	opstream	DOMUSTI.eam	
Segment Type	Diverge	Merge	
Distance to Ramp, LUP/LDOWN	993	1184	ft
Demand Volume, V	168	257	veh/h
Peak Hour Factor, PHF	0.95	0.95	,
Percent Total Trucks	20.00	5.00	
		3.00	

0.714

248

Rolling

0.909

298

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	-	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	-	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.655	
Flow Rate in Lanes 1 and 2, v12	1782	pc/h

Capacity Checks				
	Actual	Maximum	Violatio	n?
vF	2129	6970	No	
vR	1123	1936	No	
v12	1782	4400	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2000	pc/h
Driver Population	Mostly Familia	ar	Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Wea	ather	Non-Severe Weather	•
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		1936	pc/h
Density in Off-Ramp Influence Area, DR Level of Service, LOS	5.5 A			veh/mi/lr
Step 5: Estimate Speeds		p-Freeway Juncti	ions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR				
, , ,	35.0			mi/h
Driver Population	Mostly Familia	ar		1111711
Driver Population Driver Population SAF	Mostly Familia 0.975			III 1 / II
Driver Population Driver Population SAF Weather Type	Mostly Familia 0.975 Non-Severe Wea			111711
Driver Population Driver Population SAF Weather Type Weather Type SAF	Mostly Familia 0.975 Non-Severe Wea 1.000			III 1 / 11
Oriver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF	Mostly Familia 0.975 Non-Severe Wea 1.000 0.975			
Oriver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF	Mostly Familia 0.975 Non-Severe Wea 1.000 0.975 2129			pc/h
Oriver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12	Mostly Familia 0.975 Non-Severe Wea 1.000 0.975 2129 1782			pc/h pc/h
Oriver Population Driver Population SAF Neather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12	Mostly Familia 0.975 Non-Severe Wea 1.000 0.975 2129			pc/h
Oriver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS	Mostly Familia 0.975 Non-Severe Wea 1.000 0.975 2129 1782 1			pc/h pc/h ln
Oriver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR	Mostly Familia 0.975 Non-Severe Wea 1.000 0.975 2129 1782 1			pc/h pc/h ln mi/h
Driver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	Mostly Familia 0.975 Non-Severe Wea 1.000 0.975 2129 1782 1			pc/h pc/h ln mi/h pc/h/ln
Driver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO	Mostly Familia 0.975 Non-Severe Wea 1.000 0.975 2129 1782 1 0.541 56.3 347 80.2			pc/h pc/h ln mi/h pc/h/ln mi/h
Driver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	Mostly Familia 0.975 Non-Severe Wea 1.000 0.975 2129 1782 1			pc/h pc/h ln mi/h pc/h/ln

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:47:39

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 91DL-91M.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 710 Adjusted Capacity, cadj 2217 pc/h/ln 59.0 mi/h Speed, S 12.0 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 1444 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments

Driver Population
Driver Population CAF

Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adjust Deman	ıd Vo⊥ume	5
----------------------	-----------	---

2217

Demand Volume, V	1444	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	710	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

	acc opeca and benezely and		
Demand Flow Rate, vp	710	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	59.0	mi/h	
Density, D	12.0	pc/mi/ln	
Level of Service, LOS	В	·	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:52:34

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

FREEWAY MERGE ANALYSIS File Name: AM WB Merge 910nRamp.xuf Analyst: RKA Agency: RKA Lexington County Jurisdiction: 04/8/2020 Date: Build (2044) Analysis Year: Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue United States Customary Units: LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR 10.9 pc/mi/ln Level of Service, LOS Average Flow in Outer Lanes, vOA 835 pc/h/ln Average Speed in Ramp Influence Area, SR 66.2 mi/h Average Speed in Outer Lanes of Freeway, SO 71.9 mi/h Average Speed for On-Ramp (Merge) Junction, S 68.1 mi/h Density Across All Lanes, D 11.9 pc/mi/ln Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates Freeway Data Number of Freeway Lanes 3 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1184 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 1444 veh/h 0.95 Peak Hour Factor, PHF Ramp Data Number of Ramp Lanes 1n 1 Ramp Free-Flow Speed, SFR 55.0 mi/h Right Ramp Side Length of First Acceleration Lane, LA or LA1 1102 ft Length of Second Acceleration Lane, LA2 ft Junction Components Freeway Ramp 1444 Demand Volume, V 257 veh/h 0.95 Peak Hour Factor, PHF 0.95 Percent Total Trucks 20.00 5.00 % Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0500 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.909 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 2129 298 pc/h Adjacent Ramps Upstream Downstream Segment Type Diverge Diverge Distance to Ramp, LUP/LDOWN 1184 27580 ft Demand Volume, V 970 30 veh/h Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks 5.00 2.00

0.909

1123

Rolling

0.962

33

Rolling

pc/h

Step 2: Estimate the Approach	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for On-Ramps		
Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ	1410.0	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	144.4	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFM	0.608	
Flow Rate in Lanes 1 and 2, v12	1294	pc/h

Step 3: Estimate Capacity of Ramp	-Freeway Junction and	Compare F	low Rates	
Capacity Checks	Actual	Maximum	Violatio	1?
vF0	2427	6970	No	
vR	298	2130	No	
vR12	1592	4600	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2200	pc/h
Driver Population	Mostly Familiar		Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Weather	•	Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		2130	pc/h
Step 4: Estimate Density in Rade Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	amp Influence Area an 298 1294 1102 10.9 9.9	d Determir	ne LOS	pc/h pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in the	e Vicinity of Ramp-Fr	eeway Juno	ctions	
Freeway Free-Flow Speed, FFS	75.0	-		mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Length of Acceleration Lane, LA	1102			ft
Driver Population	Mostly Familiar			
Driver Population SAF	0.975			
Weather Type	Non-Severe Weather	•		
Weather Type SAF	1.000			
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	2129			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1294			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	1592			pc/h
Number of Outer Lanes on Freeway, NO	1			ln
Speed Index for On-Ramp, MS	0.222			
Average Speed in Ramp Influence Area, SR	66.2			mi/h
Average Flow in Outer Lanes, vOA	835			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	71.9			mi/h
Average Speed for On-Ramp Junction, S	68.1			mi/h
Density Across All Lanes, D	11.9			pc/mi/ln

BASIC FREEWAY SEGMENT ANALYSIS File Name: AM WB FWYSegment 91M-85.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: AM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 836 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 71.7 mi/h 11.7 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.38 ramps/mi Demand Volume 1701 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.38 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.7 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.7 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adjust Deman	ıd Vo⊥ume	5
----------------------	-----------	---

2323

Demand Volume, V	1701	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	836	pc/h/ln

Steps 5 and 6: Estimate Speed and Density and Determine LOS

	acc opeca and benezely and		
Demand Flow Rate, vp	836	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.7	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1061	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.7	mi/h	
Density, D	11.7	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:52:49

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 85-91D.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1280 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 71.1 mi/h 18.0 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.38 ramps/mi Demand Volume 2604 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.38 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.7 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.7 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	Adiust	Demand	Volume

2323

Demand Volume, V	2604	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	<u>-</u>	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1280	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1280	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.7	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1061	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.1	mi/h	
Density, D	18.0	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:54:35

FREEWAY DIVERGE ANALYSIS_

File Name: PM_EB_Diverge_91_OffRamp.xuf

Analyst: RKA Agency: RKA

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

Jurisdiction:Lexington CountyDate:04/8/2020Analysis Year:Build (2044)Time Period Analyzed:PM Peak-Hour

Project Description: I-26 at Columbia Avenue Units: United States Customary

1.05	and	Performance	Measures
LUS	allu	rei i ui illalice	neasul es

16.7	pc/mi/ln	
В		
1100	pc/h/ln	
66.6	mi/h	
79.8	mi/h	
70.3	mi/h	
16.6	pc/mi/ln	
	B 1100 66.6 79.8 70.3	B 1100 pc/h/ln 66.6 mi/h 79.8 mi/h 70.3 mi/h

Step 1: Specify Inputs and Convert Demand Volumes	s to	lumes t	Demand F	Flow R	Rates
---	------	---------	----------	--------	-------

Freeway Data	
Number of Freeway Lanes 3 ln	
Freeway Free-Flow Speed, FFS 75.0 mi/h	
Segment Length 1500 ft	
Multilane Highway or C-D Roadway? Freeway	
Demand Volume, V 2375 veh/h	
Peak Hour Factor, PHF 0.95	
Ramp Data	
Number of Ramp Lanes 1 In	
Ramp Free-Flow Speed, SFR 55.0 mi/h	
Ramp Side Right	
Length of First Deceleration Lane, LD or LD1 910 ft	
Length of Second Deceleration Lane, LD2 - ft	
Junction Components Freeway Ramp	
Demand Volume, V 2375 229 veh/h	
Peak Hour Factor, PHF 0.95 0.95	
Percent Total Trucks 20.00 5.00 %	
Percent SUTs %	
Percent TTs %	
Prop.Total Trucks, PT 0.2000 0.0500	
Heavy Vehicle PCE, ET 3.000 3.000	
Heavy Vehicle Adj., fHV 0.714 0.909	
Terrain Type Rolling Rolling	
Percent Grade %	
Grade Length - mi	
Demand Adj.Factor, DAF 1.000 1.000	
Demand Flow Rate, v 3501 265 pc/h	
Adjacent Ramps Upstream Downstream	
Segment Type Merge Merge	
Distance to Ramp, LUP/LDOWN 27505 4602 ft	
Demand Volume, V 68 1375 veh/h	
Peak Hour Factor, PHF 0.95 0.95	
Percent Total Trucks 2.00 2.00	

0.962

74

Rolling

0.962

1505

Rolling

pc/h

Step 2: Estimate the Approac	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	566.6	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	-	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.660	
Flow Rate in Lanes 1 and 2, v12	2401	pc/h

Capacity Checks		n and Compare Flo		
capacity checks	Actual	Maximum	Violatio	n?
vF	3501	6970	No	
vR	265	2130	No	
v12	2401	4400	No	
	Freeway	R	amp	
Unadjusted Capacity, cmd	7200	2	200	pc/h
Driver Population	Mostly Famili	ar M	lostly Familiar	
Driver Population CAF	0.968	0	.968	
Weather Type	Non-Severe We	ather N	lon-Severe Weather	
Weather Type CAF	1.000	1	.000	
Incident Type	No Incident	-		
Final Capacity Adj. Factor, CAF	0.968	0	.968	
Adjusted Capacity, cmda	6970	2	130	pc/h
Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	16.7 15.2 B			pc/mi/ln veh/mi/lr
Step 5: Estimate Speeds		mp-Freeway Juncti	ons	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Driver Population	Mostly Famili	ar		
Driver Population SAF	0.975 Non-Severe We	a+h o n		
Weather Type		ather.		
Weather Type SAF	1.000 0.975			
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF				nc/h
Demand Flow Rate on Freeway, VF Demand Flow Rate in Lanes 1 and 2, v12	3501 2401			pc/h pc/h
Number of Outer Lanes on Freeway, NO	1			-
Number of Outer Lanes on Freeway, No	1			ln
Speed Index for Off-Ramp, DS	0.210			
Average Speed in Ramp Influence Area, SR	66.6			mi/h
Average Flow in Outer Lanes, vOA	1100			pc/h/ln
				mi/h
Average Speed in Outer Lanes of Freeway, SO	79.8			mi/h
Average Speed in Outer Lanes of Freeway, SO Average Speed for Off-Ramp Junction, S Density Across All Lanes, D	79.8 70.3 16.6			mi/h pc/mi/ln

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:48:19

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 91D M.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1167 Adjusted Capacity, cadj 2292 pc/h/ln Speed, S 66.8 mi/h 17.5 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 2.30 ramps/mi Demand Volume 2375 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 2.30 ramps/mi TRD Adjustment 6.5 mi/h Free-Flow Speed, FFS 68.5 mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 66.8 mi/h ____Step 3: Estimate and Adjust Capacity___ Adjusted Free-flow Speed, FFSadj 66.8 mi/h 2368 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	∆diust	Demand	Volume

2292

Demand Volume, V	2375	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1167	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1167	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	66.8	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2292	pc/h/ln	
Breakpoint, BP	1244	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	66.8	mi/h	
Density, D	17.5	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:55:01

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

FREEWAY MERGE ANALYSIS File Name: PM EB Merge 910nRamp.xuf Analyst: RKA Agency: RKA Lexington County Jurisdiction: 04/8/2020 Date: Build (2044) Analysis Year: Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue United States Customary Units: LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR pc/mi/ln 27.6 Level of Service, LOS C Average Flow in Outer Lanes, vOA 1393 pc/h/ln Average Speed in Ramp Influence Area, SR 61.5 mi/h Average Speed in Outer Lanes of Freeway, SO 69.9 mi/h Average Speed for On-Ramp (Merge) Junction, S 63.6 mi/h Density Across All Lanes, D 26.2 pc/mi/ln Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates Freeway Data Number of Freeway Lanes 3 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1500 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 2375 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1n 1 Ramp Free-Flow Speed, SFR 55.0 mi/h Right Ramp Side Length of First Acceleration Lane, LA or LA1 873 ft Length of Second Acceleration Lane, LA2 ft Junction Components Freeway Ramp Demand Volume, V 2375 1375 veh/h 0.95 Peak Hour Factor, PHF 0.95 Percent Total Trucks 20.00 2.00 % Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0200 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.962 Terrain Type Rolling Rolling Percent Grade % Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 3501 1505 pc/h Adjacent Ramps Upstream Downstream Segment Type Diverge Diverge Distance to Ramp, LUP/LDOWN 4602 27505 ft Demand Volume, V 229 301 veh/h Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks 5.00 2.00

0.909

265

Rolling

0.962

330

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for On-Ramps		
Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ	1860.3	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	1623.1	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFM	0.602	
Flow Rate in Lanes 1 and 2, v12	2108	pc/h

vFO 5006 6970 No vR 1505 2130 No vR12 1505 2130 No Freeway Ramp Unadjusted Capacity, cmd 7200 2200 pc/h Driver Population Mostly Familiar Mostly Familiar Driver Population CAF 0.968 0.968 0.968 Weather Type Non-Severe Weather Non-Severe Weather Weather Type No Incident Non-Severe Weather Incident Type No Incident No Incident Final Capacity Adj. Factor, CAF 0.968 0.968 Adjusted Capacity, cmda 6970 2130 pc/h Step 4: Estimate Density in Ramp Influence Area and Determine LOS Demand Flow Rate on Ramp, vR 9.968 0.968 0.968 Demand Flow Rate on Ramp, vR 10.900 1.000 pc/h Demand Flow Rate on Ramp, vR 27.6 pc/h pc/h Demand Flow Rate on Ramp, vR 27.6 pc/h pc/h	Step 3: Estimate Capacity of Ram	p-Freeway Junction and	Compare F	low Rates		
VFO 5006 6970 No VR 1505 2130 No VR12 3613 4600 No Freeway Ramp Unadjusted Capacity, cmd Freeway Ramp Unadjusted Capacity, cmd 7200 Preeway Ramp Driver Population Mostly Familiar Mostly Familiar <th cols<="" th=""><th>Capacity Checks</th><th>·</th><th></th><th></th><th>_</th></th>	<th>Capacity Checks</th> <th>·</th> <th></th> <th></th> <th>_</th>	Capacity Checks	·			_
vR 1595 2130 No		Actual	Maximum	Violatio	1?	
vR 1595 2130 No	vFO	5006	6970	No		
Unadjusted Capacity, cmd Driver Population Driver Population Driver Population Driver Population Driver Population Driver Population CAF (9.968 0.968 0.968 0.968 0.968 Incident Type Non-Severe Weather 1.000 No Incident - Final Capacity Adj. Factor, CAF 0.968 Adjusted Capacity, cmda Step 4: Estimate Density in Ramp Influence Area and Determine LOS Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR 27.6 Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS 55.0 Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS 55.0 Mi/h Ramp Free-Flow Speed, FFS 55.0 Mi/h Ramp Free-Flow Speed, FFS 55.0 Mi/h Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type	vR					
Unadjusted Capacity, cmd Driver Population Driver Population CAF Weather Type Weather Type Weather Type Weather Type Weather Type Weather Type Non-Severe Weather Weather Type Weather Type Non-Severe Weather Step 4: Estimate Density in Ramp Influence Area and Determine LOS Demand Flow Rate on Ramp, vR Step 4: Estimate Density in Ramp Influence Area and Determine LOS Demand Flow Rate in Lanes 1 and 2, v12 2108 pc/h Density in On-Ramp Influence Area, DR 27.6 Density in On-Ramp Influence Area, DR 27.6 Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS 75.0 mi/h Length of Acceleration Lane, LA 873 ft Driver Population Driver Population Driver Population Driver Population SAF Weather Type Weather T	vR12					
Driver Population Driver Population CAF Oriver Population CAF Oriver Population CAF Weather Type Weather Type CAF In.000 In.000 In.000 Incident John Capacity Adj. Factor, CAF Adjusted Capacity, cmda Step 4: Estimate Density in Ramp Influence Area and Determine LOS Demand Flow Rate on Ramp, vR Demand Flow Rate on Ramp, vR Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Level of Service, LOS Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS Ramp Free-Flow Speed, FFS Ramp Free-Flow Speed, FFS Ramp Free-Flow Speed, SFR Solo mi/h Driver Population SAF Weather Type Weath		Freeway		Ramp		
Driver Population Driver Population CAF Oriver Population CAF Oriver Population CAF Weather Type Weather Type CAF In.000 In.000 In.000 Incident John Capacity Adj. Factor, CAF Adjusted Capacity, cmda Step 4: Estimate Density in Ramp Influence Area and Determine LOS Demand Flow Rate on Ramp, vR Demand Flow Rate on Ramp, vR Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Level of Service, LOS Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS Ramp Free-Flow Speed, FFS Ramp Free-Flow Speed, FFS Ramp Free-Flow Speed, SFR Solo mi/h Driver Population SAF Weather Type Weath	Unadjusted Canacity, cmd	7200		2200	nc/h	
Driver Population CAF					pc/ II	
Weather Type	·	-		•		
Weather Type CAF Incident Type No Incident Final Capacity Adj. Factor, CAF O.968 O.968 O.968 Adjusted Capacity, cmda Step 4: Estimate Density in Ramp Influence Area and Determine LOS Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 2108 Demand Flow Rate in Lanes 1 and 2, v12 2108 Density in On-Ramp Influence Area, DR Step S: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS Freeway Free-Flow Speed, FFS S5.0 Step S: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS	· · · · · · · · · · · · · · · · · · ·					
Incident Type Final Capacity Adj. Factor, CAF	e :					
Final Capacity Adj. Factor, CAF Adjusted Capacity, cmda Step 4: Estimate Density in Ramp Influence Area and Determine LOS Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 2108 Length of Acceleration Lane, LA 873 ft Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR C Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS 75.0 mi/h Ramp Free-Flow Speed, SFR S5.0 mi/h Length of Acceleration Lane, LA 873 ft Driver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, VF Demand Flow Rate on Freeway, VF Demand Flow Rate in Lanes 1 and 2, v12 2108 pc/h Demand Flow Rate on Freeway, NO 1 Speed Index for On-Ramp Influence Area, SR 61.5 Average Speed in Outer Lanes, VAA mi/h Average Speed for On-Ramp Influence Area, SR 61.5 mi/h Average Speed in Outer Lanes, VAF Moverage Speed for On-Ramp Junction, S 63.6 mi/h Average Speed for On-Ramp Junction, S 63.6 mi/h Average Speed for On-Ramp Dunction, S 63.6						
Step 4: Estimate Density in Ramp Influence Area and Determine LOS Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS To, 0 Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS To, 0 Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS To, 0 Mi/h Ramp Free-Flow Speed, SFR To, 0 Mostly Familiar Driver Population Driver Population SAF Weather Type Weather Type Weather Type Weather Type Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Momber of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Speed in Ramp Influence Area, SR Average Speed in Outer Lanes of Freeway, SO Average Speed for On-Ramp Junction, S 63.6 Mi/h Average Speed for On-Ramp Junction, S 63.6 Mi/h Average Speed for On-Ramp Junction, S 63.6	· · · · · · · · · · · · · · · · · · ·			0.968		
Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Demand Flow Rate in Lanes 1 and 2, v12 Demand Flow Rate in Lanes 1 and 2, v12 Density in On-Ramp Influence Area, DR Demand Flow Speed, SFR Demand Flow Speed, SFR Density in On-Ramp SAF Density in On-Ramp Influence Area, SR Density Free-Flow Speed, SFR Density in On-Ramp Influence Area, SR Density in On-Ramp Influence Area, SR Density Flow Speed In Ramp Influence Area, SR Density Flow Speed in Outer Lanes on Freeway, VO Density Flow Speed in Outer Lanes, VOA Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed for On-Ramp Influence Area, SR Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed for On-Ramp Junction, S Density Flow Speed Flow in Outer Lanes on Freeway, SO Density Flow Speed Flow in Outer Lanes on Freeway, SO Density Flow Speed Flow Speed for On-Ramp Junction, S Density Flow Speed Fl	Adjusted Capacity, cmda				pc/h	
Demand Flow Rate on Ramp, vR Demand Flow Rate in Lanes 1 and 2, v12 Demand Flow Rate in Lanes 1 and 2, v12 Demand Flow Rate in Lanes 1 and 2, v12 Density in On-Ramp Influence Area, DR Demand Flow Speed, SFR Demand Flow Speed, SFR Density in On-Ramp SAF Density in On-Ramp Influence Area, SR Density Free-Flow Speed, SFR Density in On-Ramp Influence Area, SR Density in On-Ramp Influence Area, SR Density Flow Speed In Ramp Influence Area, SR Density Flow Speed in Outer Lanes on Freeway, VO Density Flow Speed in Outer Lanes, VOA Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed for On-Ramp Influence Area, SR Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed in Outer Lanes on Freeway, SO Density Flow Speed for On-Ramp Junction, S Density Flow Speed Flow in Outer Lanes on Freeway, SO Density Flow Speed Flow in Outer Lanes on Freeway, SO Density Flow Speed Flow Speed for On-Ramp Junction, S Density Flow Speed Fl		D. T. C.		1.05		
Demand Flow Rate in Lanes 1 and 2, v12 Length of Acceleration Lane, LA B73 Ft Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS Freeway Free-Flow Speed, FFS Freeway Free-Flow Speed, SFR Freeway Free-Flow Speed Freeway, VF Freeway Free-Flow Speed in Ramp Infl. Area, vR12 Freeway Free-Flow Speed in Ramp Influence Area, SR Freeway Free-Flow Speed in Outer Lanes of Freeway, SO Freeway Free-Flow Speed in Outer Lanes of Freeway, SO Freeway Free-Flow Speed in Outer Lanes of Freeway, SO Freeway Free-Flow Speed in Outer Lanes of Freeway, SO Freeway Free-Flow Speed in Outer Lanes of Freeway, SO Freeway Free-Flow Speed for On-Ramp Junction, S Freeway Free-Flow Speed for On-Ramp Junction, S Freeway Free-Flow Speed for On-Ramp Junction, S Freeway Free-Flow Indicate Spread Speed for On-Ramp Junction, S Freeway Free-Flow Indicate Spread Speed for On-Ramp Junction, S Freeway Free-Flow in Outer Lanes of Freeway, SO Freeway Free-Flow Indicate Spread Spread for On-Ramp Junction, S Freeway Free-Flow Indicate Spread Spread for On-Ramp Junction, S Freeway Free-Flow Indicate Spread Spread for On-Ramp Junction, S Freeway Free-Flow Indicate Spread Spread for On-Ramp Junction, S Freeway Free-Flow Indicate Spread		•	d Determir	ne LOS		
Length of Acceleration Lane, LA Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS Freeway Free-Flow Speed, FFS T5.0 Mi/h Ramp Free-Flow Speed, SFR S5.0 Mi/h Length of Acceleration Lane, LA Driver Population Driver Population Driver Population SAF Weather Type Non-Severe Weather Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 1080 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Speed in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO Average Speed for On-Ramp Junction, S	• •				•	
Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS 75.0 Ramp Free-Flow Speed, SFR S5.0 Mi/h Length of Acceleration Lane, LA B73 Driver Population Driver Population Driver Population SAF Weather Type Weather Type Weather Type Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 2108 Demand Flow Rate in Lanes 1 and 2, v12 3613 Driver Outer Lanes on Freeway, NO 1 Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Speed in Outer Lanes, vOA 1393 Average Speed for On-Ramp Junction, S 63.6 Mi/h Average Speed for On-Ramp Junction, S 63.6					-	
Density in On-Ramp Influence Area, DR Level of Service, LOS Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS 75.0 Ramp Free-Flow Speed, SFR S5.0 Length of Acceleration Lane, LA B73 Priver Population Driver Population Driver Population SAF Weather Type Weather Type Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, VF Demand Flow Rate in Lanes 1 and 2, v12 Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Speed in Outer Lanes, vOA Average Speed for On-Ramp Junction, S 63.6 Mehmily Freeway Junctions mi/h Average Speed for On-Ramp Junction, S 63.6					_	
Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS 75.0 mi/h Ramp Free-Flow Speed, SFR 55.0 mi/h Length of Acceleration Lane, LA 873 ft Driver Population Mostly Familiar Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Demand Flow Rate on Freeway, VF 3501 pc/h Demand Flow Rate in Lanes 1 and 2, v12 2108 pc/h Total Demand Flow Entering On-Ramp Infl. Area, vR12 3613 pc/h Number of Outer Lanes on Freeway, NO 1 nn Speed Index for On-Ramp, MS 0.372 Average Speed in Ramp Influence Area, SR 61.5 mi/h Average Speed for On-Ramp Junction, S 63.6 mi/h Average Speed for On-Ramp Junction, S 63.6						
Step 5: Estimate Speeds in the Vicinity of Ramp-Freeway Junctions Freeway Free-Flow Speed, FFS 75.0 mi/h Ramp Free-Flow Speed, SFR 55.0 mi/h Length of Acceleration Lane, LA 873 ft Driver Population Mostly Familiar Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Demand Flow Rate on Freeway, VF 3501 pc/h Demand Flow Rate in Lanes 1 and 2, v12 2108 pc/h Demand Flow Rate in Lanes 1 and 2, v12 3613 pc/h Number of Outer Lanes on Freeway, NO 1 n Speed Index for On-Ramp, MS 0.372 Average Speed in Ramp Influence Area, SR 61.5 mi/h Average Speed for On-Ramp Junction, S 63.6 mi/h Average Speed for On-Ramp Junction, S 63.6					VE11/1111/111	
Freeway Free-Flow Speed, FFS 75.0 mi/h Ramp Free-Flow Speed, SFR 55.0 mi/h Length of Acceleration Lane, LA 873 ft Driver Population Mostly Familiar Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Demand Flow Rate on Freeway, vF 3501 pc/h Demand Flow Rate in Lanes 1 and 2, v12 2108 pc/h Total Demand Flow Entering On-Ramp Infl. Area, vR12 3613 pc/h Number of Outer Lanes on Freeway, NO 1 nn Speed Index for On-Ramp, MS 0.372 Average Speed in Ramp Influence Area, SR 61.5 mi/h Average Flow in Outer Lanes of Freeway, SO 69.9 mi/h Average Speed for On-Ramp Junction, S 63.6 mi/h	Level or service, 205	•				
Ramp Free-Flow Speed, SFR Length of Acceleration Lane, LA Driver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes of Freeway, SO Average Speed for On-Ramp Junction, S 63.6 mi/h ft Mostly Familiar Most		he Vicinity of Ramp-Fr	eeway Jund	ctions		
Length of Acceleration Lane, LA Driver Population Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Speed in Outer Lanes of Freeway, SO Average Speed for On-Ramp Junction, S 873 Mostly Familiar	Freeway Free-Flow Speed, FFS				•	
Driver Population		55.0			mi/h	
Driver Population SAF Weather Type Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed for On-Ramp Junction, S O.975 Demand Flow Rate on Freeway, vF 3501 pc/h 2108 pc/h 3613 pc/h 1 0.372 Average Speed in Ramp Influence Area, SR 61.5 mi/h Average Speed in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO 69.9 mi/h Average Speed for On-Ramp Junction, S 63.6					ft	
Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Non-Severe Weather 1.000 Pc/h 9c/h Pc/h Demand Flow Rate in Lanes 1 and 2, v12 2108 pc/h Number of Outer Lanes on Freeway, NO 1 Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO Average Speed for On-Ramp Junction, S 63.6 Non-Severe Weather 1.000 9.975 9c/h 9c/h 9c/h 10 11 11 11 12 13 14 15 16 16 16 16 17 17 18 18 18 18 18 18 18 18		-				
Weather Type SAF Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO Average Speed for On-Ramp Junction, S 1.000 9.975 9	· · · · · · · · · · · · · · · · · · ·					
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 2108 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO Average Speed for On-Ramp Junction, S 63.6	· ·					
Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 2108 pc/h Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO Average Speed for On-Ramp Junction, S 63.6						
Demand Flow Rate in Lanes 1 and 2, v12 2108 Total Demand Flow Entering On-Ramp Infl. Area, vR12 Number of Outer Lanes on Freeway, NO Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO Average Speed for On-Ramp Junction, S 63.6					(1-	
Total Demand Flow Entering On-Ramp Infl. Area, vR12 3613 pc/h Number of Outer Lanes on Freeway, NO 1 ln Speed Index for On-Ramp, MS 0.372 Average Speed in Ramp Influence Area, SR 61.5 mi/h Average Flow in Outer Lanes, vOA 1393 pc/h/ln Average Speed in Outer Lanes of Freeway, SO 69.9 mi/h Average Speed for On-Ramp Junction, S 63.6 mi/h						
Number of Outer Lanes on Freeway, NO 1 In Speed Index for On-Ramp, MS 0.372 Average Speed in Ramp Influence Area, SR 61.5 mi/h Average Flow in Outer Lanes, vOA 1393 pc/h/ln Average Speed in Outer Lanes of Freeway, SO 69.9 mi/h Average Speed for On-Ramp Junction, S 63.6 mi/h						
Speed Index for On-Ramp, MS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO Average Speed for On-Ramp Junction, S 63.6 60.372 mi/h 61.5 mi/h 63.6 mi/h					_	
Average Speed in Ramp Influence Area, SR 61.5 mi/h Average Flow in Outer Lanes, vOA 1393 pc/h/ln Average Speed in Outer Lanes of Freeway, SO 69.9 mi/h Average Speed for On-Ramp Junction, S 63.6 mi/h	Number of Outer Lanes on Freeway, NO	1			TII	
Average Speed in Ramp Influence Area, SR 61.5 mi/h Average Flow in Outer Lanes, vOA 1393 pc/h/ln Average Speed in Outer Lanes of Freeway, SO 69.9 mi/h Average Speed for On-Ramp Junction, S 63.6 mi/h	Speed Index for On-Ramp, MS	0.372				
Average Speed in Outer Lanes of Freeway, SO 69.9 mi/h Average Speed for On-Ramp Junction, S 63.6 mi/h	Average Speed in Ramp Influence Area, SR	61.5			mi/h	
Average Speed for On-Ramp Junction, S 63.6 mi/h	Average Flow in Outer Lanes, vOA	1393			pc/h/ln	
	Average Speed in Outer Lanes of Freeway, SO	69.9			mi/h	
Density Across All Lanes, D 26.2 pc/mi/ln	Average Speed for On-Ramp Junction, S				-	
	Density Across All Lanes, D	26.2			pc/mi/ln	

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM EB FWYSegment 91M-97.xuf Analyst: RKA Agency: RKA Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1843 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 63.9 mi/h 28.8 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.46 ramps/mi Demand Volume 3750 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.46 ramps/mi TRD Adjustment 1.7 mi/h Free-Flow Speed, FFS 73.3 mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.5 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.5 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Sten	4:	∆diust	Demand	Volume

2323

Demand Volume, V	3750	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1843	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1843	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.5	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1068	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	63.9	mi/h	
Density, D	28.8	pc/mi/ln	
Level of Service, LOS	D		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:55:10

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 97-91DR.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1830 Adjusted Capacity, cadj pc/h/ln 2323 Speed, S 64.2 mi/h 28.5 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.43 ramps/mi Demand Volume 3724 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.43 ramps/mi TRD Adjustment 1.6 mi/h 73.4 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.6 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.6 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

2323

Demand Volume, V	3724	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1830	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1830	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.6	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1064	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	64.2	mi/h	
Density, D	28.5	pc/mi/ln	
Level of Service, LOS	D		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:56:37

FREEWAY DIVERGE ANALYSIS_

File Name: PM_WB_Diverge_91_OffRamp.xuf

Analyst: RKA RKA Agency: Jurisdiction:

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

Lexington County 04/8/2020 Date: Analysis Year: Build (2044) Time Period Analyzed: PM Peak-Hour

Project Description: I-26 at Columbia Avenue Units: United States Customary

1.05	and	Performance	Measures
LUS	allu	rei i ui illalice	neasul es

Density in Off-Ramp (Diverge) Influence Area, DR	33.6	pc/mi/ln
Level of Service, LOS	D	• , ,
Average Flow in Outer Lanes, vOA	1478	pc/h/ln
Average Speed in Ramp Influence Area, SR	66.5	mi/h
Average Speed in Outer Lanes of Freeway, SO	78.3	mi/h
Average Speed for Off-Ramp (Diverge) Junction, S	69.5	mi/h
Density Across All Lanes, D	24.6	pc/mi/ln

Ston	1 •	Spacify	Innute	and	Convent	Domand	Valumos	+0	Domand	Flow Rates	_
STED	1:	SDECITY	Inputs	and	Convert	Demand	vorumes	TO	Demand	FIOW RATES	•

Step 1: Specify Inputs and Co	nvert Demand Volumes to D	Demand Flow Rates	
Freeway Data			
Number of Freeway Lanes	3		ln
Freeway Free-Flow Speed, FFS	75.0		mi/h
Segment Length	1500		ft
Multilane Highway or C-D Roadway?	Freeway		
Demand Volume, V	3473		veh/h
Peak Hour Factor, PHF	0.95		
Ramp Data			
Number of Ramp Lanes	1		ln
Ramp Free-Flow Speed, SFR	55.0		mi/h
Ramp Side	Right		
Length of First Deceleration Lane, LD or LD1	217		ft
Length of Second Deceleration Lane, LD2	-		ft
Junction Components	Freeway	Ramp	
Demand Volume, V	3473	251	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	20.00	2.00	%
Percent SUTs	-	-	%
Percent TTs	-	-	%
Prop.Total Trucks, PT	0.2000	0.0200	
Heavy Vehicle PCE, ET	3.000	3.000	
Heavy Vehicle Adj., fHV	0.714	0.962	
Terrain Type	Rolling	Rolling	
Percent Grade	-	-	%
Grade Length	-	-	mi
Demand Adj.Factor, DAF	1.000	1.000	
Demand Flow Rate, v	5120	275	pc/h
Adjacent Ramps	Upstream	Downstream	
Segment Type	Merge	Diverge	
Distance to Ramp, LUP/LDOWN	24535	993	ft
Demand Volume, V	214	1363	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	2.00	2.00	
and the second s			

0.962

234

Rolling

0.962

1492

Rolling

pc/h

Step 2: Estimate the Approa	iching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	1395.7	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	1686.6	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.695	
Flow Rate in Lanes 1 and 2, v12	3642	pc/h

Step 3: Estimate Capacity of Capacity Checks				
	Actual	Maximum	Violatio	on?
vF	5120	6970	No	
vR	275	2130	No	
v12	3642	4400	No	
	Freeway	R	amp	
Unadjusted Capacity, cmd	7200	2	200	pc/h
Driver Population	Mostly Familia	ar M	ostly Familiar	
Driver Population CAF	0.968	0	.968	
Weather Type	Non-Severe Wea	ather N	on-Severe Weathe	r
Weather Type CAF	1.000	1	.000	
Incident Type	No Incident	-		
Final Capacity Adj. Factor, CAF	0.968	0	.968	
Adjusted Capacity, cmda	6970	2	130	pc/h
Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	33.6 32.3 D			pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds		np-Freeway Junctio	ons	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Driver Population	Mostly Familia	ar		
Driver Population SAF	0.975			
Weather Type	Non-Severe Wea	atner		
Weather Type SAF	1.000			
- ·	0.075			
Final Speed Adjustment Factor, SAF	0.975			nc/h
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF	5120			pc/h
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12	5120 3642			pc/h
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12	5120			•
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS	5120 3642 1 0.211			pc/h ln
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR	5120 3642 1 0.211 66.5			pc/h ln mi/h
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	5120 3642 1 0.211 66.5 1478			mi/h pc/h/ln
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA Average Speed in Outer Lanes of Freeway, SO	5120 3642 1 0.211 66.5 1478 78.3			pc/h ln mi/h
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF Demand Flow Rate in Lanes 1 and 2, v12 Number of Outer Lanes on Freeway, NO Speed Index for Off-Ramp, DS Average Speed in Ramp Influence Area, SR Average Flow in Outer Lanes, vOA	5120 3642 1 0.211 66.5 1478			pc/h ln mi/h pc/h/ln

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:48:46

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 91DR-91DL.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1707 Adjusted Capacity, cadj pc/h/ln 2217 58.4 mi/h Speed, S 29.2 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 3473 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity_ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Step 4: Adiust Demand	Volume	
-----------------------	--------	--

Demand Volume, V	3473	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1707	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1707	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	59.0	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2217	pc/h/ln	
Breakpoint, BP	1537	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	58.4	mi/h	
Density, D	29.2	pc/mi/ln	
Level of Service, LOS	D	·	

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:56:21

FREEWAY DIVERGE ANALYSIS_

File Name: PM_WB_Diverge_91_OffLoop.xuf

Analyst: RKA
Agency: RKA
Jurisdiction: Lexi

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

Jurisdiction:Lexington CountyDate:04/8/2020Analysis Year:Build (2044)Time Period Analyzed:PM Peak-Hour

Project Description: I-26 at Columbia Avenue Units: United States Customary

LOS an	d Performance	Measures
--------	---------------	----------

Density in Off-Ramp (Diverge) Influence Area, DR	12.1	pc/mi/ln	
Level of Service, LOS	В		
Average Flow in Outer Lanes, vOA	625	pc/h/ln	
Average Speed in Ramp Influence Area, SR	55.2	mi/h	
Average Speed in Outer Lanes of Freeway, SO	80.2	mi/h	
Average Speed for Off-Ramp (Diverge) Junction, S	58.9	mi/h	
Density Across All Lanes, D	17.6	pc/mi/ln	

Step 1: Specify Inputs and Cor	nvert Demand Volumes to D	emand Flow Rates	
Freeway Data			
Number of Freeway Lanes	3		ln
Freeway Free-Flow Speed, FFS	75.0		mi/h
Segment Length	1500		ft
Multilane Highway or C-D Roadway?	Freeway		
Demand Volume, V	2110		veh/h
Peak Hour Factor, PHF	0.95		
Ramp Data			
Number of Ramp Lanes	1		ln
Ramp Free-Flow Speed, SFR	35.0		mi/h
Ramp Side	Right		
Length of First Deceleration Lane, LD or LD1	1500		ft
Length of Second Deceleration Lane, LD2	-		ft
Junction Components	Freeway	Ramp	
Demand Volume, V	2110	1363	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	20.00	2.00	%
Percent SUTs	-	-	%
Percent TTs	-	-	%
Prop.Total Trucks, PT	0.2000	0.0200	
Heavy Vehicle PCE, ET	3.000	3.000	
Heavy Vehicle Adj., fHV	0.714	0.962	
Terrain Type	Rolling	Rolling	
Percent Grade	-	-	%
Grade Length	-	-	mi
Demand Adj.Factor, DAF	1.000	1.000	
Demand Flow Rate, v	3111	1491	pc/h
Adjacent Ramps	Upstream	Downstream	
Segment Type	Diverge	Merge	
Distance to Ramp, LUP/LDOWN	993	1184	ft
Demand Volume, V	251	225	veh/h
Peak Hour Factor, PHF	0.95	0.95	
Percent Total Trucks	2.00	3.00	

0.962

275

Rolling

0.943

251

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for Off-Ramps		
Adjacent Upstream On-Ramp Equilibrium Distance, LEQ	-	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	-	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFD	0.614	
Flow Rate in Lanes 1 and 2, v12	2486	pc/h

Step 3: Estimate Capacity of R	amp-Freeway Junction	and Compare F	low Rates	
Capacity Checks	Actual	Maximum	Violatio	n?
vF	3111	6970	No	
vR	1491	1936	No	
v12	2486	4400	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2000	pc/h
Driver Population	Mostly Familia	r	Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Wea	ther	Non-Severe Weather	•
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		1936	pc/h
Demand Flow Rate in Lanes 1 and 2, v12 Length of Deceleration Lane, LA Density in Off-Ramp Influence Area, DR Density in Off-Ramp Influence Area, DR Level of Service, LOS	2486 1500 12.1 11.6 B			pc/h ft pc/mi/ln veh/mi/ln
Step 5: Estimate Speeds in	_	p-Freeway Junc	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	35.0			mi/h
Driver Population	Mostly Familia	r		
Driver Population SAF	0.975	+ la a .a		
Weather Type	Non-Severe Wea	ther		
Weather Type SAF	1.000 0.975			
Final Speed Adjustment Factor, SAF Demand Flow Rate on Freeway, vF	3111			nc/h
Demand Flow Rate in Lanes 1 and 2, v12	2486			pc/h pc/h
Number of Outer Lanes on Freeway, NO	1			ln
Number of outer lanes on freeway, No	1			111
Speed Index for Off-Ramp, DS	0.574			
Average Speed in Ramp Influence Area, SR	55.2			mi/h
Average Flow in Outer Lanes, vOA	625			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	80.2			mi/h
Average Speed for Off-Ramp Junction, S	58.9			mi/h
Density Across All Lanes, D	17.6			pc/mi/ln

This Freeway Diverge Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:49:02

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 91DL-91M.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1037 Adjusted Capacity, cadj pc/h/ln 2217 59.0 mi/h Speed, S 17.6 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 6.00 ramps/mi Demand Volume 2110 veh/h Peak Hour Factor, PHF 0.95 % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 Lane Width 12 ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 6.00 ramps/mi TRD Adjustment 14.5 mi/h 60.5 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 59.0 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 59.0 mi/h 2290 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968 2217

pc/h/ln

Step 4: Adjust Deman	ıd Vo⊥ume	5
----------------------	-----------	---

Demand Volume, V	2110	veh/h
Peak Hour Factor, PHF	0.95	
Number of Lanes, N	3	ln
Terrain Type	Rolling	
Percent Grade	-	%
Grade Length	-	mi
Percent Total Trucks	20.00	%
Percent Single-Unit Trucks, SUT	-	%
Percent Tractor-Trailers, TT	-	%
Proportion of Total Trucks, PT	0.2000	
Heavy Vehicle PCE, ET	3.000	
Heavy Vehicle Adjustment, fHV	0.714	
Demand Adjustment Factor, DAF	1.000	
Demand Flow Rate, vp	1037	pc/h/ln

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

indee opeen and beingle, and		
1037	pc/h/ln	
59.0	mi/h	
0.968		
2217	pc/h/ln	
1537	pc/h/ln	
45	pc/mi/ln	
59.0	mi/h	
17.6	pc/mi/ln	
В		
	1037 59.0 0.968 2217 1537 45 59.0 17.6	59.0 mi/h 0.968 2217 pc/h/ln 1537 pc/h/ln 45 pc/mi/ln 59.0 mi/h 17.6 pc/mi/ln

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:55:59

Heavy Vehicle Adj., fHV

Demand Flow Rate, v

Terrain Type

FREEWAY MERGE ANALYSIS File Name: PM WB Merge 910nRamp.xuf Analyst: RKA Agency: RKA Lexington County Jurisdiction: 04/8/2020 Date: Build (2044) Analysis Year: Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue United States Customary Units: LOS and Performance Measures Density in On-Ramp (Merge) Influence Area, DR pc/mi/ln 15.2 Level of Service, LOS Average Flow in Outer Lanes, vOA 1220 pc/h/ln Average Speed in Ramp Influence Area, SR 65.8 mi/h Average Speed in Outer Lanes of Freeway, SO 70.5 mi/h Average Speed for On-Ramp (Merge) Junction, S 67.4 mi/h Density Across All Lanes, D 16.6 pc/mi/ln Step 1: Specify Inputs and Convert Demand Volumes to Demand Flow Rates Freeway Data Number of Freeway Lanes 3 1n Freeway Free-Flow Speed, FFS 75.0 mi/h Segment Length 1184 ft Multilane Highway or C-D Roadway? Freeway Demand Volume, V 2110 veh/h Peak Hour Factor, PHF 0.95 Ramp Data Number of Ramp Lanes 1n 1 Ramp Free-Flow Speed, SFR 55.0 mi/h Right Ramp Side Length of First Acceleration Lane, LA or LA1 1102 ft Length of Second Acceleration Lane, LA2 ft Junction Components Freeway Ramp Demand Volume, V 2110 225 veh/h Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks 20.00 3.00 % Percent SUTs % Percent TTs % Prop. Total Trucks, PT 0.2000 0.0300 3.000 Heavy Vehicle PCE, ET 3.000 Heavy Vehicle Adj., fHV 0.714 0.943 Terrain Type Rolling Rolling % Percent Grade Grade Length тi 1.000 Demand Adj. Factor, DAF 1.000 Demand Flow Rate, v 251 pc/h 3111 Adjacent Ramps Upstream Downstream Segment Type Diverge Diverge Distance to Ramp, LUP/LDOWN 1184 27580 ft Demand Volume, V 1363 151 veh/h Peak Hour Factor, PHF 0.95 0.95 Percent Total Trucks 2.00 2.00

0.962

1492

Rolling

0.962

165

Rolling

pc/h

Step 2: Estimate the Approa	ching Flow Rate in Lanes 1 and 2	
Estimating Flow in Lanes 1 and 2 for On-Ramps		
Adjacent Upstream Off-Ramp Equilibrium Distance, LEQ	1610.1	ft
Adjacent Downstream Off-Ramp Equilibrium Distance, LEQ	726.6	ft
Prop. Freeway Veh. in Lanes 1 and 2, PFM	0.608	
Flow Rate in Lanes 1 and 2, v12	1891	pc/h

Capacity Checks				
	Actual	Maximum	Violation	1?
vF0	3362	6970	No	
vR	251	2130	No	
vR12	2142	4600	No	
	Freeway		Ramp	
Unadjusted Capacity, cmd	7200		2200	pc/h
Driver Population	Mostly Familia	ar	Mostly Familiar	
Driver Population CAF	0.968		0.968	
Weather Type	Non-Severe Wea	ather	Non-Severe Weather	
Weather Type CAF	1.000		1.000	
Incident Type	No Incident		-	
Final Capacity Adj. Factor, CAF	0.968		0.968	
Adjusted Capacity, cmda	6970		2130	pc/h
Density in On-Ramp Influence Area, DR Density in On-Ramp Influence Area, DR Level of Service, LOS	15.2 14.3 B			pc/mi/ln veh/mi/lr
Step 5: Estimate Speeds in the	-	np-Freeway Junct	tions	
Freeway Free-Flow Speed, FFS	75.0			mi/h
Ramp Free-Flow Speed, SFR	55.0			mi/h
Length of Acceleration Lane, LA	1102			ft
Driver Population	Mostly Familia 0.975	ar.		
Driver Population SAF Weather Type	Non-Severe Wea	athon		
Weather Type SAF	1.000	aciiei		
Final Speed Adjustment Factor, SAF	0.975			
Demand Flow Rate on Freeway, vF	3111			pc/h
Demand Flow Rate in Lanes 1 and 2, v12	1891			pc/h
Total Demand Flow Entering On-Ramp Infl. Area, vR12	2142			pc/h
Number of Outer Lanes on Freeway, NO	1			ln
Speed Index for On-Ramp, MS	0.236			
Average Speed in Ramp Influence Area, SR	65.8			mi/h
Average Flow in Outer Lanes, vOA	1220			pc/h/ln
Average Speed in Outer Lanes of Freeway, SO	70.5			mi/h
Average Speed for On-Ramp Junction, S	67.4			mi/h
	16 6			nc/mi/ln

16.6

pc/mi/ln

Density Across All Lanes, D

Driver Population CAF

BASIC FREEWAY SEGMENT ANALYSIS File Name: PM WB FWYSegment 91M-85.xuf Analyst: RKA Agency: **RKA** Jurisdiction: Lexington County Date: 04/8/2020 Analysis Year: Build (2044) Time Period Analyzed: PM Peak-Hour Project Description: I-26 at Columbia Avenue Units: United States Customary LOS and Performance Measures Flow Rate, vp pc/h/ln 1147 Adjusted Capacity, cadj 2323 pc/h/ln Speed, S 71.6 mi/h 16.0 pc/mi/ln Density, D Level of Service, LOS _Step 1: Input Data_ ln Number of Lanes, N 3 ft Lane Width 12 ft Segment Length Terrain Type Rolling % Percent Grade Grade Length шi Right-Side Lateral Clearance 10 ft Total Ramp Density, TRD 0.38 ramps/mi Demand Volume 2335 veh/h 0.95 Peak Hour Factor, PHF % Percent Total Trucks 20.00 % Percent Single-Unit Trucks, SUT % Percent Tractor-Trailers, TT Step 2: Estimate and Adjust FFS Estimating FFS Measured or Base FFS Base Base Free-Flow Speed, BFFS mi/h 75.0 12 Lane Width ft Lane Width Adjustment, fLW 0.0 mi/h Right-Side Lateral Clearance 10 ft Right-Side Lateral Clearance Adj., fRLC 0.0 mi/h Total Ramp Density, TRD 0.38 ramps/mi TRD Adjustment 1.4 mi/h 73.6 Free-Flow Speed, FFS mi/h Speed Adjustments Mostly Familiar Driver Population Driver Population SAF 0.975 Weather Type Non-Severe Weather Weather Type SAF 1.000 Final Speed Adjustment Factor, SAF 0.975 Adjusted Free-Flow Speed, FFSadj 71.7 mi/h Step 3: Estimate and Adjust Capacity__ Adjusted Free-flow Speed, FFSadj 71.7 mi/h 2400 Capacity, c pc/h/ln Capacity Adjustments Driver Population Mostly Familiar

0.968

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97

Weather Type CAF
Incident Type
Incident Type CAF
Final Capacity Adjustment Factor, CAF
Adjusted Capacity, cadj

Non-Severe Weather 1.000 No Incident 1.000 0.968

pc/h/ln

Step 4	: Ad	iust	Demand	Volume
--------	------	------	--------	--------

2323

Demand Volume, V	2335	veh/h	
Peak Hour Factor, PHF	0.95		
Number of Lanes, N	3	ln	
Terrain Type	Rolling		
Percent Grade	-	%	
Grade Length	-	mi	
Percent Total Trucks	20.00	%	
Percent Single-Unit Trucks, SUT	-	%	
Percent Tractor-Trailers, TT	-	%	
Proportion of Total Trucks, PT	0.2000		
Heavy Vehicle PCE, ET	3.000		
Heavy Vehicle Adjustment, fHV	0.714		
Demand Adjustment Factor, DAF	1.000		
Demand Flow Rate, vp	1147	pc/h/ln	

_Steps 5 and 6: Estimate Speed and Density and Determine LOS

Demand Flow Rate, vp	1147	pc/h/ln	
Adjusted Free-Flow Speed, FFSadj	71.7	mi/h	
Capacity Adjustment Factor, CAF	0.968		
Adjusted Capacity, cadj	2323	pc/h/ln	
Breakpoint, BP	1061	pc/h/ln	
Density at Capacity, Dc	45	pc/mi/ln	
Mean Speed under Base Conditions, S	71.6	mi/h	
Density, D	16.0	pc/mi/ln	
Level of Service, LOS	В		

This Basic Freeway Segment text report was created in HCS™ Freeways Version 7.8 on 4/9/2020 08:56:30

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 RAMEY KEMP ASSOCIATES

Moving forward.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

APPENDIX E

Intersection Analysis Worksheets

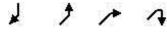
Lanes, Volumes, Timings

2020 Existing Conditions

1: Ellett Road & I-26 EB Off Ramp/I-26 EB On Ramp & Columbia Avenue

AM Peak Hour

	•	22,0000	~	ಾ		2000	•	M	1	-	-	1
	13	EV10033	- XX		14/DL 0	MOT	14/22	NDI 0	NDT	ET FEE	1978	0.70
Lane Group	EBL	EBT	EBR	EBR2	WBL2	WBT	WBR	NBL2	NBT	NBR	SBL	SBT
Lane Configurations		4				4			1			4
Traffic Volume (vph)	12	4	62	1	7	0	22	1	326	645	19	694
Future Volume (vph)	12	4	62	1	7	0	22	1	326	645	19	694
Satd. Flow (prot)	0	1562	0	0	0	1617	0	0	1668	0	0	1806
Flt Permitted		0.993				0.988						0.999
Satd. Flow (perm)	0	1562	0	0	0	1617	0	0	1668	0	0	1806
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles (%)	17%	25%	5%	2%	2%	2%	5%	2%	7%	2%	2%	5%
Adj. Flow (vph)	13	4	70	1	8	0	25	1	366	725	21	780
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	88	0	0	0	33	0	0	1092	0	0	805
Sign Control		Stop				Stop			Free			Free


Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 76.2%

Analysis Period (min) 15

ICU Level of Service D

Lane Group	SBR	NEL	NER	NER2
LaneConfigurations		**		
Traffic Volume (vph)	4	1	2	1
Future Volume (vph)	4	1	2	1
Satd. Flow (prot)	0	1118	0	0
Flt Permitted		0.988		
Satd. Flow (perm)	0	1118	0	0
Peak Hour Factor	0.89	0.89	0.89	0.89
Heavy Vehicles (%)	25%	2%	100%	2%
Adj. Flow (vph)	4	1	2	1
Shared Lane Traffic (%)				
Lane Group Flow (vph)	0	4	0	0
Sign Control		Stop		
Intersection Summary				

Lanes, Volumes, Timings

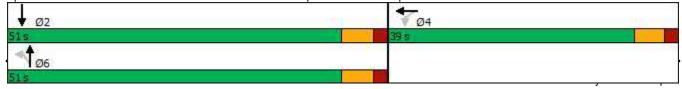
2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

2020 Existing Conditions AM Peak Hour

	•		7	1	2000	•	1	1	-	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			ન			1	
Traffic Volume (vph)	0	0	0	416	1	14	86	275	0	0	301	68
Future Volume (vph)	0	0	0	416	1	14	86	275	0	0	301	68
Satd. Flow (prot)	0	0	0	0	1712	0	0	1758	0	0	1734	0
Flt Permitted					0.954			0.729				
Satd. Flow (perm)	0	0	0	0	1712	0	0	1297	0	0	1734	0
Satd. Flow (RTOR)					2						18	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles (%)	2%	2%	2%	5%	100%	14%	3%	8%	2%	2%	7%	6%
Adj. Flow (vph)	0	0	0	501	1	17	104	331	0	0	363	82
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	519	0	0	435	0	0	445	0
Turn Type				Perm	NA		Perm	NA			NA	
Protected Phases					4			6			2	
Permitted Phases				4			6					
Total Split (s)				39.0	39.0		51.0	51.0			51.0	
Total Lost Time (s)					6.0			6.3			6.3	
Act Effct Green (s)					29.2			44.8			44.8	
Actuated g/C Ratio					0.34			0.52			0.52	
v/c Ratio					0.89			0.65			0.49	
Control Delay					46.6			21.7			15.9	
Queue Delay					0.0			0.0			0.0	
Total Delay					46.6			21.7			15.9	
LOS					D			С			В	
Approach Delay					46.6			21.7			15.9	
Approach LOS					D			С			В	
Queue Length 50th (ft)					263			177			154	
Queue Length 95th (ft)					350			254			212	
Internal Link Dist (ft)		794			322			516			197	
Turn Bay Length (ft)												
Base Capacity (vph)					657			673			908	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					0.79			0.65			0.49	

Intersection Summary

Cycle Length: 90


Actuated Cycle Length: 86.4 Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.89 Intersection Signal Delay: 29.1

Intersection Signal Delay: 29.1 Intersection LOS: C
Intersection Capacity Utilization 78.7% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

HCM 6th LOS

HCM 6th Signalized Intersection Summary 2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

2020 Existing Conditions AM Peak Hour

	•		*	1		•	1	1	1	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			ની			1	
Traffic Volume (veh/h)	0	0	0	416	1	14	86	275	0	0	301	68
Future Volume (veh/h)	0	0	0	416	1	14	86	275	0	0	301	68
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1900	418	1900	1781	1781	0	0	1796	1796
Adj Flow Rate, veh/h				501	1	17	104	331	0	0	363	82
Peak Hour Factor				0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Percent Heavy Veh, %				0	100	0	8	8	0	0	7	7
Cap, veh/h				140	0	5	161	481	0	0	704	159
Arrive On Green				0.37	0.37	0.37	0.50	0.50	0.00	0.00	0.50	0.50
Sat Flow, veh/h				383	1	13	225	969	0	0	1418	320
Grp Volume(v), veh/h				519	0	0	435	0	0	0	0	445
Grp Sat Flow(s),veh/h/ln				397	0	0	1193	0	0	0	0	1739
Q Serve(g_s), s				33.0	0.0	0.0	15.0	0.0	0.0	0.0	0.0	15.6
Cycle Q Clear(g_c), s				33.0	0.0	0.0	30.6	0.0	0.0	0.0	0.0	15.6
Prop In Lane				0.97	•	0.03	0.24	•	0.00	0.00	•	0.18
Lane Grp Cap(c), veh/h				145	0	0	642	0	0	0	0	864
V/C Ratio(X)				3.57	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.52
Avail Cap(c_a), veh/h				145	0	0	642	0	0	0	0	864
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				28.5	0.0	0.0	19.9 5.7	0.0	0.0	0.0	0.0	15.3
Incr Delay (d2), s/veh				1173.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2 0.0
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln				50.2	0.0	0.0	8.2	0.0	0.0	0.0	0.0	6.2
Unsig. Movement Delay, s/veh				30.2	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.2
LnGrp Delay(d),s/veh				1201.8	0.0	0.0	25.6	0.0	0.0	0.0	0.0	17.5
LnGrp LOS				F	Α	Α	C	Α	Α	Α	Α	17.3 B
Approach Vol, veh/h					519			435	- /\	- / \	445	
Approach Delay, s/veh					1201.8			25.6			17.5	
Approach LOS					F			C C			В	
Timer - Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		51.0		39.0		51.0						
Change Period (Y+Rc), s		6.3		6.0		6.3						
Max Green Setting (Gmax), s		44.7		33.0		44.7						
Max Q Clear Time (g_c+l1), s		17.6		35.0		32.6						
Green Ext Time (p_c), s		5.3		0.0		3.6						
Intersection Summary												
HCM 6th Ctrl Delay			459.4									

Lanes, Volumes, Timings 3: Columbia Avenue & Comalander Drive

	•			•	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1	TIDI(**	OBIT
Traffic Volume (vph)	28	261	345	3	2	24
Future Volume (vph)	28	261	345	3	2	24
Satd. Flow (prot)	0	1760	1758	0	1467	0
FIt Permitted		0.995			0.996	
Satd. Flow (perm)	0	1760	1758	0	1467	0
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76
Heavy Vehicles (%)	11%	7%	8%	2%	100%	5%
Adj. Flow (vph)	37	343	454	4	3	32
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	380	458	0	35	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 47.0%			IC	CU Level o	of Service
Analysis Period (min) 15						

3: Columbia Avenue & Comalander Drive

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1		**	
Traffic Vol, veh/h	28	261	345	3	2	24
Future Vol, veh/h	28	261	345	3	2	24
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		_		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	e.# -	0	0	_	0	_
Grade, %	-,	0	0	_	0	-
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, %	11	7	8	2	100	5
Mymt Flow	37	343	454	4	3	32
IVIVIII(I IOW	01	070	דטד	7	J	02
	Major1	N	Major2	N	Minor2	
Conflicting Flow All	458	0	-	0	873	456
Stage 1	-	-	-	-	456	-
Stage 2	-	-	-	-	417	-
Critical Hdwy	4.21	-	-	-	7.4	6.25
Critical Hdwy Stg 1	-	-	-	-	6.4	-
Critical Hdwy Stg 2	-	-	-	-	6.4	-
Follow-up Hdwy	2.299	-	-	-	4.4	3.345
Pot Cap-1 Maneuver	1057	-	-	-	221	598
Stage 1	-	-	-	-	474	-
Stage 2	_	_	-	_	498	_
Platoon blocked, %		_	_	_	100	
Mov Cap-1 Maneuver	1057	_	_	_	211	598
Mov Cap 1 Maneuver	-	_	_	_	211	-
Stage 1	_	_	_	_	454	_
Stage 2	_		_	_	498	_
Stage 2	-	-		_	430	_
Approach	EB		WB		SB	
HCM Control Delay, s	0.8		0		12.4	
HCM LOS					В	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SRI n1
	II(ED I	VVDI	WDK.	
Capacity (veh/h)		1057	-	-	-	524
HCM Lane V/C Ratio		0.035	-	-		0.065
HCM Control Delay (s)		8.5	0	-	-	12.4
HCM Lane LOS		Α	Α	-	-	В
HCM 95th %tile Q(veh	١	0.1				0.2

Lanes, Volumes, Timings

2020 Existing Conditions AM Peak Hour

4: Crooked Creek Road & I-26 EB On Ramp

		*	1	50.0077	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1				N. W	
Traffic Volume (vph)	654	16	0	0	29	77
Future Volume (vph)	654	16	0	0	29	77
Satd. Flow (prot)	1857	0	0	0	1658	0
Flt Permitted					0.987	
Satd. Flow (perm)	1857	0	0	0	1658	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	743	18	0	0	33	88
Shared Lane Traffic (%)						
Lane Group Flow (vph)	761	0	0	0	121	0
Sign Control	Free			Free	Stop	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 48.4%

ICU Level of Service A

Analysis Period (min) 15

4: Crooked Creek Road & I-26 EB On Ramp

Intersection						
Int Delay, s/veh	2.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1,				*A	
Traffic Vol, veh/h	654	16	0	0	29	77
Future Vol, veh/h	654	16	0	0	29	77
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	16983	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	743	18	0	0	33	88
Major/Minor	laiar1				/linor1	
	1ajor1			IN.		750
Conflicting Flow All	0	0			752	752
Stage 1	-	-			752	-
Stage 2	-	-			0	-
Critical Hdwy	-	-			6.42	6.22
Critical Hdwy Stg 1	-	-			5.42	-
Critical Hdwy Stg 2	-	-			-	-
Follow-up Hdwy	-	-			3.518	
Pot Cap-1 Maneuver	-	-			378	410
Stage 1	-	-			466	-
Stage 2	-	-			-	-
Platoon blocked, %	-	-				
Mov Cap-1 Maneuver	-	-			378	410
Mov Cap-2 Maneuver	-	-			378	-
Stage 1	-	-			466	-
Stage 2	-	-			-	-
Annroach	EB				NB	
Approach						
HCM Control Delay, s	0				17.8	
HCM LOS					С	
Minor Lane/Major Mvmt	: N	NBLn1	EBT	EBR		
Capacity (veh/h)		401	-	_		
HCM Lane V/C Ratio		0.3	-	-		
HCM Control Delay (s)		17.8	-	-		
HCM Lane LOS		С	-	-		
HCM 95th %tile Q(veh)		1.2	-	-		
,(' ')						

Lanes, Volumes, Timings

2020 Existing Conditions

1: Ellett Road & I-26 EB Off Ramp/I-26 EB On Ramp & Columbia Avenue

PM Peak Hour

	•	_	1			•	A	1	-	1		لير
Lane Group	EBL	EBT	EBR	EBR2	WBT	WBR	NBL2	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			1			4	
Traffic Volume (vph)	20	5	73	6	0	6	2	228	462	37	864	12
Future Volume (vph)	20	5	73	6	0	6	2	228	462	37	864	12
Satd. Flow (prot)	0	1607	0	0	1611	0	0	1684	0	0	1844	0
Flt Permitted		0.990									0.998	
Satd. Flow (perm)	0	1607	0	0	1611	0	0	1684	0	0	1844	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	5%	20%	3%	17%	2%	2%	2%	2%	3%	2%	2%	50%
Adj. Flow (vph)	22	5	79	7	0	7	2	248	502	40	939	13
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	113	0	0	7	0	0	752	0	0	992	0
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 100.2%

Analysis Period (min) 15

ICU Level of Service G

Lane Group	NEL	NER	NER2
Lane Configurations	***		
Traffic Volume (vph)	4	8	5
Future Volume (vph)	4	8	5
Satd. Flow (prot)	1649	0	0
Flt Permitted	0.989		
Satd. Flow (perm)	1649	0	0
Peak Hour Factor	0.92	0.92	0.92
Heavy Vehicles (%)	2%	2%	2%
Adj. Flow (vph)	4	9	5
Shared Lane Traffic (%)			
Lane Group Flow (vph)	18	0	0
Sign Control	Stop		
Intersection Summary			

Lanes, Volumes, Timings

2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

2020 Existing Conditions PM Peak Hour

	•		*	1		•	1	Î	1	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			ની			1	
Traffic Volume (vph)	0	0	0	748	0	13	71	187	0	0	165	19
Future Volume (vph)	0	0	0	748	0	13	71	187	0	0	165	19
Satd. Flow (prot)	0	0	0	0	1772	0	0	1827	0	0	1837	0
Flt Permitted					0.953			0.855				
Satd. Flow (perm)	0	0	0	0	1772	0	0	1584	0	0	1837	0
Satd. Flow (RTOR)					40						7	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	4%	2%	2%	2%	2%	2%
Adj. Flow (vph)	0	0	0	796	0	14	76	199	0	0	176	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	810	0	0	275	0	0	196	0
Turn Type				Perm	NA		Perm	NA			NA	
Protected Phases					4			6			2	
Permitted Phases				4			6					
Total Split (s)				50.0	50.0		40.0	40.0			40.0	
Total Lost Time (s)					6.0			6.3			6.3	
Act Effct Green (s)					41.1			33.8			33.8	
Actuated g/C Ratio					0.47			0.39			0.39	
v/c Ratio					0.95			0.45			0.27	
Control Delay					42.5			23.6			19.8	
Queue Delay					0.0			0.0			0.0	
Total Delay					42.5			23.6			19.8	
LOS					D			С			В	
Approach Delay					42.5			23.6			19.8	
Approach LOS					D			С			В	
Queue Length 50th (ft)					391			116			74	
Queue Length 95th (ft)					#649			189			126	
Internal Link Dist (ft)		794			322			516			197	
Turn Bay Length (ft)												
Base Capacity (vph)					916			614			716	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					0.88			0.45			0.27	

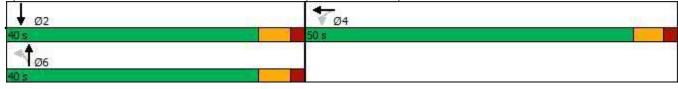
Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 87.2

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.95


Intersection Signal Delay: 34.9 Intersection LOS: C
Intersection Capacity Utilization 81.3% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

HCM 6th Signalized Intersection Summary

2020 Existing Conditions PM Peak Hour

2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations		۶		>	1		•	1	1	~	1	1	1
Traffic Volume (veh/h) 0 0 0 748 0 13 71 187 0 0 165 19 Initial Q (Ob), veh 0 0 0 748 0 13 71 187 0 0 165 19 Initial Q (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL		NBR	SBL	SBT	SBR
Traffic Volume (veh/h) 0 0 0 748 0 13 71 187 0 0 165 19 initial Q (Qb), veh 0 0 0 748 0 13 71 187 0 0 165 19 initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lane Configurations					4			न			1	
Initial Q (Qb), veh	Traffic Volume (veh/h)	0				0							
Ped-Bike Adji(A_pbT)	Future Volume (veh/h)	0	0	0	748			71					
Parking Bus, Adj						0			0			0	
Work Zöne On Approach													
Adj Stat Flow, veh/n/In 1900 1870 1900 1870 190 0 1870 0 1870 0 1870 1870 0 1870 0 1870 0 1870 0 1870 0 1870 0 1870 0 0 1870 20 2 2 0 0 1870 0 0 1870 40 0.94					1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 796 0 14 76 199 0 0 176 20 Peak Hour Factor 0.94 0.96 0.00 0.08 0.02 2.82 2 0.00 0.00 0.03 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0													
Peak Hour Factor 0.94 0.98 0.98 0.94 0.													
Percent Heavy Veh, %													
Cap, veh/h													
Arrive On Green 0.48 0.00 0.48 0.38 0.38 0.00 0.00 0.38 0.38 0.38 0.00 0.00 0.38 0.38 0.38 0.34 0.00 0.00 0.38 0.38 0.34 0.00 0.00 0.34 0.38 0.34 0.00 0.0													
Sat Flow, veh/h													
Grp Volume(v), veh/h 810 0 0 275 0 0 0 196 Grp Sat Flow(s), veh/h/ln 1777 0 0 1594 0 0 0 1837 Q Serve(g_s), s 38.5 0.0 0.0 5.1 0.0 0.0 0.0 0.0 6.5 Cycle Q Clear(g_c), s 38.5 0.0 0.0 11.6 0.0 0.0 0.0 0.0 6.5 Prop In Lane 0.98 0.02 0.28 0.00 0.00 0.0 0.10 Lane Grp Cap(c), veh/h 846 0 0 665 0 0 0 0 705 V/C Ratio(X) 0.96 0.00 0.00 0.01 0.01 0.00													
Grp Sat Flow(s), veh/h/ln 1777 0 0 1594 0 0 0 1837 Q Serve(g, s), s 38.5 0.0 0.0 5.1 0.0 0.0 0.0 0.0 6.5 Cycle Q Clear(g, c), s 38.5 0.0 0.0 11.6 0.0 0.0 0.0 0.0 6.5 Prop In Lane 0.98 0.02 0.28 0.00 0.00 0.01 Lane Grp Cap(c), veh/h 846 0 0.665 0 0 0 0 0.705 V/C Ratio(X) 0.96 0.00 0.00 0.41 0.00	Sat Flow, veh/h				1747		31	360	1233		0	1649	
Q Serve(g_s), s 38.5 0.0 0.0 5.1 0.0 0.0 0.0 0.0 0.0 6.5	Grp Volume(v), veh/h				810	0	0	275	0	0	0	0	196
Cycle Q Clear(g_c), s 38.5 0.0 0.0 11.6 0.0	Grp Sat Flow(s),veh/h/ln				1777	0	0	1594	0	0	0	0	1837
Prop In Lane	Q Serve(g_s), s				38.5	0.0	0.0	5.1	0.0	0.0	0.0	0.0	6.5
Lane Grp Cap(c), veh/h 846 0 0 665 0 0 0 705 V/C Ratio(X) 0.96 0.00 0.00 0.41 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00	Cycle Q Clear(g_c), s				38.5	0.0	0.0	11.6	0.0	0.0	0.0	0.0	6.5
V/C Ratio(X) 0.96 0.00 0.00 0.41 0.00 7.05 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Prop In Lane				0.98		0.02	0.28		0.00	0.00		0.10
Avail Cap(c_a), veh/h	Lane Grp Cap(c), veh/h				846	0	0	665	0	0	0	0	705
HCM Platoon Ratio	V/C Ratio(X)				0.96	0.00	0.00	0.41	0.00	0.00	0.00	0.00	0.28
Upstream Filter(I) 1.00 0.00 0.00 1.00 0.00 <td>Avail Cap(c_a), veh/h</td> <td></td> <td></td> <td></td> <td>891</td> <td>0</td> <td>0</td> <td>665</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>705</td>	Avail Cap(c_a), veh/h				891	0	0	665	0	0	0	0	705
Uniform Delay (d), s/veh 22.2 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 18.6 Incr Delay (d2), s/veh 20.1 0.0 0.0 1.9 0.0 <td>HCM Platoon Ratio</td> <td></td> <td></td> <td></td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td>	HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Delay (d2), s/veh	Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Initial Q Delay(d3),s/veh	Uniform Delay (d), s/veh				22.2	0.0	0.0	20.0	0.0	0.0	0.0	0.0	18.6
%ile BackOfQ(50%),veh/ln 18.4 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 2.8 Unsig. Movement Delay, s/veh 42.3 0.0 0.0 21.9 0.0 0.0 0.0 0.0 19.6 LnGrp LOS D A A C A B B B B B B B B A A A A A A A A B B B B B B A B A B A	Incr Delay (d2), s/veh				20.1	0.0	0.0	1.9	0.0	0.0	0.0	0.0	1.0
Unsig. Movement Delay, s/veh 42.3 0.0 0.0 21.9 0.0 0.0 0.0 0.0 19.6 LnGrp LOS D A A C A A A A A B Approach Vol, veh/h 810 275 196 196 196 A A A A A A B B B B 196 A A A A A A A A B B B A A A A A A A A A A A A B A A A A A A A A A A A A A <td< td=""><td>Initial Q Delay(d3),s/veh</td><td></td><td></td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh 42.3 0.0 0.0 21.9 0.0 0.0 0.0 0.0 19.6 LnGrp LOS D A A C A A A A A B Approach Vol, veh/h 810 275 196 196 A A B A B A A A A A A B B Approach Delay, s/veh 42.3 21.9 19.6 A B A C B B B A C B B B C B B B C B B B C B B B C B B B A A A A A A A A A A A A A A A A B B B C B B B A A A A A A A A A A A A A A A A<	%ile BackOfQ(50%),veh/ln				18.4	0.0	0.0	4.3	0.0	0.0	0.0	0.0	2.8
LnGrp LOS D A A C A	Unsig. Movement Delay, s/veh												
Approach Vol, veh/h 810 275 196 Approach Delay, s/veh 42.3 21.9 19.6 Approach LOS D C B Timer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 40.0 47.7 40.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 33.7 44.0 33.7 Max Q Clear Time (g_c+l1), s 8.5 40.5 13.6 Green Ext Time (p_c), s 1.9 1.2 2.7 Intersection Summary HCM 6th Ctrl Delay 34.4	LnGrp Delay(d),s/veh				42.3	0.0	0.0	21.9	0.0	0.0	0.0	0.0	19.6
Approach Delay, s/veh 42.3 21.9 19.6 Approach LOS D C B Timer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 40.0 47.7 40.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 33.7 44.0 33.7 Max Q Clear Time (g_c+l1), s 8.5 40.5 13.6 Green Ext Time (p_c), s 1.9 1.2 2.7 Intersection Summary HCM 6th Ctrl Delay 34.4	LnGrp LOS				D	Α	Α	С	Α	Α	Α	Α	В
Approach LOS D C B Timer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 40.0 47.7 40.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 33.7 44.0 33.7 Max Q Clear Time (g_c+l1), s 8.5 40.5 13.6 Green Ext Time (p_c), s 1.9 1.2 2.7 Intersection Summary HCM 6th Ctrl Delay 34.4	Approach Vol, veh/h					810			275			196	
Timer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 40.0 47.7 40.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 33.7 44.0 33.7 Max Q Clear Time (g_c+l1), s 8.5 40.5 13.6 Green Ext Time (p_c), s 1.9 1.2 2.7 Intersection Summary HCM 6th Ctrl Delay 34.4	Approach Delay, s/veh					42.3			21.9			19.6	
Phs Duration (G+Y+Rc), s 40.0 47.7 40.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 33.7 44.0 33.7 Max Q Clear Time (g_c+l1), s 8.5 40.5 13.6 Green Ext Time (p_c), s 1.9 1.2 2.7 Intersection Summary HCM 6th Ctrl Delay 34.4	Approach LOS					D			С			В	
Phs Duration (G+Y+Rc), s 40.0 47.7 40.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 33.7 44.0 33.7 Max Q Clear Time (g_c+l1), s 8.5 40.5 13.6 Green Ext Time (p_c), s 1.9 1.2 2.7 Intersection Summary HCM 6th Ctrl Delay 34.4	Timer - Assigned Phs		2		4		6						
Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 33.7 44.0 33.7 Max Q Clear Time (g_c+l1), s 8.5 40.5 13.6 Green Ext Time (p_c), s 1.9 1.2 2.7 Intersection Summary HCM 6th Ctrl Delay 34.4			40.0				40.0						
Max Green Setting (Gmax), s 33.7 44.0 33.7 Max Q Clear Time (g_c+l1), s 8.5 40.5 13.6 Green Ext Time (p_c), s 1.9 1.2 2.7 Intersection Summary HCM 6th Ctrl Delay 34.4													
Max Q Clear Time (g_c+l1), s 8.5 40.5 13.6 Green Ext Time (p_c), s 1.9 1.2 2.7 Intersection Summary HCM 6th Ctrl Delay 34.4	. ,												
Green Ext Time (p_c), s 1.9 1.2 2.7 Intersection Summary HCM 6th Ctrl Delay 34.4													
HCM 6th Ctrl Delay 34.4													
HCM 6th Ctrl Delay 34.4	Intersection Summary												
				34.4									
	HCM 6th LOS			C									

Lanes, Volumes, Timings 3: Columbia Avenue & Comalander Drive

	1		2000	*	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1		**	
Traffic Volume (vph)	16	184	156	5	1	28
Future Volume (vph)	16	184	156	5	1	28
Satd. Flow (prot)	0	1839	1855	0	1528	0
FIt Permitted		0.996			0.999	
Satd. Flow (perm)	0	1839	1855	0	1528	0
Peak Hour Factor	0.68	0.68	0.68	0.68	0.68	0.68
Heavy Vehicles (%)	2%	3%	2%	2%	2%	8%
Adj. Flow (vph)	24	271	229	7	1	41
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	295	236	0	42	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utilizati	ion 32.4%			IC	U Level o	of Service A
Analysis Period (min) 15						

3: Columbia Avenue & Comalander Drive

1					
EBL	EBT	WBT	WBR	SBL	SBR
16			5		28
				1	28
					0
					Stop
-		-		-	None
-	-	_	-	0	-
e.# -	0	0	_		_
-			_		_
68					68
					8
					41
27	211	ZZJ			71
Major1		Major2		Vinor2	
236	0	-	0	552	233
-	-	-	-	233	-
-	-	-	-	319	-
4.12	-	-	_	6.42	6.28
-	-	-	-	5.42	-
_	-	_	_		_
2.218	-	_	_		3.372
	-	_	_		791
-	_	_	_		-
_	_	_	_		_
	_	_			
1331	_	_		485	791
	_	_			751
	_				_
	-	_	_		
		-		131	-
EB		WB		SB	
0.6		0		9.9	
-4	EDI	CDT	WDT	MDD	CDI 4
nt		FRI	MRI	WRK :	
		-	-	-	774
		-	-		0.055
)	7.8	0	-	-	9.9
/					
) 1)	A 0.1	Α	-	-	A 0.2
	EBL 16 16 0 Free	EBL EBT 16 184 16 184 0 0 0 Free Free - None 0 68 68 2 3 24 271 Major1 N 236 0 4.12 2.218 - 1331 1331 EB 0.6	EBL EBT WBT 16 184 156 0 0 0 Free Free Free - None - - 0 0 68 68 68 2 3 2 24 271 229 Major1 Major2 236 0 - - - - 4.12 - - - - - 2.218 - - - - - 1331 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	EBL EBT WBT WBR 16 184 156 5 16 184 156 5 0 0 0 0 Free Free Free Free - None - None - - 0 0 - - 0 0 - 0 0 - 68 68 68 68 2 3 2 2 24 271 229 7 Major1 Major2 Major2 Major1 Major2 Major2 4.12 - - - - - 4.12 - - - - - 1331 - - - - - - - - 1331 - - - - <t< td=""><td>EBL EBT WBT WBR SBL 16 184 156 5 1 16 184 156 5 1 0 0 0 0 0 Free Free Free Stop - None - None - - None - 0 - - O 0 - 0 - O 0 - 0 - C 0 0 - - C 0 0 - - C 0 552 - - C 0 552 - - C 0 552 - - C 0 542</td></t<>	EBL EBT WBT WBR SBL 16 184 156 5 1 16 184 156 5 1 0 0 0 0 0 Free Free Free Stop - None - None - - None - 0 - - O 0 - 0 - O 0 - 0 - C 0 0 - - C 0 0 - - C 0 552 - - C 0 552 - - C 0 552 - - C 0 542

Lanes, Volumes, Timings 4: Crooked Creek Road & I-26 EB On Ramp

		*	1	•	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1				N. W.	
Traffic Volume (vph)	477	35	0	0	6	12
Future Volume (vph)	477	35	0	0	6	12
Satd. Flow (prot)	1845	0	0	0	1634	0
Flt Permitted					0.984	
Satd. Flow (perm)	1845	0	0	0	1634	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	3%	2%	2%	8%	2%
Adj. Flow (vph)	513	38	0	0	6	13
Shared Lane Traffic (%)						
Lane Group Flow (vph)	551	0	0	0	19	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 37.2%			IC	U Level o	f Service A
Analysis Period (min) 15						

4: Crooked Creek Road & I-26 EB On Ramp

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1 >				**	
Traffic Vol, veh/h	477	35	0	0	6	12
Future Vol, veh/h	477	35	0	0	6	12
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	-	-	_	-	0	-
Veh in Median Storage	, # 0	-	_	16983	0	-
Grade, %	0	_	-	0	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	3	2	2	8	2
Mvmt Flow	513	38	0	0	6	13
WWITELLOW	010	00	U	U	U	10
Major/Minor	Major1			N	/linor1	
Conflicting Flow All	0	0			532	532
Stage 1	-	-			532	-
Stage 2	-	-			0	-
Critical Hdwy	-	-			6.48	6.22
Critical Hdwy Stg 1	-	-			5.48	-
Critical Hdwy Stg 2	-	_			-	_
Follow-up Hdwy	-	-			3.572	3.318
Pot Cap-1 Maneuver	-	-			498	547
Stage 1	_	-			577	-
Stage 2	-	_			-	_
Platoon blocked, %	_	_				
Mov Cap-1 Maneuver	_	_			498	547
Mov Cap-2 Maneuver	_	_			498	-
Stage 1	_	_			577	_
Stage 2	_	_			-	_
Stage 2	_	-			-	_
Approach	EB				NB	
HCM Control Delay, s	0				12.1	
HCM LOS					В	
		151 4				
Minor Lane/Major Mvm	nt l	NBLn1	EBT	EBR		
Capacity (veh/h)		530	-	-		
HCM Lane V/C Ratio		0.037	-	-		
HCM Control Delay (s)		12.1	-	-		
HCM Lane LOS		В	-	-		
HCM 95th %tile Q(veh)		0.1	-	-		

2024 No Build Conditions

1: Ellett Road & I-26 EB Off Ramp/I-26 EB On Ramp & Columbia Avenue

AM Peak Hour

	•		-	್ತಾ	6	2000	*	M	Ť	-	1	1
Lane Group	EBL	EBT	EBR	EBR2	WBL2	WBT	WBR	NBL2	NBT	NBR	SBL	SBT
Lane Configurations		4				4			1,			4
Traffic Volume (vph)	34	4	134	1	7	0	23	1	593	942	147	1372
Future Volume (vph)	34	4	134	1	7	0	23	1	593	942	147	1372
Satd. Flow (prot)	0	1562	0	0	0	1615	0	0	1676	0	0	1805
Flt Permitted		0.990				0.988						0.995
Satd. Flow (perm)	0	1562	0	0	0	1615	0	0	1676	0	0	1805
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	17%	25%	5%	2%	2%	2%	5%	2%	7%	2%	2%	5%
Adj. Flow (vph)	38	4	149	1	8	0	26	1	659	1047	163	1524
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	192	0	0	0	34	0	0	1707	0	0	1691
Sign Control		Stop				Stop			Free			Free

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 199.5%

Analysis Period (min) 15

ICU Level of Service H

Lane Group	SBR	NEL	NER	NER2
LaneConfigurations		N. W.		
Traffic Volume (vph)	4	1	2	1
Future Volume (vph)	4	1	2	1
Satd. Flow (prot)	0	1118	0	0
Flt Permitted		0.988		
Satd. Flow (perm)	0	1118	0	0
Peak Hour Factor	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	25%	2%	100%	2%
Adj. Flow (vph)	4	1	2	1
Shared Lane Traffic (%)				
Lane Group Flow (vph)	0	4	0	0
Sign Control		Stop		

2024 No Build Conditions

AM Peak Hour

2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

	A		7	1	2007	•	1	1	1	/	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			स			1	
Traffic Volume (vph)	0	0	0	895	1	163	127	524	0	0	628	90
Future Volume (vph)	0	0	0	895	1	163	127	524	0	0	628	90
Satd. Flow (prot)	0	0	0	0	1675	0	0	1758	0	0	1748	0
Flt Permitted					0.959			0.302				
Satd. Flow (perm)	0	0	0	0	1675	0	0	536	0	0	1748	0
Satd. Flow (RTOR)					7						8	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	5%	100%	14%	3%	8%	2%	2%	7%	6%
Adj. Flow (vph)	0	0	0	994	1	181	141	582	0	0	698	100
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	1176	0	0	723	0	0	798	0
Turn Type				Perm	NA		Perm	NA			NA	
Protected Phases					4			6			2	
Permitted Phases				4			6					
Total Split (s)				57.0	57.0		83.0	83.0			83.0	
Total Lost Time (s)					6.0			6.3			6.3	
Act Effct Green (s)					51.0			76.7			76.7	
Actuated g/C Ratio					0.36			0.55			0.55	
v/c Ratio					1.92			2.47			0.83	
Control Delay					444.9			690.2			35.2	
Queue Delay					0.0			0.0			0.0	
Total Delay					444.9			690.2			35.2	
LOS					F			F			D	
Approach Delay					444.9			690.2			35.2	
Approach LOS					F			F			D	
Queue Length 50th (ft)					~1653			~830			578	
Queue Length 95th (ft)					#1921			#1077			786	
Internal Link Dist (ft)		794			322			516			197	
Turn Bay Length (ft)												
Base Capacity (vph)					614			293			961	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					1.92			2.47			0.83	

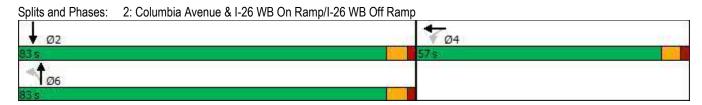
Intersection Summary

Cycle Length: 140
Actuated Cycle Length: 140

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 2.47

Intersection Signal Delay: 389.4 Intersection LOS: F
Intersection Capacity Utilization 148.2% ICU Level of Service H


Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp 2024 No Build Conditions AM Peak Hour

2024 No Build Conditions AM Peak Hour

HCM 6th Signalized Intersection Summary
2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

	•		>	1		•	1	1	1	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			ની			1	
Traffic Volume (veh/h)	0	0	0	895	1	163	127	524	0	0	628	90
Future Volume (veh/h)	0	0	0	895	1	163	127	524	0	0	628	90
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1900	418	1900	1781	1781	0	0	1796	1796
Adj Flow Rate, veh/h				994	1	181	141	582	0	0	698	100
Peak Hour Factor				0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %				0	100	0	8	8	0	0	7	7
Cap, veh/h				120	0	22	75	237	0	0	842	121
Arrive On Green				0.36	0.36	0.36	0.55	0.55	0.00	0.00	0.55	0.55
Sat Flow, veh/h				330	0	60	81	433	0	0	1537	220
Grp Volume(v), veh/h				1176	0	0	723	0	0	0	0	798
Grp Sat Flow(s),veh/h/ln				391	0	0	515	0	0	0	0	1757
Q Serve(g_s), s				51.0	0.0	0.0	24.0	0.0	0.0	0.0	0.0	52.7
Cycle Q Clear(g_c), s				51.0	0.0	0.0	76.7	0.0	0.0	0.0	0.0	52.7
Prop In Lane				0.85		0.15	0.20		0.00	0.00		0.13
Lane Grp Cap(c), veh/h				142	0	0	313	0	0	0	0	962
V/C Ratio(X)				8.26	0.00	0.00	2.31	0.00	0.00	0.00	0.00	0.83
Avail Cap(c_a), veh/h				142	0	0	313	0	0	0	0	962
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				44.5	0.0	0.0	48.4	0.0	0.0	0.0	0.0	26.2
Incr Delay (d2), s/veh				3282.9	0.0	0.0	600.8	0.0	0.0	0.0	0.0	8.2
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				134.5	0.0	0.0	63.4	0.0	0.0	0.0	0.0	23.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh				3327.4	0.0	0.0	649.1	0.0	0.0	0.0	0.0	34.4
LnGrp LOS				F	Α	Α	F	Α	Α	Α	Α	C
Approach Vol, veh/h					1176			723			798	
Approach Delay, s/veh					3327.4			649.1			34.4	
Approach LOS					F			F			С	
Timer - Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		83.0		57.0		83.0						
Change Period (Y+Rc), s		6.3		6.0		6.3						
Max Green Setting (Gmax), s		76.7		51.0		76.7						
Max Q Clear Time (g_c+l1), s		54.7		53.0		78.7						
Green Ext Time (p_c), s		10.2		0.0		0.0						
Intersection Summary												
HCM 6th Ctrl Delay			1635.1									
HCM 6th LOS			F									

Lanes, Volumes, Timings 3: Columbia Avenue & Comalander Drive

	•		7	1		•	1	1	1	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	220	277	190	0	366	3	163	0	0	2	0	189
Future Volume (vph)	220	277	190	0	366	3	163	0	0	2	0	189
Satd. Flow (prot)	0	1684	0	0	1758	0	0	1770	0	0	1554	0
Flt Permitted		0.695						0.477			0.997	
Satd. Flow (perm)	0	1190	0	0	1758	0	0	889	0	0	1549	0
Satd. Flow (RTOR)		42			1						210	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	11%	7%	2%	2%	8%	2%	2%	2%	2%	100%	2%	5%
Adj. Flow (vph)	244	308	211	0	407	3	181	0	0	2	0	210
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	763	0	0	410	0	0	181	0	0	212	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	73.0	73.0		73.0	73.0		27.0	27.0		27.0	27.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
Act Effct Green (s)		63.2			63.2			21.1			21.1	
Actuated g/C Ratio		0.66			0.66			0.22			0.22	
v/c Ratio		0.96			0.36			0.93			0.42	
Control Delay		39.8			8.3			89.9			7.8	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		39.8			8.3			89.9			7.8	
LOS		D			Α			F			Α	
Approach Delay		39.8			8.3			89.9			7.8	
Approach LOS		D			Α			F			Α	
Queue Length 50th (ft)		373			100			115			1	
Queue Length 95th (ft)		#696			149			#253			60	
Internal Link Dist (ft)		174			688			518			356	
Turn Bay Length (ft)												
Base Capacity (vph)		844			1229			194			503	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.90			0.33			0.93			0.42	

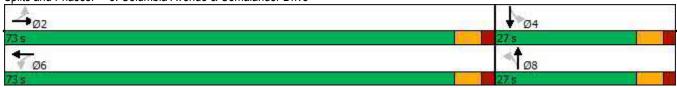
Intersection Summary

Cycle Length: 100

Actuated Cycle Length: 96.4

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.96


Intersection Signal Delay: 33.0 Intersection LOS: C
Intersection Capacity Utilization 98.6% ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Columbia Avenue & Comalander Drive

	١	24.00 26.00 26.00	•	1		•	1	1	1	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	220	277	190	0	366	3	163	0	0	2	0	189
Future Volume (veh/h)	220	277	190	0	366	3	163	0	0	2	0	189
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1796	1796	1796	1781	1781	1781	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	244	308	211	0	407	3	181	0	0	2	0	210
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	7	7	7	8	8	8	2	2	2	2	2	2
Cap, veh/h	290	329	218	0	1177	9	248	0	0	38	2	347
Arrive On Green	0.67	0.67	0.67	0.00	0.67	0.67	0.21	0.00	0.00	0.21	0.00	0.21
Sat Flow, veh/h	364	493	328	0	1766	13	826	0	0	4	12	1635
Grp Volume(v), veh/h	763	0	0	0	0	410	181	0	0	212	0	0
Grp Sat Flow(s),veh/h/ln	1184	0	0	0	0	1779	826	0	0	1651	0	0
Q Serve(g_s), s	51.5	0.0	0.0	0.0	0.0	9.9	9.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	61.4	0.0	0.0	0.0	0.0	9.9	21.0	0.0	0.0	12.0	0.0	0.0
Prop In Lane	0.32		0.28	0.00		0.01	1.00		0.00	0.01		0.99
Lane Grp Cap(c), veh/h	837	0	0	0	0	1185	248	0	0	387	0	0
V/C Ratio(X)	0.91	0.00	0.00	0.00	0.00	0.35	0.73	0.00	0.00	0.55	0.00	0.00
Avail Cap(c_a), veh/h	852	0	0	0	0	1206	248	0	0	387	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	19.0	0.0	0.0	0.0	0.0	7.2	41.1	0.0	0.0	35.4	0.0	0.0
Incr Delay (d2), s/veh	13.8	0.0	0.0	0.0	0.0	0.2	10.3	0.0	0.0	1.6	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	17.6	0.0	0.0	0.0	0.0	3.3	5.1	0.0	0.0	4.5	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	32.8	0.0	0.0	0.0	0.0	7.3	51.4	0.0	0.0	37.0	0.0	0.0
LnGrp LOS	С	Α	Α	Α	Α	Α	D	Α	Α	D	Α	Α
Approach Vol, veh/h		763			410			181			212	
Approach Delay, s/veh		32.8			7.3			51.4			37.0	
Approach LOS		С			Α			D			D	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		71.9		27.0		71.9		27.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		67.0		21.0		67.0		21.0				
Max Q Clear Time (g_c+l1), s		63.4		14.0		11.9		23.0				
Green Ext Time (p_c), s		2.5		0.4		5.5		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			28.8									
HCM 6th LOS			C									
			J									

2024 No Build Conditions AM Peak Hour

4: Crooked Creek Road & I-26 EB On Ramp

		*	1	2000	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1				**	
Traffic Volume (vph)	1078	17	0	0	30	82
Future Volume (vph)	1078	17	0	0	30	82
Satd. Flow (prot)	1859	0	0	0	1657	0
Flt Permitted					0.987	
Satd. Flow (perm)	1859	0	0	0	1657	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	1198	19	0	0	33	91
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1217	0	0	0	124	0
Sign Control	Free			Free	Stop	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 71.1%

ICU Level of Service C

Analysis Period (min) 15

2024 No Build Conditions AM Peak Hour

4: Crooked Creek Road & I-26 EB On Ramp

Intersection						
Int Delay, s/veh	3.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽		,,,,,,	11.01	**	TI DIT
Traffic Vol, veh/h	1078	17	0	0	30	82
Future Vol, veh/h	1078	17	0	0	30	82
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		-	-	16983	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1198	19	0	0	33	91
	Major1			N	/linor1	
Conflicting Flow All	0	0			1208	1208
Stage 1	-	-			1208	-
Stage 2	-	-			0	-
Critical Hdwy	-	-			6.42	6.22
Critical Hdwy Stg 1	-	-			5.42	-
Critical Hdwy Stg 2	-	-			_	_
Follow-up Hdwy	_	_			3.518	3.318
Pot Cap-1 Maneuver	_	_			202	223
Stage 1	_	_			283	-
Stage 2	_	_			200	_
Platoon blocked, %	_	-			-	_
	-	_			202	222
Mov Cap-1 Maneuver	-	-			202	223
Mov Cap-2 Maneuver	-	-			202	-
Stage 1	-	-			283	-
Stage 2	-	-			-	-
Approach	EB				NB	
HCM Control Delay, s	0				41.8	
HCM LOS					Е	
Minor Lane/Major Mvm	nt N	NBLn1	EBT	EBR		
	ic I	217		LDIX		
Capacity (veh/h)			-	-		
HCM Lane V/C Ratio		0.573	-	-		
HCM Control Delay (s)		41.8	-	-		
HCM Lane LOS		Е	-	-		
HCM 95th %tile Q(veh)		3.2	-	-		

2024 No Build Conditions

1: Ellett Road & I-26 EB Off Ramp/I-26 EB On Ramp & Columbia Avenue

PM Peak Hour

	•	_	-	ಾ		•	1	1	-	1		لير
Lane Group	EBL	EBT	EBR	EBR2	WBT	WBR	NBL2	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			1			4	
Traffic Volume (vph)	54	5	137	6	0	6	2	658	1053	237	1591	13
Future Volume (vph)	54	5	137	6	0	6	2	658	1053	237	1591	13
Satd. Flow (prot)	0	1624	0	0	1611	0	0	1698	0	0	1844	0
FIt Permitted		0.987									0.994	
Satd. Flow (perm)	0	1624	0	0	1611	0	0	1698	0	0	1844	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	5%	20%	3%	17%	2%	2%	2%	2%	3%	2%	2%	50%
Adj. Flow (vph)	59	5	149	7	0	7	2	715	1145	258	1729	14
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	220	0	0	7	0	0	1862	0	0	2001	0
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 232.3%

Analysis Period (min) 15

ICU Level of Service H

Lane Group	NEL	NER	NER2
Lane Configurations	100		
Traffic Volume (vph)	4	8	5
Future Volume (vph)	4	8	5
Satd. Flow (prot)	1649	0	0
Flt Permitted	0.989		
Satd. Flow (perm)	1649	0	0
Peak Hour Factor	0.92	0.92	0.92
Heavy Vehicles (%)	2%	2%	2%
Adj. Flow (vph)	4	9	5
Shared Lane Traffic (%)			
Lane Group Flow (vph)	18	0	0
Sign Control	Stop		
Intersection Summary			

2024 No Build Conditions
PM Peak Hour

2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

	•		*	1		•	1	1	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			ન			1	
Traffic Volume (vph)	0	0	0	1185	0	247	159	563	0	0	656	47
Future Volume (vph)	0	0	0	1185	0	247	159	563	0	0	656	47
Satd. Flow (prot)	0	0	0	0	1747	0	0	1834	0	0	1846	0
Flt Permitted					0.960			0.283				
Satd. Flow (perm)	0	0	0	0	1747	0	0	525	0	0	1846	0
Satd. Flow (RTOR)					24						4	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	4%	2%	2%	2%	2%	2%
Adj. Flow (vph)	0	0	0	1261	0	263	169	599	0	0	698	50
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	1524	0	0	768	0	0	748	0
Turn Type				Perm	NA		Perm	NA			NA	
Protected Phases					4			6			2	
Permitted Phases				4			6					
Total Split (s)				67.0	67.0		83.0	83.0			83.0	
Total Lost Time (s)					6.0			6.3			6.3	
Act Effct Green (s)					61.0			76.7			76.7	
Actuated g/C Ratio					0.41			0.51			0.51	
v/c Ratio					2.10			2.87			0.79	
Control Delay					526.6			867.8			37.5	
Queue Delay					0.0			0.0			0.0	
Total Delay					526.6			867.8			37.5	
LOS					F			F			D	
Approach Delay					526.6			867.8			37.5	
Approach LOS					F			F			D	
Queue Length 50th (ft)					~2364			~1034			585	
Queue Length 95th (ft)					#2633			#1289			767	
Internal Link Dist (ft)		794			322			516			197	
Turn Bay Length (ft)												
Base Capacity (vph)					724			268			945	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					2.10			2.87			0.79	

Intersection Summary

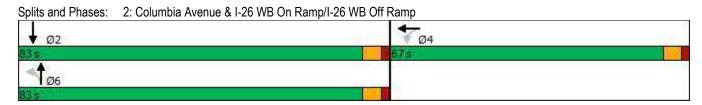
Cycle Length: 150

Actuated Cycle Length: 150 Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 2.87 Intersection Signal Delay: 492.5

Intersection LOS: F
ICU Level of Service H

Intersection Capacity Utilization 172.0% Analysis Period (min) 15


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp 2024 No Build Conditions PM Peak Hour

2024 No Build Conditions PM Peak Hour

HCM 6th Signalized Intersection Summary
2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

	۶		•	~	2007	•	1	1	~	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			ली			1	
Traffic Volume (veh/h)	0	0	0	1185	0	247	159	563	0	0	656	47
Future Volume (veh/h)	0	0	0	1185	0	247	159	563	0	0	656	47
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1900	1870	1900	1870	1870	0	0	1870	1870
Adj Flow Rate, veh/h				1261	0	263	169	599	0	0	698	50
Peak Hour Factor				0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %				0	2	0	2	2	0	0	2	2
Cap, veh/h				587	0	122	84	218	0	0	882	63
Arrive On Green				0.41	0.00	0.41	0.51	0.51	0.00	0.00	0.51	0.51
Sat Flow, veh/h				1443	0	301	106	427	0	0	1725	124
Grp Volume(v), veh/h				1524	0	0	768	0	0	0	0	748
Grp Sat Flow(s),veh/h/ln				1744	0	0	533	0	0	0	0	1848
Q Serve(g_s), s				61.0	0.0	0.0	26.9	0.0	0.0	0.0	0.0	49.8
Cycle Q Clear(g_c), s				61.0	0.0	0.0	76.7	0.0	0.0	0.0	0.0	49.8
Prop In Lane				0.83		0.17	0.22		0.00	0.00		0.07
Lane Grp Cap(c), veh/h				709	0	0	302	0	0	0	0	945
V/C Ratio(X)				2.15	0.00	0.00	2.54	0.00	0.00	0.00	0.00	0.79
Avail Cap(c_a), veh/h				709	0	0	302	0	0	0	0	945
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				44.5	0.0	0.0	57.5	0.0	0.0	0.0	0.0	30.1
Incr Delay (d2), s/veh				521.7	0.0	0.0	704.1	0.0	0.0	0.0	0.0	6.7
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				128.0	0.0	0.0	70.7	0.0	0.0	0.0	0.0	23.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh				566.2	0.0	0.0	761.6	0.0	0.0	0.0	0.0	36.8
LnGrp LOS				F	Α	Α	F	Α	Α	Α	Α	D
Approach Vol, veh/h					1524			768			748	
Approach Delay, s/veh					566.2			761.6			36.8	
Approach LOS					F			F			D	
Timer - Assigned Phs		2		4		6						
Phs Duration (G+Y+Rc), s		83.0		67.0		83.0						
Change Period (Y+Rc), s		6.3		6.0		6.3						
Max Green Setting (Gmax), s		76.7		61.0		76.7						
Max Q Clear Time (g_c+I1), s		51.8		63.0		78.7						
Green Ext Time (p_c), s		10.0		0.0		0.0						
Intersection Summary												
HCM 6th Ctrl Delay			485.3									
HCM 6th LOS			F									

3: Columbia Avenue & Comalander Drive

	•	A STATE OF THE STA	•	1	2007	•	1	1	~	•	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	316	195	299	0	165	5	254	0	0	1	0	284
Future Volume (vph)	316	195	299	0	165	5	254	0	0	1	0	284
Satd. Flow (prot)	0	1732	0	0	1855	0	0	1770	0	0	1522	0
Flt Permitted		0.788						0.435			0.999	
Satd. Flow (perm)	0	1391	0	0	1855	0	0	810	0	0	1521	0
Satd. Flow (RTOR)		40			2						316	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%	8%
Adj. Flow (vph)	351	217	332	0	183	6	282	0	0	1	0	316
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	900	0	0	189	0	0	282	0	0	317	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	73.0	73.0		73.0	73.0		47.0	47.0		47.0	47.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
Act Effct Green (s)		67.0			67.0			41.0			41.0	
Actuated g/C Ratio		0.56			0.56			0.34			0.34	
v/c Ratio		1.13			0.18			1.02			0.44	
Control Delay		101.4			13.5			99.8			5.1	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		101.4			13.5			99.8			5.1	
LOS		F			В			F			Α	
Approach Delay		101.4			13.5			99.8			5.1	
Approach LOS		F			В			F			Α	
Queue Length 50th (ft)		~799			68			~232			1	
Queue Length 95th (ft)		#1050			108			#406			62	
Internal Link Dist (ft)		174			688			673			356	
Turn Bay Length (ft)												
Base Capacity (vph)		794			1036			276			727	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		1.13			0.18			1.02			0.44	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.13

Intersection Signal Delay: 73.2
Intersection Capacity Utilization 106.7%

Intersection LOS: E

ICU Level of Service G

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 3: Columbia Avenue & Comalander Drive 2024 No Build Conditions PM Peak Hour

	•	-	•	1		•	1	1	1	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	316	195	299	0	165	5	254	0	0	1	0	284
Future Volume (veh/h)	316	195	299	0	165	5	254	0	0	1	0	284
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	351	217	332	0	183	6	282	0	0	1	0	316
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	3	3	3	2	2	2	2	2	2	2	2	2
Cap, veh/h	328	177	270	0	1005	33	305	0	0	30	1	554
Arrive On Green	0.56	0.56	0.56	0.00	0.56	0.56	0.34	0.00	0.00	0.34	0.00	0.34
Sat Flow, veh/h	512	316	484	0	1801	59	717	0	0	1	4	1622
Grp Volume(v), veh/h	900	0	0	0	0	189	282	0	0	317	0	0
Grp Sat Flow(s),veh/h/ln	1313	0	0	0	0	1860	717	0	0	1627	0	0
Q Serve(g_s), s	61.0	0.0	0.0	0.0	0.0	6.0	21.3	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	67.0	0.0	0.0	0.0	0.0	6.0	41.0	0.0	0.0	19.7	0.0	0.0
Prop In Lane	0.39		0.37	0.00		0.03	1.00		0.00	0.00		1.00
Lane Grp Cap(c), veh/h	775	0	0	0	0	1038	305	0	0	586	0	0
V/C Ratio(X)	1.16	0.00	0.00	0.00	0.00	0.18	0.92	0.00	0.00	0.54	0.00	0.00
Avail Cap(c_a), veh/h	775	0	0	0	0	1038	305	0	0	586	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	31.1	0.0	0.0	0.0	0.0	13.0	46.7	0.0	0.0	32.5	0.0	0.0
Incr Delay (d2), s/veh	86.9	0.0	0.0	0.0	0.0	0.1	32.6	0.0	0.0	1.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	40.9	0.0	0.0	0.0	0.0	2.5	11.3	0.0	0.0	7.3	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	118.0	0.0	0.0	0.0	0.0	13.1	79.2	0.0	0.0	33.5	0.0	0.0
LnGrp LOS	F	Α	Α	Α	Α	В	Е	Α	Α	С	Α	Α
Approach Vol, veh/h		900			189			282			317	
Approach Delay, s/veh		118.0			13.1			79.2			33.5	
Approach LOS		F			В			Е			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		73.0		47.0		73.0		47.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		67.0		41.0		67.0		41.0				
Max Q Clear Time (g_c+l1), s		69.0		21.7		8.0		43.0				
Green Ext Time (p_c), s		0.0		1.0		2.2		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			83.9									
HCM 6th LOS			F									

2024 No Build Conditions PM Peak Hour

Lanes, Volumes, Timings 4: Crooked Creek Road & I-26 EB On Ramp

		*	1	•	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	13				N/W	
Traffic Volume (vph)	1266	37	0	0	6	13
Future Volume (vph)	1266	37	0	0	6	13
Satd. Flow (prot)	1855	0	0	0	1632	0
FIt Permitted					0.985	
Satd. Flow (perm)	1855	0	0	0	1632	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	3%	2%	2%	8%	2%
Adj. Flow (vph)	1361	40	0	0	6	14
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1401	0	0	0	20	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 78.9%			IC	U Level o	f Service I
Analysis Period (min) 15						

4: Crooked Creek Road & I-26 EB On Ramp

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1,				*	
Traffic Vol, veh/h	1266	37	0	0	6	13
Future Vol, veh/h	1266	37	0	0	6	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	_		_		_	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	16983	0	-
Grade, %	0	-	_	0	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	3	2	2	8	2
Mvmt Flow	1361	40	0	0	6	14
WWW.CT TOW	1001	10		•		
Major/Minor I	Major1			N	/linor1	
Conflicting Flow All	0	0			1381	1381
Stage 1	-	-			1381	-
Stage 2	-	-			0	-
Critical Hdwy	-	-			6.48	6.22
Critical Hdwy Stg 1	-	-			5.48	-
Critical Hdwy Stg 2	_	-			-	-
Follow-up Hdwy	-	-			3.572	3.318
Pot Cap-1 Maneuver	-	-			154	176
Stage 1	_	-			226	_
Stage 2	_	_			-	_
Platoon blocked, %	_	_				
Mov Cap-1 Maneuver	_	_			154	176
Mov Cap-2 Maneuver	_	_			154	-
Stage 1	_	_			226	_
Stage 2	_				- 220	_
Staye 2	_	-			-	-
Approach	EB				NB	
HCM Control Delay, s	0				29.4	
HCM LOS					D	
Minor Lone /Maior M	.4	JDI 4	EDT	EDD		
Minor Lane/Major Mvm	it r	NBLn1	EBT	EBR		
Capacity (veh/h)		168	-	-		
HCM Lane V/C Ratio		0.122	-	-		
HCM Control Delay (s)		29.4	-	-		
HCM Lane LOS		D	-	-		
HCM 95th %tile Q(veh)		0.4	-	-		

3: Columbia Avenue & Ellett Road/New Frontage Road

1 **EBL EBR WBL WBT NBL** NBT **SBL** Lane Group **EBT** WBR NBR **SBT SBR** Lane Configurations 7 1 4 7 ٦ 44 ** Traffic Volume (vph) 39 0 25 118 0 126 157 180 284 1291 168 1166 Future Volume (vph) 39 0 25 118 0 284 126 1291 168 157 180 1166 Satd. Flow (prot) 1583 0 0 3334 0 1770 1770 1583 1770 1719 3539 1583 Flt Permitted 0.634 0.739 0.155 0.069 Satd. Flow (perm) 1181 1583 0 0 1377 1583 289 3334 0 125 3539 1583 Satd. Flow (RTOR) 209 168 33 22 Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Heavy Vehicles (%) 2% 2% 2% 2% 2% 2% 2% 7% 2% 5% 2% 2% Adj. Flow (vph) 43 0 28 131 0 316 140 1434 187 174 1296 200 Shared Lane Traffic (%) Lane Group Flow (vph) 43 28 131 316 1621 1296 200 140 174 Turn Type NA Perm Perm NA pm+ov pm+pt NA NA Perm pm+pt Protected Phases 4 8 1 2 6 5 1 Permitted Phases 8 4 8 2 6 6 Total Split (s) 22.0 22.0 22.0 22.0 17.0 16.0 61.0 17.0 62.0 62.0 Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Act Effct Green (s) 13.5 13.5 13.5 29.3 66.6 58.7 70.5 60.7 60.7 0.14 Actuated g/C Ratio 0.14 0.14 0.29 0.67 0.59 0.70 0.61 0.61 0.07 v/c Ratio 0.27 0.71 0.65 0.45 0.82 0.72 0.60 0.19 Control Delay 42.2 0.4 61.5 33.6 9.6 21.9 40.8 10.7 1.6 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 **Total Delay** 42.2 61.5 33.6 9.6 21.9 40.8 10.7 1.6 LOS D Α Ε C С D В Α Α Approach Delay 25.7 41.8 20.9 12.8 Approach LOS C D С В Queue Length 50th (ft) 25 0 80 150 22 431 46 267 12 Queue Length 95th (ft) 239 #152 57 0 142 41 561 231 11 Internal Link Dist (ft) 199 1080 1866 829 220 250 150 Turn Bay Length (ft) 150 300 Base Capacity (vph) 188 428 220 506 346 1967 265 2147 1026 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0

0

0

Intersection LOS: B

ICU Level of Service D

0.60

0

0

0.62

0

0

0.40

0

0

0.82

0

0

0.66

0

0

0.60

0

0

0.19

Intersection Summary

Spillback Cap Reductn

Storage Cap Reductn

Reduced v/c Ratio

Cycle Length: 100
Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

0

0

0.23

0

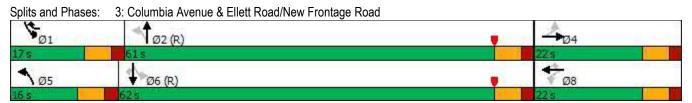
0

0.07

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 19.9
Intersection Capacity Utilization 77.9%


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2024 Build Conditions AM Peak Hour

3: Columbia Avenue & Ellett Road/New Frontage Road

HCM 6th Signalized Intersection Summary 3: Columbia Avenue & Ellett Road/New Frontage Road

2024 Build Conditions AM Peak Hour

	•		•	1	2000	•	1	1	1	/	Į	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			ન	7	*	†		*	**	7
Traffic Volume (veh/h)	39	0	25	118	0	284	126	1291	168	157	1166	180
Future Volume (veh/h)	39	0	25	118	0	284	126	1291	168	157	1166	180
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1796	1796	1826	1870	1870
Adj Flow Rate, veh/h	43	0	28	131	0	0	140	1434	187	174	1296	200
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	7	7	5	2	2
Cap, veh/h	296	0	207	231	0	_	312	1924	249	261	2276	1015
Arrive On Green	0.13	0.00	0.13	0.13	0.00	0.00	0.05	0.63	0.63	0.06	0.64	0.64
Sat Flow, veh/h	1418	0	1585	1217	0	1585	1781	3040	392	1739	3554	1585
Grp Volume(v), veh/h	43	0	28	131	0	0	140	799	822	174	1296	200
Grp Sat Flow(s), veh/h/ln	1418	0	1585	1217	0	1585	1781	1706	1726	1739	1777	1585
Q Serve(g_s), s	0.0	0.0	1.6	9.3	0.0	0.0	2.7	32.3	33.4	3.5	20.6	5.2
Cycle Q Clear(g_c), s	2.2	0.0	1.6	10.8	0.0	0.0	2.7	32.3	33.4	3.5	20.6	5.2
(0)	1.00	0.0	1.00	1.00	0.0	1.00	1.00	32.3	0.23	1.00	20.0	1.00
Prop In Lane	296	0	207	231	0	1.00	312	1080	1093	261	2276	1015
Lane Grp Cap(c), veh/h	0.15		0.14		0.00				0.75	0.67		
V/C Ratio(X)	338	0.00		0.57			0.45	0.74		354	0.57	0.20
Avail Cap(c_a), veh/h		1.00	254	272	1.00	1.00	403	1080	1093		2276	1015
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	0.80	0.80	0.80
Uniform Delay (d), s/veh	38.7	0.0	38.5	43.3	0.0	0.0	8.8	12.7	12.9	17.6	10.2	7.4
Incr Delay (d2), s/veh	0.2	0.0	0.3	2.2	0.0	0.0	1.0	4.5	4.8	2.3	0.8	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.0	0.0	0.6	3.3	0.0	0.0	1.0	12.0	12.6	2.7	7.3	1.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	39.0	0.0	38.8	45.5	0.0	0.0	9.8	17.2	17.7	19.9	11.0	7.7
LnGrp LOS	D	A	D	D	A		A	В	В	В	В	<u>A</u>
Approach Vol, veh/h		71			131	Α		1761			1670	
Approach Delay, s/veh		38.9			45.5			16.8			11.5	
Approach LOS		D			D			В			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.6	69.3		19.1	10.9	70.1		19.1				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	11.0	55.0		16.0	10.0	56.0		16.0				
Max Q Clear Time (g_c+l1), s	5.5	35.4		4.2	4.7	22.6		12.8				
Green Ext Time (p_c), s	0.2	16.2		0.2	0.2	21.0		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			15.9									
HCM 6th LOS			В									

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

6: Columbia Avenue & I-26 EB Off Ramp/I-26 EB On Ramp

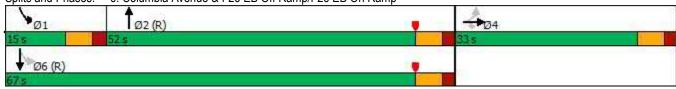
	1	-	•	1		•	1	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ન	7					↑	7	1	**	
Traffic Volume (vph)	34	4	134	0	0	0	0	616	1000	146	1369	0
Future Volume (vph)	34	4	134	0	0	0	0	616	1000	146	1369	0
Satd. Flow (prot)	0	1783	1583	0	0	0	0	1776	1583	1770	3438	0
Flt Permitted		0.957								0.281		
Satd. Flow (perm)	0	1783	1583	0	0	0	0	1776	1583	523	3438	0
Satd. Flow (RTOR)			98						643			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	7%	2%	2%	5%	2%
Adj. Flow (vph)	38	4	149	0	0	0	0	684	1111	162	1521	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	42	149	0	0	0	0	684	1111	162	1521	0
Turn Type	Perm	NA	Perm					NA	Free	pm+pt	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4						Free	6		
Total Split (s)	33.0	33.0	33.0					52.0		15.0	67.0	
Total Lost Time (s)		6.0	6.0					6.0		6.0	6.0	
Act Effct Green (s)		9.5	9.5					64.7	100.0	78.5	78.5	
Actuated g/C Ratio		0.10	0.10					0.65	1.00	0.78	0.78	
v/c Ratio		0.25	0.63					0.60	0.70	0.32	0.56	
Control Delay		43.8	28.3					12.4	5.0	4.7	5.5	
Queue Delay		0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay		43.8	28.3					12.4	5.0	4.7	5.5	
LOS		D	С					В	Α	Α	Α	
Approach Delay		31.7						7.9			5.5	
Approach LOS		С						Α			Α	
Queue Length 50th (ft)		25	31					225	147	18	148	
Queue Length 95th (ft)		55	88					m264	340	45	264	
Internal Link Dist (ft)		846			705			829			562	
Turn Bay Length (ft)										225		
Base Capacity (vph)		481	498					1148	1583	525	2699	
Starvation Cap Reductn		0	0					0	0	0	0	
Spillback Cap Reductn		0	0					0	0	0	0	
Storage Cap Reductn		0	0					0	0	0	0	
Reduced v/c Ratio		0.09	0.30					0.60	0.70	0.31	0.56	

Intersection Summary

Cycle Length: 100
Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Yellow, Master Intersection

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.70

Intersection Signal Delay: 8.0 Intersection LOS: A Intersection Capacity Utilization 59.7% ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Columbia Avenue & I-26 EB Off Ramp/I-26 EB On Ramp

HCM 6th Signalized Intersection Summary 6: Columbia Avenue & I-26 EB Off Ramp/I-26 EB On Ramp

2024 Build Conditions AM Peak Hour

	•		7	•		•	1	1	1	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		न	7					1	7	7	**	
Traffic Volume (veh/h)	34	4	134	0	0	0	0	616	1000	146	1369	0
Future Volume (veh/h)	34	4	134	0	0	0	0	616	1000	146	1369	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1796	1870	1870	1826	0
Adj Flow Rate, veh/h	38	4	149				0	684	0	162	1521	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2				0	7	2	2	5	0
Cap, veh/h	191	20	187				0	1173	_	493	2645	0
Arrive On Green	0.12	0.12	0.12				0.00	0.65	0.00	0.05	0.76	0.00
Sat Flow, veh/h	1619	170	1585				0.00	1796	1585	1781	3561	0.00
	42						0		0		1521	0
Grp Volume(v), veh/h		0	149					684		162		
Grp Sat Flow(s),veh/h/ln	1789	0	1585				0	1796	1585	1781	1735	0
Q Serve(g_s), s	2.1	0.0	9.2				0.0	21.3	0.0	2.8	18.6	0.0
Cycle Q Clear(g_c), s	2.1	0.0	9.2				0.0	21.3	0.0	2.8	18.6	0.0
Prop In Lane	0.90		1.00				0.00		1.00	1.00	2215	0.00
Lane Grp Cap(c), veh/h	211	0	187				0	1173		493	2645	0
V/C Ratio(X)	0.20	0.00	0.80				0.00	0.58		0.33	0.58	0.00
Avail Cap(c_a), veh/h	483	0	428				0	1173		565	2645	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00				0.00	0.53	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	39.9	0.0	43.0				0.0	9.7	0.0	7.7	5.0	0.0
Incr Delay (d2), s/veh	0.5	0.0	7.6				0.0	1.1	0.0	0.4	0.9	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.9	0.0	3.8				0.0	7.6	0.0	0.9	5.1	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	40.3	0.0	50.6				0.0	10.9	0.0	8.1	5.9	0.0
LnGrp LOS	D	Α	D				Α	В		Α	Α	Α
Approach Vol, veh/h		191						684	А		1683	
Approach Delay, s/veh		48.3						10.9			6.2	
Approach LOS		D						В			A	
•	4					•					71	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	10.9	71.3		17.8		82.2						
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0						
Max Green Setting (Gmax), s	9.0	46.0		27.0		61.0						
Max Q Clear Time (g_c+l1), s	4.8	23.3		11.2		20.6						
Green Ext Time (p_c), s	0.2	8.4		0.7		27.2						
Intersection Summary												
HCM 6th Ctrl Delay			10.6									
HCM 6th LOS			В									
Notes												

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

9: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

EBT

0

0

0

0

0.90

2%

0

0

Stop

EBR

0

0

0

0.90

2%

0

0

WBL

0

0

0

0

0.90

2%

0

0

WBT

4

1

1

1444

1444

0.90

2%

182

Stop

1

WBR

163

163

0

0

0.90

14%

181

0

NBL

126

126

1770

0.950

1770

0.90

2%

140

140

EBL

0

0

0

0

0.90

2%

0

0

2024 Build Conditions

AM Peak Hour

			7 (17) 1 00	alk i loui
1	~	•	Į	1
NBT	NBR	SBL	SBT	SBR
↑			↑	7
524	0	0	628	90
524	0	0	628	90
1863	0	0	1776	1524
1863	0	0	1776	1524
0.90	0.90	0.90	0.90	0.90

2%

0

0

7%

698

698

Free

6%

100

100

2%

0

0

2%

582

582

Free

Inter	section	Summary	/

Lane Group

Lane Configurations

Traffic Volume (vph)

Future Volume (vph)

Satd. Flow (prot)

Satd. Flow (perm)

Peak Hour Factor

Adj. Flow (vph)

Sign Control

Heavy Vehicles (%)

Shared Lane Traffic (%) Lane Group Flow (vph)

FIt Permitted

Control Type: Unsignalized

Intersection Capacity Utilization 94.6%

Analysis Period (min) 15

ICU Level of Service F

2024 Build Conditions AM Peak Hour

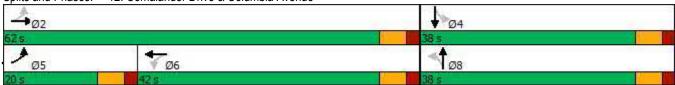
9: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4		7	↑			↑	7
Traffic Vol, veh/h	0	0	0	0	1	163	126	524	0	0	628	90
Future Vol, veh/h	0	0	0	0	1	163	126	524	0	0	628	90
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	_	None	-	-	None	_	_	None
Storage Length	-	-	-	-	-	-	200	-	-	-	_	150
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	_	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	14	2	2	2	2	7	6
Mvmt Flow	0	0	0	0	1	181	140	582	0	0	698	100
Major/Minor			N	Minor1			Major1		N	/lajor2		
Conflicting Flow All				1610	1660	582	798	0	_	-	_	0
Stage 1				862	862	-	-	-	_	_	_	-
Stage 2				748	798	_	_	_	_	_	_	_
Critical Hdwy				6.42	6.52	6.34	4.12	-	_	_	_	-
Critical Hdwy Stg 1				5.42	5.52	-	-	_	_	_	_	_
Critical Hdwy Stg 2				5.42	5.52	-	-	-	-	-	-	-
Follow-up Hdwy				3.518	4.018	3.426	2.218	_	-	_	_	_
Pot Cap-1 Maneuver				115	97	491	824	_	0	0	-	_
Stage 1				414	372	-	_	-	0	0	-	-
Stage 2				468	398	-	-	-	0	0	-	-
Platoon blocked, %								-			-	-
Mov Cap-1 Maneuver				95	0	491	824	-	-	-	-	-
Mov Cap-2 Maneuver				95	0	-	-	-	-	-	-	-
Stage 1				344	0	-	-	-	-	-	-	-
Stage 2				468	0	-	-	-	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				16.6			2			0		
HCM LOS				С								
Minor Lane/Major Mvm	t	NBL	NBTV	VBLn1	SBT	SBR						
Capacity (veh/h)		824	-		-	-						
HCM Lane V/C Ratio		0.17	-	0.371	-	_						
HCM Control Delay (s)		10.3	-	16.6	_	_						
HCM Lane LOS		В	-	С	-	-						
HCM 95th %tile Q(veh)		0.6	-	1.7	-	-						

	•	21. POS	•	1	2011/2	•	1	1	-	•	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			4			4			4	
Traffic Volume (vph)	220	277	190	0	366	3	163	0	0	2	0	189
Future Volume (vph)	220	277	190	0	366	3	163	0	0	2	0	189
Satd. Flow (prot)	1626	1700	0	0	1758	0	0	1770	0	0	1554	0
Flt Permitted	0.260							0.567			0.997	
Satd. Flow (perm)	445	1700	0	0	1758	0	0	1056	0	0	1549	0
Satd. Flow (RTOR)		56									210	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	11%	7%	2%	2%	8%	2%	2%	2%	2%	100%	2%	5%
Adj. Flow (vph)	244	308	211	0	407	3	181	0	0	2	0	210
Shared Lane Traffic (%)												
Lane Group Flow (vph)	244	519	0	0	410	0	0	181	0	0	212	0
Turn Type	pm+pt	NA			NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	20.0	62.0		42.0	42.0		38.0	38.0		38.0	38.0	
Total Lost Time (s)	6.0	6.0			6.0			6.0			6.0	
Act Effct Green (s)	42.1	42.1			22.7			18.5			18.5	
Actuated g/C Ratio	0.57	0.57			0.31			0.25			0.25	
v/c Ratio	0.52	0.52			0.76			0.68			0.39	
Control Delay	13.2	11.4			33.6			40.2			6.2	
Queue Delay	0.0	0.0			0.0			0.0			0.0	
Total Delay	13.2	11.4			33.6			40.2			6.2	
LOS	В	В			С			D			Α	
Approach Delay		12.0			33.6			40.2			6.2	
Approach LOS		В			С			D			Α	
Queue Length 50th (ft)	48	109			164			74			1	
Queue Length 95th (ft)	121	264			322			166			51	
Internal Link Dist (ft)		1379			1087			620			485	
Turn Bay Length (ft)	250											
Base Capacity (vph)	495	1340			917			489			831	
Starvation Cap Reductn	0	0			0			0			0	
Spillback Cap Reductn	0	0			0			0			0	
Storage Cap Reductn	0	0			0			0			0	
Reduced v/c Ratio	0.49	0.39			0.45			0.37			0.26	

Intersection Summary

Cycle Length: 100 Actuated Cycle Length: 73.4


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.76

Intersection Signal Delay: 20.1 Intersection LOS: C
Intersection Capacity Utilization 86.5% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 12: Comalander Drive & Columbia Avenue

	٨		•	1	566555 566555	•	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			4			4			4	
Traffic Volume (veh/h)	220	277	190	0	366	3	163	0	0	2	0	189
Future Volume (veh/h)	220	277	190	0	366	3	163	0	0	2	0	189
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1737	1796	1796	1781	1781	1781	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	244	308	211	0	407	3	181	0	0	2	0	210
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	11	7	7	8	8	8	2	2	2	2	2	2
Cap, veh/h	460	562	385	0	571	4	364	0	0	69	2	332
Arrive On Green	0.13	0.57	0.57	0.00	0.32	0.32	0.21	0.00	0.00	0.21	0.00	0.21
Sat Flow, veh/h	1654	993	680	0	1766	13	1094	0	0	4	11	1581
Grp Volume(v), veh/h	244	0	519	0	0	410	181	0	0	212	0	0
Grp Sat Flow(s),veh/h/ln	1654	0	1674	0	0	1779	1094	0	0	1596	0	0
Q Serve(g_s), s	4.7	0.0	10.4	0.0	0.0	10.8	2.1	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	4.7	0.0	10.4	0.0	0.0	10.8	8.6	0.0	0.0	6.5	0.0	0.0
Prop In Lane	1.00		0.41	0.00		0.01	1.00		0.00	0.01		0.99
Lane Grp Cap(c), veh/h	460	0	947	0	0	576	364	0	0	403	0	0
V/C Ratio(X)	0.53	0.00	0.55	0.00	0.00	0.71	0.50	0.00	0.00	0.53	0.00	0.00
Avail Cap(c_a), veh/h	677	0	1751	0	0	1197	819	0	0	1017	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	10.2	0.0	7.3	0.0	0.0	15.9	20.2	0.0	0.0	19.3	0.0	0.0
Incr Delay (d2), s/veh	1.0	0.0	0.5	0.0	0.0	1.7	1.1	0.0	0.0	1.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.4	0.0	2.7	0.0	0.0	4.0	2.0	0.0	0.0	2.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	11.2	0.0	7.8	0.0	0.0	17.6	21.3	0.0	0.0	20.3	0.0	0.0
LnGrp LOS	В	Α	Α	Α	Α	В	С	Α	Α	С	Α	A
Approach Vol, veh/h		763			410			181			212	
Approach Delay, s/veh		8.9			17.6			21.3			20.3	
Approach LOS		А			В			С			С	
Timer - Assigned Phs		2		4	5	6		8				
Phs Duration (G+Y+Rc), s		36.3		17.2	13.0	23.3		17.2				
Change Period (Y+Rc), s		6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s		56.0		32.0	14.0	36.0		32.0				
Max Q Clear Time (g_c+l1), s		12.4		8.5	6.7	12.8		10.6				
Green Ext Time (p_c), s		7.5		0.7	0.4	4.5		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			14.1									
HCM 6th LOS			В									

Lanes, Volumes, Timings 29: Columbia Avenue & I-26 WB Off Loop

2024 Build Conditions AM Peak Hour

	4	J	•	*	K	t
	001		81.702	8000,000	014/7	014/5
Lane Group	SBL	SBR	NEL	NET	SWT	SWR
Lane Configurations		7		↑	↑	
Traffic Volume (vph)	0	887	0	650	628	0
Future Volume (vph)	0	887	0	650	628	0
Satd. Flow (prot)	0	1565	0	1863	1863	0
Flt Permitted						
Satd. Flow (perm)	0	1565	0	1863	1863	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	5%	2%	2%	2%	2%
Adj. Flow (vph)	0	986	0	722	698	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	986	0	722	698	0
Sign Control	Free			Free	Free	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 94.6%			IC	U Level o	of Service F
Analysis Period (min) 15						

3: Columbia Avenue & Ellett Road/New Frontage Road

	•	-	*	1		•	1	4	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			र्स	7	1	*		1	**	7
Traffic Volume (vph)	167	0	109	109	0	179	28	1351	147	144	1538	58
Future Volume (vph)	167	0	109	109	0	179	28	1351	147	144	1538	58
Satd. Flow (prot)	1770	1583	0	0	1770	1583	1770	3483	0	1770	3539	1583
Flt Permitted	0.679				0.679		0.071			0.065		
Satd. Flow (perm)	1265	1583	0	0	1265	1583	132	3483	0	121	3539	1583
Satd. Flow (RTOR)		167				33		18				98
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%
Adj. Flow (vph)	186	0	121	121	0	199	31	1501	163	160	1709	64
Shared Lane Traffic (%)												
Lane Group Flow (vph)	186	121	0	0	121	199	31	1664	0	160	1709	64
Turn Type	Perm	NA		Perm	NA	pm+ov	pm+pt	NA		pm+pt	NA	Perm
Protected Phases		4			8	1	5	2		1	6	
Permitted Phases	4			8		8	2			6		6
Total Split (s)	24.0	24.0		24.0	24.0	15.0	15.0	61.0		15.0	61.0	61.0
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	6.0
Act Effct Green (s)	17.1	17.1			17.1	31.4	62.6	56.6		68.9	63.5	63.5
Actuated g/C Ratio	0.17	0.17			0.17	0.31	0.63	0.57		0.69	0.64	0.64
v/c Ratio	0.87	0.30			0.56	0.38	0.17	0.84		0.72	0.76	0.06
Control Delay	75.6	4.1			48.6	24.0	7.3	23.3		44.3	12.3	0.2
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	75.6	4.1			48.6	24.0	7.3	23.3		44.3	12.3	0.2
LOS	E	Α			D	С	Α	С		D	В	Α
Approach Delay		47.4			33.3			23.1			14.6	
Approach LOS		D			С			С			В	
Queue Length 50th (ft)	115	0			71	79	5	448		62	446	0
Queue Length 95th (ft)	#234	22			131	140	13	563		m#139	407	m0
Internal Link Dist (ft)		199			1080			1871			829	
Turn Bay Length (ft)	220					250	150			300		150
Base Capacity (vph)	227	421			227	529	233	1978		231	2248	1041
Starvation Cap Reductn	0	0			0	0	0	0		0	0	0
Spillback Cap Reductn	0	0			0	0	0	0		0	0	0
Storage Cap Reductn	0	0			0	0	0	0		0	0	0
Reduced v/c Ratio	0.82	0.29			0.53	0.38	0.13	0.84		0.69	0.76	0.06

Intersection Summary

Cycle Length: 100
Actuated Cycle Length: 100

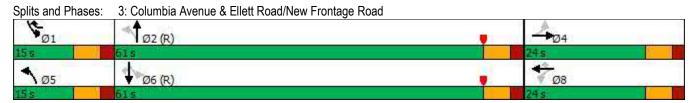
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 21.7 Intersection LOS: C
Intersection Capacity Utilization 80.9% ICU Level of Service D

Analysis Period (min) 15


95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

2024 Build Conditions PM Peak Hour

3: Columbia Avenue & Ellett Road/New Frontage Road

HCM 6th Signalized Intersection Summary 3: Columbia Avenue & Ellett Road/New Frontage Road

2024 Build Conditions PM Peak Hour

	•		7	1	2000	•	1	1	1	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			स	7	1	*		7	^	7
Traffic Volume (veh/h)	167	0	109	109	0	179	28	1351	147	144	1538	58
Future Volume (veh/h)	167	0	109	109	0	179	28	1351	147	144	1538	58
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	186	0	121	121	0	0	31	1501	163	160	1709	64
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	386	0	285	215	0		191	1889	203	237	2172	969
Arrive On Green	0.18	0.00	0.18	0.18	0.00	0.00	0.03	0.58	0.58	0.06	0.61	0.61
Sat Flow, veh/h	1418	0	1585	792	0	1585	1781	3236	348	1781	3554	1585
Grp Volume(v), veh/h	186	0	121	121	0	0	31	818	846	160	1709	64
Grp Sat Flow(s), veh/h/ln	1418	0	1585	792	0	1585	1781	1777	1808	1781	1777	1585
Q Serve(g_s), s	0.0	0.0	6.8	9.3	0.0	0.0	0.7	35.5	36.6	3.6	36.0	1.6
Cycle Q Clear(g_c), s	9.6	0.0	6.8	16.1	0.0	0.0	0.7	35.5	36.6	3.6	36.0	1.6
Prop In Lane	1.00	0.0	1.00	1.00	0.0	1.00	1.00	00.0	0.19	1.00	50.0	1.00
Lane Grp Cap(c), veh/h	386	0	285	215	0	1.00	191	1037	1055	237	2172	969
V/C Ratio(X)	0.48	0.00	0.42	0.56	0.00		0.16	0.79	0.80	0.67	0.79	0.07
Avail Cap(c_a), veh/h	386	0.00	285	215	0.00		300	1037	1055	297	2172	969
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	0.72	0.72	0.72
Uniform Delay (d), s/veh	37.5	0.00	36.4	43.6	0.00	0.00	13.9	16.0	16.3	19.7	14.6	7.9
Incr Delay (d2), s/veh	0.9	0.0	1.0	3.4	0.0	0.0	0.4	6.1	6.4	3.1	2.2	0.1
Initial Q Delay(d3),s/veh	0.9	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.4	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.2	0.0	2.7	3.1	0.0	0.0	0.0	14.6	15.4	2.3	13.3	0.0
		0.0	2.1	3.1	0.0	0.0	0.3	14.0	15.4	2.3	13.3	0.5
Unsig. Movement Delay, s/veh	38.5	0.0	37.4	46.9	0.0	0.0	14.3	22.1	22.7	22.8	16.7	8.0
LnGrp Delay(d),s/veh	30.5 D					0.0	14.3 B		22.1 C	22.0 C		
LnGrp LOS	U	A	D	D	A 404	Δ.	Б	C 4005	U	U	B	A
Approach Vol, veh/h		307			121	А		1695			1933	
Approach Delay, s/veh		38.1			46.9			22.3			16.9	
Approach LOS		D			D			С			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.6	64.4		24.0	8.9	67.1		24.0				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	9.0	55.0		18.0	9.0	55.0		18.0				
Max Q Clear Time (g_c+I1), s	5.6	38.6		11.6	2.7	38.0		18.1				
Green Ext Time (p_c), s	0.1	14.1		0.9	0.0	14.8		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			21.7									
HCM 6th LOS			С									
Notes												

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

6: Columbia Avenue & I-26 EB Off Ramp/I-26 EB On Ramp

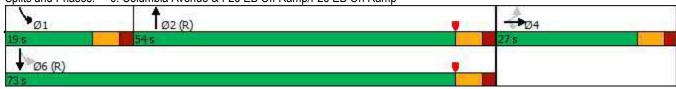
	•		7	1	2000	•	1	1	-	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		લી	7					↑	7	7	**	
Traffic Volume (vph)	54	5	142	0	0	0	0	667	1030	235	1598	0
Future Volume (vph)	54	5	142	0	0	0	0	667	1030	235	1598	0
Satd. Flow (prot)	0	1710	1553	0	0	0	0	1863	1568	1770	3539	0
Flt Permitted		0.957								0.218		
Satd. Flow (perm)	0	1710	1553	0	0	0	0	1863	1568	406	3539	0
Satd. Flow (RTOR)			98						611			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	5%	20%	4%	2%	2%	2%	2%	2%	3%	2%	2%	2%
Adj. Flow (vph)	60	6	158	0	0	0	0	741	1144	261	1776	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	66	158	0	0	0	0	741	1144	261	1776	0
Turn Type	Perm	NA	Perm					NA	Free	pm+pt	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4						Free	6		
Total Split (s)	27.0	27.0	27.0					54.0		19.0	73.0	
Total Lost Time (s)		6.0	6.0					6.0		6.0	6.0	
Act Effct Green (s)		10.2	10.2					59.5	100.0	77.8	77.8	
Actuated g/C Ratio		0.10	0.10					0.60	1.00	0.78	0.78	
v/c Ratio		0.38	0.64					0.67	0.73	0.54	0.65	
Control Delay		46.6	29.6					15.7	6.6	7.7	6.9	
Queue Delay		0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay		46.6	29.6					15.7	6.6	7.7	6.9	
LOS		D	С					В	Α	Α	А	
Approach Delay		34.6						10.2			7.0	
Approach LOS		С						В			А	
Queue Length 50th (ft)		40	37					185	218	33	202	
Queue Length 95th (ft)		77	96					m434	503	74	358	
Internal Link Dist (ft)		846			705			829			562	
Turn Bay Length (ft)										225		
Base Capacity (vph)		359	403					1108	1568	511	2752	
Starvation Cap Reductn		0	0					0	0	0	0	
Spillback Cap Reductn		0	0					0	0	0	0	
Storage Cap Reductn		0	0					0	0	0	0	
Reduced v/c Ratio		0.18	0.39					0.67	0.73	0.51	0.65	

Intersection Summary

Cycle Length: 100
Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Yellow, Master Intersection

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.73

Intersection Signal Delay: 9.9 Intersection LOS: A Intersection Capacity Utilization 67.3% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Columbia Avenue & I-26 EB Off Ramp/I-26 EB On Ramp

HCM 6th Signalized Intersection Summary 6: Columbia Avenue & I-26 EB Off Ramp/I-26 EB On Ramp

2024 Build Conditions PM Peak Hour

	•	11. W. S.	7	1	2000 E	•	1	1	1	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		स	7					1	7	7	**	
Traffic Volume (veh/h)	54	5	142	0	0	0	0	667	1030	235	1598	0
Future Volume (veh/h)	54	5	142	0	0	0	0	667	1030	235	1598	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1841	1604	1841				0	1870	1856	1870	1870	0
Adj Flow Rate, veh/h	60	6	158				0	741	0	261	1776	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	4	20	4				0	2	3	2	2	0
Cap, veh/h	174	17	195				0	1163		471	2683	0
Arrive On Green	0.12	0.12	0.12				0.00	0.62	0.00	0.07	0.76	0.00
Sat Flow, veh/h	1394	139	1560				0	1870	1572	1781	3647	0
Grp Volume(v), veh/h	66	0	158				0	741	0	261	1776	0
Grp Sat Flow(s), veh/h/ln	1534	0	1560				0	1870	1572	1781	1777	0
Q Serve(g_s), s	3.9	0.0	9.9				0.0	24.8	0.0	4.9	24.5	0.0
Cycle Q Clear(g_c), s	3.9	0.0	9.9				0.0	24.8	0.0	4.9	24.5	0.0
	0.91	0.0	1.00				0.00	24.0	1.00	1.00	24.5	0.00
Prop In Lane	192	0	195				0.00	1163	1.00	471	2683	
Lane Grp Cap(c), veh/h	0.34	0.00					0.00	0.64		0.55	0.66	0.00
V/C Ratio(X)			0.81									
Avail Cap(c_a), veh/h	322	0	328				0	1163	4.00	572	2683	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00				0.00	0.50	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	40.0	0.0	42.6				0.0	11.8	0.0	10.4	6.0	0.0
Incr Delay (d2), s/veh	1.1	0.0	7.8				0.0	1.3	0.0	1.0	1.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.5	0.0	4.1				0.0	9.5	0.0	1.9	7.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	41.1	0.0	50.4				0.0	13.2	0.0	11.4	7.3	0.0
LnGrp LOS	D	A	D				A	В		В	A	A
Approach Vol, veh/h		224						741	Α		2037	
Approach Delay, s/veh		47.7						13.2			7.8	
Approach LOS		D						В			Α	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	13.3	68.2		18.5		81.5						
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0						
Max Green Setting (Gmax), s	13.0	48.0		21.0		67.0						
Max Q Clear Time (g_c+l1), s	6.9	26.8		11.9		26.5						
Green Ext Time (p_c), s	0.4	9.0		0.7		31.8						
Intersection Summary												
HCM 6th Ctrl Delay			12.1									
HCM 6th LOS			В									
Notos												

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

9: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

2024 Build Conditions

	•	27,000	~	6		*	4		-	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	LDI	LDIX	VVDL	4	WDIX	ħ	<u>↑</u>	NDIX	ODL	<u> </u>	7
Traffic Volume (vph)	0	0	0	0	0	247	158	563	0	0	656	47
Future Volume (vph)	0	0	0	0	0	247	158	563	0	0	656	47
Satd. Flow (prot)	0	0	0	0	1611	0	1736	1863	0	0	1863	1583
Flt Permitted							0.950					
Satd. Flow (perm)	0	0	0	0	1611	0	1736	1863	0	0	1863	1583
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	4%	2%	2%	2%	2%	2%
Adj. Flow (vph)	0	0	0	0	0	274	176	626	0	0	729	52
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	274	0	176	626	0	0	729	52
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 114.1%

ICU Level of Service H

Analysis Period (min) 15

9: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

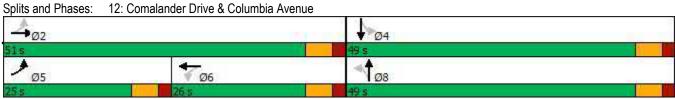
Int Delay, s/veh 4.2
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Lane Configurations
Traffic Vol, veh/h 0 0 0 0 0 247 158 563 0 0 656 47
Future Vol, veh/h 0 0 0 0 0 247 158 563 0 0 656 47
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0
Sign Control Stop Stop Stop Stop Stop Free Free Free Free Free Free
RT Channelized None None None
Storage Length 200 150
Veh in Median Storage, # - 0 0 0 -
Grade, % - 0 0 0 -
Peak Hour Factor 90 90 90 90 90 90 90 90 90 90 90
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Mvmt Flow 0 0 0 0 0 274 176 626 0 0 729 52
Major/Minor Minor1 Major1 Major2
Conflicting Flow All 1733 1759 626 781 0 0
Stage 1 978 978
Stage 2 755 781
Critical Hdwy 6.42 6.52 6.22 4.14
Critical Hdwy Stg 1 5.42 5.52
Critical Hdwy Stg 2 5.42 5.52
Follow-up Hdwy 3.518 4.018 3.318 2.236
Pot Cap-1 Maneuver 97 85 484 828 - 0 0
Stage 1 364 329 0 0
Stage 2 464 405 0 0
Platoon blocked, %
Mov Cap-1 Maneuver 76 0 484 828
Mov Cap-2 Maneuver 76 0
Stage 1 286 0
Stage 2 464 0
Approach WB NB SB
HCM Control Delay, s 21.7 2.3 0
HCM LOS C
Minor Lane/Major Mvmt NBL NBTWBLn1 SBT SBR
Capacity (veh/h) 828 - 484
HCM Lane V/C Ratio 0.212 - 0.567
HCM Control Delay (s) 10.5 - 21.7
HCM Lane LOS B - C
HCM 95th %tile Q(veh) 0.8 - 3.5
3.0

	•		•	1		•	1	1	1	\	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			4			4			4	
Traffic Volume (vph)	316	195	299	0	165	5	254	0	0	1	0	284
Future Volume (vph)	316	195	299	0	165	5	254	0	0	1	0	284
Satd. Flow (prot)	1770	1687	0	0	1855	0	0	1770	0	0	1522	0
Flt Permitted	0.399							0.495			0.999	
Satd. Flow (perm)	743	1687	0	0	1855	0	0	922	0	0	1521	0
Satd. Flow (RTOR)		100			1						316	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%	8%
Adj. Flow (vph)	351	217	332	0	183	6	282	0	0	1	0	316
Shared Lane Traffic (%)												
Lane Group Flow (vph)	351	549	0	0	189	0	0	282	0	0	317	0
Turn Type	pm+pt	NA			NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	25.0	51.0		26.0	26.0		49.0	49.0		49.0	49.0	
Total Lost Time (s)	6.0	6.0			6.0			6.0			6.0	
Act Effct Green (s)	36.8	36.8			13.4			27.9			27.9	
Actuated g/C Ratio	0.48	0.48			0.17			0.36			0.36	
v/c Ratio	0.61	0.64			0.59			0.85			0.42	
Control Delay	20.2	18.1			40.2			47.3			4.1	
Queue Delay	0.0	0.0			0.0			0.0			0.0	
Total Delay	20.2	18.1			40.2			47.3			4.1	
LOS	С	В			D			D			Α	
Approach Delay		18.9			40.2			47.3			4.1	
Approach LOS		В			D			D			А	
Queue Length 50th (ft)	106	156			87			125			0	
Queue Length 95th (ft)	226	344			178			#261			50	
Internal Link Dist (ft)		1379			1070			620			485	
Turn Bay Length (ft)	250											
Base Capacity (vph)	620	1113			507			542			1024	
Starvation Cap Reductn	0	0			0			0			0	
Spillback Cap Reductn	0	0			0			0			0	
Storage Cap Reductn	0	0			0			0			0	
Reduced v/c Ratio	0.57	0.49			0.37			0.52			0.31	

Intersection Summary

Cycle Length: 100 Actuated Cycle Length: 77.4

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.85

Intersection Signal Delay: 23.2 Intersection LOS: C Intersection Capacity Utilization 89.3% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•		>	1	2000 E	•	1	1	1	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1			4			4			4	
Traffic Volume (veh/h)	316	195	299	0	165	5	254	0	0	1	0	284
Future Volume (veh/h)	316	195	299	0	165	5	254	0	0	1	0	284
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1856	1856	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	351	217	332	0	183	6	282	0	0	1	0	316
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	3	3	2	2	2	2	2	2	2	2	2
Cap, veh/h	531	293	449	0	268	9	442	0	0	59	2	571
Arrive On Green	0.20	0.44	0.44	0.00	0.15	0.15	0.36	0.00	0.00	0.36	0.00	0.36
Sat Flow, veh/h	1781	661	1012	0	1801	59	898	0	0	1	4	1582
Grp Volume(v), veh/h	351	0	549	0	0	189	282	0	0	317	0	0
Grp Sat Flow(s),veh/h/ln	1781	0	1673	0	0	1860	898	0	0	1587	0	0
Q Serve(g_s), s	9.4	0.0	16.7	0.0	0.0	5.9	9.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	9.4	0.0	16.7	0.0	0.0	5.9	18.8	0.0	0.0	9.8	0.0	0.0
Prop In Lane	1.00		0.60	0.00		0.03	1.00		0.00	0.00		1.00
Lane Grp Cap(c), veh/h	531	0	742	0	0	277	442	0	0	632	0	0
V/C Ratio(X)	0.66	0.00	0.74	0.00	0.00	0.68	0.64	0.00	0.00	0.50	0.00	0.00
Avail Cap(c_a), veh/h	732	0	1228	0	0	606	803	0	0	1171	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	15.5	0.0	14.1	0.0	0.0	24.7	19.5	0.0	0.0	15.7	0.0	0.0
Incr Delay (d2), s/veh	1.4	0.0	1.5	0.0	0.0	3.0	1.5	0.0	0.0	0.6	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.5	0.0	5.5	0.0	0.0	2.6	3.6	0.0	0.0	2.9	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	16.9	0.0	15.6	0.0	0.0	27.7	21.0	0.0	0.0	16.3	0.0	0.0
LnGrp LOS	В	Α	В	Α	Α	С	С	Α	Α	В	Α	A
Approach Vol, veh/h		900			189			282			317	
Approach Delay, s/veh		16.1			27.7			21.0			16.3	
Approach LOS		В			С			С			В	
Timer - Assigned Phs		2		4	5	6		8				
Phs Duration (G+Y+Rc), s		33.2		28.1	18.1	15.1		28.1				
Change Period (Y+Rc), s		6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s		45.0		43.0	19.0	20.0		43.0				
Max Q Clear Time (g_c+l1), s		18.7		11.8	11.4	7.9		20.8				
Green Ext Time (p_c), s		7.1		1.1	0.7	1.2		1.3				
Intersection Summary												
HCM 6th Ctrl Delay			18.3									
HCM 6th LOS			В									

Lanes, Volumes, Timings 29: Columbia Avenue & I-26 WB Off Loop

2024 Build Conditions
PM Peak Hour

	4	لر	•	*	K	t
Lane Group	SBL	SBR	NEL	NET	SWT	SWR
Lane Configurations		7		†	†	
Traffic Volume (vph)	0	1177	0	721	656	0
Future Volume (vph)	0	1177	0	721	656	0
Satd. Flow (prot)	0	1611	0	1863	1863	0
Flt Permitted						
Satd. Flow (perm)	0	1611	0	1863	1863	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	1308	0	801	729	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	1308	0	801	729	0
Sign Control	Free			Free	Free	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 114.1%

ICU Level of Service H

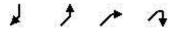
Analysis Period (min) 15

2044 No Build Conditions

1: Ellett Road & I-26 EB Off Ramp/I-26 EB On Ramp & Columbia Avenue

AM Peak Hour

	•	-	-	್ತಾ	6	200	*	M	1	-	1	1
Lane Group	EBL	EBT	EBR	EBR2	WBL2	WBT	WBR	NBL2	NBT	NBR	SBL	SBT
Lane Configurations		4				4			1,			4
Traffic Volume (vph)	37	5	152	1	10	0	30	1	691	1135	153	1580
Future Volume (vph)	37	5	152	1	10	0	30	1	691	1135	153	1580
Satd. Flow (prot)	0	1561	0	0	0	1619	0	0	1675	0	0	1806
Flt Permitted		0.991				0.988						0.996
Satd. Flow (perm)	0	1561	0	0	0	1619	0	0	1675	0	0	1806
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	17%	25%	5%	2%	2%	2%	5%	2%	7%	2%	2%	5%
Adj. Flow (vph)	41	6	169	1	11	0	33	1	768	1261	170	1756
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	217	0	0	0	44	0	0	2030	0	0	1932
Sign Control		Stop				Stop			Free			Free


Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 229.1%

ICU Level of Service H

Analysis Period (min) 15

Lane Group	SBR	NEL	NER	NER2
LaneConfigurations		**		
Traffic Volume (vph)	5	1	3	1
Future Volume (vph)	5	1	3	1
Satd. Flow (prot)	0	1043	0	0
Flt Permitted		0.990		
Satd. Flow (perm)	0	1043	0	0
Peak Hour Factor	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	25%	2%	100%	2%
Adj. Flow (vph)	6	1	3	1
Shared Lane Traffic (%)				
Lane Group Flow (vph)	0	5	0	0
Sign Control		Stop		
Intersection Summary				

2044 No Build Conditions

AM Peak Hour

2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

	A		7	1		•	1	1	1	/	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			લી			1	
Traffic Volume (vph)	0	0	0	1019	1	167	153	606	0	0	719	110
Future Volume (vph)	0	0	0	1019	1	167	153	606	0	0	719	110
Satd. Flow (prot)	0	0	0	0	1681	0	0	1758	0	0	1746	0
Flt Permitted					0.959			0.096				
Satd. Flow (perm)	0	0	0	0	1681	0	0	170	0	0	1746	0
Satd. Flow (RTOR)					7						8	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	5%	100%	14%	3%	8%	2%	2%	7%	6%
Adj. Flow (vph)	0	0	0	1132	1	186	170	673	0	0	799	122
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	1319	0	0	843	0	0	921	0
Turn Type				Perm	NA		Perm	NA			NA	
Protected Phases					4			6			2	
Permitted Phases				4			6					
Total Split (s)				60.0	60.0		80.0	80.0			80.0	
Total Lost Time (s)					6.0			6.3			6.3	
Act Effct Green (s)					54.0			73.7			73.7	
Actuated g/C Ratio					0.39			0.53			0.53	
v/c Ratio					2.02			9.47			1.00	
Control Delay					491.1			3840.9			62.3	
Queue Delay					0.0			0.0			0.0	
Total Delay					491.1			3840.9			62.3	
LOS					F			F			E	
Approach Delay					491.1			3840.9			62.3	
Approach LOS					F			F			Е	
Queue Length 50th (ft)					~1890			~1447			809	
Queue Length 95th (ft)					#2160			#1704			#1125	
Internal Link Dist (ft)		794			322			516			197	
Turn Bay Length (ft)												
Base Capacity (vph)					652			89			922	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					2.02			9.47			1.00	

Intersection Summary

Cycle Length: 140
Actuated Cycle Length: 140

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 9.47

Intersection Signal Delay: 1278.9 Intersection LOS: F
Intersection Capacity Utilization 167.1% ICU Level of Service H

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp 2044 No Build Conditions AM Peak Hour

Splits and Phases: 2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

Ø2

Ø4

Ø6

Ø6

Ø6

HCM 6th Signalized Intersection Summary

2044 No Build Conditions AM Peak Hour

2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations		۶		•	1		•	1	1	1	1	1	1
Traffic Volume (veh/h) 0 0 0 1019 1 167 153 606 0 0 719 110 Future Volume (veh/h) 0 0 0 1019 1 167 153 606 0 0 719 110 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL		NBR	SBL	SBT	SBR
Traffic Volume (vehrh) 0 0 0 1019 1 167 153 606 0 0 719 110 Initial C (Qb), veh 0 0 0 1019 1 167 153 606 0 0 719 110 Initial C (Qb), veh 0 0 0 1019 1 167 153 606 0 0 719 110 Initial C (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lane Configurations					4			स			1	
Initial Q (Qb), veh	Traffic Volume (veh/h)	0	0	0	1019		167	153	606	0	0	719	110
Ped-Bike Adji(A_pbT)	Future Volume (veh/h)	0	0	0	1019	1	167	153	606	0	0	719	110
Parking Bus, Adj	Initial Q (Qb), veh					0	0		0	0	0	0	0
Work Zöne On Approach	Ped-Bike Adj(A_pbT)												
Adj Sat Flow, veh/h/lin 1900 418 1900 1781 1781 0 0 1796 1796 Adj Flow Rate, veh/h 1132 1 186 170 673 0 0 799 122 Peak Hour Factor 0.90 0.00 0.00 0.00 0.00 0.00 0	Parking Bus, Adj				1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Flow Rate, veh/h	Work Zone On Approach												
Peak Hour Factor 0.90 0.	Adj Sat Flow, veh/h/ln					418		1781					
Percent Heavy Veh, %													
Cap, veh/h	Peak Hour Factor				0.90		0.90	0.90		0.90	0.90	0.90	0.90
Arrive On Green	Percent Heavy Veh, %					100							
Sat Flow, veh/h													
Grp Volume(v), veh/h 1319 0 0 843 0 0 0 921 Grp Sat Flow(s), veh/h/ln 391 0 0 65 0 0 0 1754 Q Serve(g_s), s 54.0 0.0 0.0 0.4 0.0 73.3 Prop In Lane 0.86 0.14 0.20 0.00 0.00 0.0 <td>Arrive On Green</td> <td></td> <td></td> <td></td> <td></td> <td>0.39</td> <td></td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td></td> <td></td>	Arrive On Green					0.39				0.00	0.00		
Grp Sat Flow(s), veh/h/ln 391 0 0 65 0 0 0 1754 Q Serve(g_S), s 54.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.3 Cycle Q Clear(g_c), s 54.0 0.0 0.0 73.7 0.0 0.0 0.0 0.0 73.3 Prop In Lane 0.86 0.14 0.20 0.00 0.00 0.03 0.13 Lane Grp Cap(c), veh/h 151 0 65 0 0 0 924 V/C Ratio(X) 8.74 0.00 0.00 12.94 0.00	Sat Flow, veh/h				336	0	55	1	64	0	0	1522	232
Q Serve(g_s), s 54.0 0.0 0.0 0.4 0.0 73.3 Prop In Lane 0.86 0.14 0.20 0.00 0.00 0.0 0.0 0.03 Lane Gro Cap(c), veh/h 151 0 0 65 0 0 0 0 924 V/C Ratio(X) 8.74 0.00 0.00 12.94 0.00 0.00 0.00 1.00 Avail Cap(c_a), veh/h 151 0 0 65 0 0 0 0 924 HCM Platoon Ratio 1.00 <td>Grp Volume(v), veh/h</td> <td></td> <td></td> <td></td> <td>1319</td> <td>0</td> <td>0</td> <td>843</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>921</td>	Grp Volume(v), veh/h				1319	0	0	843	0	0	0	0	921
Cycle Q Clear(g_c), s 54.0 0.0 0.0 73.7 0.0 0.0 0.0 0.0 73.3 Prop In Lane 0.86 0.14 0.20 0.00 0.00 0.01 0.13 Lane Grp Cap(c), veh/h 151 0 0 65 0 0 0 0 924 V/C Ratio(X) 8.74 0.00 0.00 12.94 0.00 0.00 0.00 1.00 1.00 Avail Cap(c_a), veh/h 151 0 0 65 0 0 0 0 924 HCM Platoon Ratio 1.00	Grp Sat Flow(s),veh/h/ln				391	0	0	65	0	0	0	0	1754
Prop In Lane 0.86 0.14 0.20 0.00 0.00 0.13 Lane Grp Cap(c), veh/h 151 0 0 65 0 0 0 0 924 V/C Ratio(X) 8.74 0.00 0.00 12.94 0.00 0.00 0.00 0.00 0.00 1.00 Avail Cap(c_a), veh/h 151 0 0 65 0 0 0 0 924 HCM Platoon Ratio 1.00	Q Serve(g_s), s				54.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	73.3
Lane Grp Cap(c), veh/h V/C Ratio(X) 8.74 0.00 0.00 12.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 Avail Cap(c a), veh/h 151 0 0 65 0 0 0 0 0 924 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00	Cycle Q Clear(g_c), s				54.0	0.0	0.0	73.7	0.0	0.0	0.0	0.0	73.3
V/C Ratio(X) 8.74 0.00 0.00 12.94 0.00 0.00 0.00 0.00 0.00 1.00 Avail Cap(c_a), veh/h 151 0 0 65 0 0 0 0 924 HCM Platoon Ratio 1.00	Prop In Lane				0.86		0.14	0.20		0.00	0.00		0.13
Avail Cap(c_a), veh/h	Lane Grp Cap(c), veh/h				151	0	0	65	0	0	0	0	924
HCM Platoon Ratio	V/C Ratio(X)				8.74	0.00	0.00	12.94	0.00	0.00	0.00	0.00	1.00
Upstream Filter(I) 1.00 0.00 0.00 1.00 0.00 <td>Avail Cap(c_a), veh/h</td> <td></td> <td></td> <td></td> <td>151</td> <td>0</td> <td>0</td> <td>65</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>924</td>	Avail Cap(c_a), veh/h				151	0	0	65	0	0	0	0	924
Uniform Delay (d), s/veh	HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incr Delay (d2), s/veh	Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Initial Q Delay(d3),s/veh	Uniform Delay (d), s/veh				43.0	0.0	0.0	36.2	0.0	0.0	0.0	0.0	33.0
%ile BackOfQ(50%),veh/ln 151.6 0.0 0.0 99.0 0.0 0.0 0.0 0.0 37.1 Unsig. Movement Delay, s/veh 3539.3 0.0 0.0 5437.7 0.0 0.0 0.0 0.0 62.0 LnGrp LOS F A A F A A A A A A A A E Approach Vol, veh/h 1319 843 921 921 92.0 92.	Incr Delay (d2), s/veh				3496.3	0.0	0.0	5401.5	0.0	0.0	0.0	0.0	29.0
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh S3539.3 0.0 0.0 5437.7 0.0 0.0 0.0 0.0 62.0 LnGrp LOS F A A F A A A A A A A A A A A A A A Approach Vol, veh/h Approach Delay, s/veh Approach LOS F F F F F F F F F F F F F F F F F F F	Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh 3539.3 0.0 0.0 5437.7 0.0 0.0 0.0 0.0 62.0 LnGrp LOS F A A F A B B B	%ile BackOfQ(50%),veh/ln				151.6	0.0	0.0	99.0	0.0	0.0	0.0	0.0	37.1
LnGrp LOS F A A F A B C D	Unsig. Movement Delay, s/veh												
Approach Vol, veh/h 1319 843 921 Approach Delay, s/veh 3539.3 5437.7 62.0 Approach LOS F F F Timer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 80.0 60.0 80.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 73.7 54.0 73.7 Max Q Clear Time (g_c+I1), s 75.3 56.0 75.7 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 3019.6	LnGrp Delay(d),s/veh				3539.3	0.0	0.0	5437.7	0.0	0.0	0.0	0.0	62.0
Approach Delay, s/veh 3539.3 5437.7 62.0 Approach LOS F F E Timer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 80.0 60.0 80.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 73.7 54.0 73.7 Max Q Clear Time (g_c+l1), s 75.3 56.0 75.7 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 3019.6	LnGrp LOS				F	Α	Α	F	Α	Α	Α	Α	Е
Approach Delay, s/veh 3539.3 5437.7 62.0 Approach LOS F F F E Timer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 80.0 60.0 80.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 73.7 54.0 73.7 Max Q Clear Time (g_c+l1), s 75.3 56.0 75.7 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 3019.6	Approach Vol, veh/h					1319			843			921	
Approach LOS F F E Timer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 80.0 60.0 80.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 73.7 54.0 73.7 Max Q Clear Time (g_c+I1), s 75.3 56.0 75.7 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 3019.6	• •					3539.3			5437.7			62.0	
Phs Duration (G+Y+Rc), s 80.0 60.0 80.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 73.7 54.0 73.7 Max Q Clear Time (g_c+l1), s 75.3 56.0 75.7 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 3019.6									F			Е	
Phs Duration (G+Y+Rc), s 80.0 60.0 80.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 73.7 54.0 73.7 Max Q Clear Time (g_c+l1), s 75.3 56.0 75.7 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 3019.6	Timer - Assigned Phs		2		4		6						
Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 73.7 54.0 73.7 Max Q Clear Time (g_c+l1), s 75.3 56.0 75.7 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 3019.6			80.0				80.0						
Max Green Setting (Gmax), s 73.7 54.0 73.7 Max Q Clear Time (g_c+l1), s 75.3 56.0 75.7 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 3019.6													
Max Q Clear Time (g_c+l1), s 75.3 56.0 75.7 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 3019.6	. ,.												
Green Ext Time (p_c), s 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 3019.6													
HCM 6th Ctrl Delay 3019.6	10— /-												
HCM 6th Ctrl Delay 3019.6	Intersection Summary												
				3019.6									
	HCM 6th LOS			50 19.0 F									

3: Columbia Avenue & Comalander Drive

	•		•	1		•	1	1	~	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	228	355	190	0	469	4	163	0	0	3	0	197
Future Volume (vph)	228	355	190	0	469	4	163	0	0	3	0	197
Satd. Flow (prot)	0	1692	0	0	1758	0	0	1770	0	0	1548	0
Flt Permitted		0.622						0.440			0.996	
Satd. Flow (perm)	0	1069	0	0	1758	0	0	820	0	0	1544	0
Satd. Flow (RTOR)		26			1						219	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	11%	7%	2%	2%	8%	2%	2%	2%	2%	100%	2%	5%
Adj. Flow (vph)	253	394	211	0	521	4	181	0	0	3	0	219
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	858	0	0	525	0	0	181	0	0	222	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	90.0	90.0		90.0	90.0		40.0	40.0		40.0	40.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
Act Effct Green (s)		84.2			84.2			29.0			29.0	
Actuated g/C Ratio		0.67			0.67			0.23			0.23	
v/c Ratio		1.18			0.44			0.95			0.42	
Control Delay		117.6			11.8			102.1			7.7	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		117.6			11.8			102.1			7.7	
LOS		F			В			F			Α	
Approach Delay		117.6			11.8			102.1			7.7	
Approach LOS		F			В			F			Α	
Queue Length 50th (ft)		~875			203			145			2	
Queue Length 95th (ft)		#1140			287			#280			65	
Internal Link Dist (ft)		174			688			381			356	
Turn Bay Length (ft)												
Base Capacity (vph)		727			1182			223			579	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		1.18			0.44			0.81			0.38	

Intersection Summary

Cycle Length: 130

Actuated Cycle Length: 125.3

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.18

Intersection Signal Delay: 71.3

Intersection Capacity Utilization 109.2%

Intersection LOS: E ICU Level of Service H

Analysis Period (min) 15


 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 3: Columbia Avenue & Comalander Drive 2044 No Build Conditions AM Peak Hour

Splits and Phases: 3: Columbia Avenue & Comalander Drive

	٨	24.0000 24.0000	•	1		•	1	1	1	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	228	355	190	0	469	4	163	0	0	3	0	197
Future Volume (veh/h)	228	355	190	0	469	4	163	0	0	3	0	197
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1796	1796	1796	1781	1781	1781	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	253	394	211	0	521	4	181	0	0	3	0	219
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	7	7	7	8	8	8	2	2	2	2	2	2
Cap, veh/h	235	317	168	0	1165	9	254	0	0	30	4	398
Arrive On Green	0.66	0.66	0.66	0.00	0.66	0.66	0.25	0.00	0.00	0.25	0.00	0.25
Sat Flow, veh/h	301	481	255	0	1765	14	803	0	0	6	16	1617
Grp Volume(v), veh/h	858	0	0	0	0	525	181	0	0	222	0	0
Grp Sat Flow(s),veh/h/ln	1038	0	0	0	0	1779	803	0	0	1640	0	0
Q Serve(g_s), s	65.9	0.0	0.0	0.0	0.0	18.1	13.6	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	84.0	0.0	0.0	0.0	0.0	18.1	29.2	0.0	0.0	15.6	0.0	0.0
Prop In Lane	0.29		0.25	0.00		0.01	1.00		0.00	0.01		0.99
Lane Grp Cap(c), veh/h	721	0	0	0	0	1174	254	0	0	432	0	0
V/C Ratio(X)	1.19	0.00	0.00	0.00	0.00	0.45	0.71	0.00	0.00	0.51	0.00	0.00
Avail Cap(c_a), veh/h	721	0	0	0	0	1174	279	0	0	465	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	31.7	0.0	0.0	0.0	0.0	10.5	50.5	0.0	0.0	42.1	0.0	0.0
Incr Delay (d2), s/veh	98.9	0.0	0.0	0.0	0.0	0.3	7.5	0.0	0.0	0.9	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	41.9	0.0	0.0	0.0	0.0	6.7	6.2	0.0	0.0	6.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	130.6	0.0	0.0	0.0	0.0	10.7	57.9	0.0	0.0	43.0	0.0	0.0
LnGrp LOS	F	Α	Α	Α	Α	В	Е	Α	Α	D	Α	<u>A</u>
Approach Vol, veh/h		858			525			181			222	
Approach Delay, s/veh		130.6			10.7			57.9			43.0	
Approach LOS		F			В			Е			D	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		90.0		37.3		90.0		37.3				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		84.0		34.0		84.0		34.0				
Max Q Clear Time (g_c+l1), s		86.0		17.6		20.1		31.2				
Green Ext Time (p_c), s		0.0		0.6		7.7		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			77.1									
HCM 6th LOS			E									

2044 No Build Conditions AM Peak Hour

4: Crooked Creek Road & I-26 EB On Ramp

		*	1	200 17	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1				**	
Traffic Volume (vph)	1274	22	0	0	39	105
Future Volume (vph)	1274	22	0	0	39	105
Satd. Flow (prot)	1859	0	0	0	1657	0
Flt Permitted					0.987	
Satd. Flow (perm)	1859	0	0	0	1657	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	1416	24	0	0	43	117
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1440	0	0	0	160	0
Sign Control	Free			Free	Stop	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 83.7%

ICU Level of Service E

Analysis Period (min) 15

2044 No Build Conditions AM Peak Hour

4: Crooked Creek Road & I-26 EB On Ramp

Intersection						
Int Delay, s/veh	12.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1				N.	
Traffic Vol, veh/h	1274	22	0	0	39	105
Future Vol, veh/h	1274	22	0	0	39	105
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		-	-	16983	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1416	24	0	0	43	117
Major/Minor I	Major1			ı	/linor1	
Conflicting Flow All	0	0			1428	1428
Stage 1	-	U			1428	1420
Stage 2		-			0	-
	-	-			6.42	6.22
Critical Hdwy	-	-			5.42	
Critical Hdwy Stg 1	-	-				-
Critical Hdwy Stg 2	-	-			-	-
Follow-up Hdwy	-	-			3.518	
Pot Cap-1 Maneuver	-	-			149	165
Stage 1	-	-			221	-
Stage 2	-	-			-	-
Platoon blocked, %	-	-			4.40	405
Mov Cap-1 Maneuver	-	-			149	165
Mov Cap-2 Maneuver	-	-			149	-
Stage 1	-	-			221	-
Stage 2	-	-			-	-
Approach	EB				NB	
HCM Control Delay, s	0				128.1	
HCM LOS	U				F	
TIOWI LOO						
Minor Lane/Major Mvm	nt 1	NBLn1	EBT	EBR		
Capacity (veh/h)		160	-	-		
HCM Lane V/C Ratio		1	-	-		
HCM Control Delay (s)		128.1	-	-		
HCM Lane LOS		F	-	-		
HCM 95th %tile Q(veh)		7.7	-	-		

2044 No Build PM Peak Hour

1: Ellett Road & I-26 EB Off Ramp/I-26 EB On Ramp & Columbia Avenue

	•		*		2016	•	1	1	-	-	Į.	1
Lane Group	EBL	EBT	EBR	EBR2	WBT	WBR	NBL2	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			1			4	
Traffic Volume (vph)	60	7	159	8	0	8	3	726	1191	248	1850	16
Future Volume (vph)	60	7	159	8	0	8	3	726	1191	248	1850	16
Satd. Flow (prot)	0	1622	0	0	1611	0	0	1696	0	0	1843	0
Flt Permitted		0.987									0.994	
Satd. Flow (perm)	0	1622	0	0	1611	0	0	1696	0	0	1843	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	5%	20%	3%	17%	2%	2%	2%	2%	3%	2%	2%	50%
Adj. Flow (vph)	65	8	173	9	0	9	3	789	1295	270	2011	17
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	255	0	0	9	0	0	2087	0	0	2298	0
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 260.8%

Analysis Period (min) 15

ICU Level of Service H

Lane Group	NEL	NER	NER2
Lane Configurations	N. A.		
Traffic Volume (vph)	5	11	7
Future Volume (vph)	5	11	7
Satd. Flow (prot)	1645	0	0
Flt Permitted	0.990		
Satd. Flow (perm)	1645	0	0
Peak Hour Factor	0.92	0.92	0.92
Heavy Vehicles (%)	2%	2%	2%
Adj. Flow (vph)	5	12	8
Shared Lane Traffic (%)			
Lane Group Flow (vph)	25	0	0
Sign Control	Stop		
Intersection Summary			

2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

	•		*	1	38473	•	1	1	1	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			र्स			1	
Traffic Volume (vph)	0	0	0	1409	0	251	180	619	0	0	705	53
Future Volume (vph)	0	0	0	1409	0	251	180	619	0	0	705	53
Satd. Flow (prot)	0	0	0	0	1751	0	0	1834	0	0	1846	0
Flt Permitted					0.959			0.138				
Satd. Flow (perm)	0	0	0	0	1751	0	0	256	0	0	1846	0
Satd. Flow (RTOR)					24						3	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	4%	2%	2%	2%	2%	2%
Adj. Flow (vph)	0	0	0	1499	0	267	191	659	0	0	750	56
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	1766	0	0	850	0	0	806	0
Turn Type				Perm	NA		Perm	NA			NA	
Protected Phases					4			6			2	
Permitted Phases				4			6					
Total Split (s)				72.0	72.0		78.0	78.0			78.0	
Total Lost Time (s)					6.0			6.3			6.3	
Act Effct Green (s)					66.0			71.7			71.7	
Actuated g/C Ratio					0.44			0.48			0.48	
v/c Ratio					2.26			6.97			0.91	
Control Delay					591.8			2710.5			52.0	
Queue Delay					0.0			0.0			0.0	
Total Delay					591.8			2710.5			52.0	
LOS					F			F			D	
Approach Delay					591.8			2710.5			52.0	
Approach LOS					F			F			D	
Queue Length 50th (ft)					~2800			~1500			716	
Queue Length 95th (ft)					#3065			#1761			#994	
Internal Link Dist (ft)		794			322			516			197	
Turn Bay Length (ft)												
Base Capacity (vph)					783			122			883	
Starvation Cap Reductn					0			0			0	
Spillback Cap Reductn					0			0			0	
Storage Cap Reductn					0			0			0	
Reduced v/c Ratio					2.26			6.97			0.91	

Intersection Summary

Cycle Length: 150

Actuated Cycle Length: 150

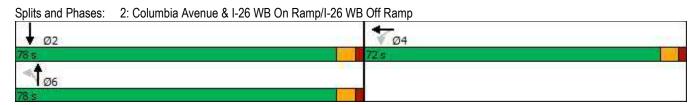
Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 6.97

Intersection Signal Delay: 991.0 Intersection LOS: F
Intersection Capacity Utilization 191.7% ICU Level of Service H

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

2044 No Build PM Peak Hour

HCM 6th Signalized Intersection Summary 2: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

2044 No Build PM Peak Hour

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations		۶		•	1		•	1	1	~	/	Į	1
Traffic Volume (veh/h) 0 0 0 1409 0 251 180 619 0 0 705 53 initial Q (Ob), veh 0 0 0 1409 0 251 180 619 0 0 705 53 initial Q (Ob), veh 0 0 0 1409 0 251 180 619 0 0 705 53 initial Q (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL		NBR	SBL	SBT	SBR
Traffic Volume (vehrh) 0 0 0 1409 0 251 180 619 0 0 705 53 initial Q (Qb), veh 0 0 1409 0 251 180 619 0 0 705 53 initial Q (Qb), veh 0 0 0 1409 0 251 180 619 0 0 705 53 initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lane Configurations					4			स			1	
Initial Q (Qb), veh	Traffic Volume (veh/h)	0		0		0							
Ped-Bike Adji(A_pbT)	Future Volume (veh/h)	0	0	0	1409		251						
Parking Bus, Adj						0			0			0	
Work Zöne On Approach													
Adj Sat Flow, vehrhin 1900 1870 1900 1870 1870 0 0 1870 1870 Adj Flow Rate, vehrh 1499 0 267 191 669 0 0 750 56 Peak Hour Factor 0,94 0,9					1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 1499 0 267 191 659 0 0 750 56 Peak Hour Factor 0.94													
Peak Hour Factor 0.94 0.													
Percent Heavy Veh, %													
Cap, veh/h					0.94								
Arrive On Green													
Sat Flow, veh/h													
Grp Volume(v), veh/h 1766 0 0 850 0 0 0 806 Grp Sat Flow(s), veh/h/ln 1749 0 0 233 0 0 0 1847 Q Serve(g_s), s 66.0 0.0 0.0 11.1 0.0 0.0 0.0 0.0 60.6 Cycle Q Clear(g_c), s 66.0 0.0 0.0 71.7 0.0 0.0 0.0 0.0 60.6 Prop In Lane 0.85 0.15 0.22 0.00 0.00 0.07 Lord Earl (C), wel/h 769 0 0 141 0													
Grp Sat Flow(s), veh/h/ln 1749 0 0 233 0 0 0 1847 Q Serve(g_s), s 66.0 0.0 0.0 11.1 0.0 0.0 0.0 0.0 60.6 Cycle Q Clear(g_c), s 66.0 0.0 0.0 71.7 0.0 0.0 0.0 60.6 Cycle Q Clear(g_c), seh/h 769 0 0.15 0.22 0.00 0.00 0.07 Lane Grp Cap(c), veh/h 769 0 0 141 0 0 0 0.08 V/C Ratio(X) 2.30 0.00 0.00 6.03 0.00	Sat Flow, veh/h				1484		264	47	187		0	1719	
Q Serve(g_s), s 66.0 0.0 0.0 11.1 0.0 0.0 0.0 0.0 60.6	Grp Volume(v), veh/h				1766	0	0	850	0	0	0	0	806
Cycle Q Clear(g_c), s 66.0 0.0 0.0 71.7 0.0 0.0 0.0 0.0 60.6 Prop In Lane 0.85 0.15 0.22 0.00 0.00 0.07 Lane Gry Cap(c), veh/h 769 0 0.0141 0 0 0 883 VIC Ratio(X) 2.30 0.00 0.00 6.03 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 <	Grp Sat Flow(s),veh/h/ln				1749	0	0	233	0	0	0	0	1847
Prop In Lane 0.85 0.15 0.22 0.00 0.00 0.07 Lane Grp Cap(c), veh/h 769 0 0 141 0 0 0 0 883 V/C Ratio(X) 2.30 0.00 0.00 6.03 0.00 1.00	Q Serve(g_s), s				66.0	0.0	0.0	11.1	0.0	0.0	0.0	0.0	60.6
Lane Grp Cap(c), veh/h 769 0 0 141 0 0 0 0 883 V/C Ratio(X) 2.30 0.00 0.00 6.03 0.00 1.00 <	Cycle Q Clear(g_c), s				66.0	0.0	0.0	71.7	0.0	0.0	0.0	0.0	60.6
V/C Ratio(X) 2.30 0.00 0.00 6.03 0.00 1.00	Prop In Lane				0.85		0.15	0.22		0.00	0.00		0.07
Avail Cap(c_a), veh/h 769 0 0 141 0 0 0 0 0 883 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d), s/veh 42.0 0.0 0.0 64.7 0.0 0.0 0.0 0.0 0.0 36.3 Intial Q Delay(d3), s/veh 587.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Sile BackOfQ(50%), veh/ln 152.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh 629.0 0.0 0.0 2343.2 0.0 0.0 0.0 0.0 30.4 Unsig. Movement Delay, s/veh 629.0 0.0 0.0 2343.2 0.0 0.0 0.0 0.0 51.6 LnGrp Delay(d), s/veh 629.0 2343.2 51.6 Approach Vol, veh/h 1766 850 806 Approach Delay, s/veh 629.0 2343.2 51.6 Approach LOS F A 6 Phs Duration (G+Y+Rc), s 78.0 72.0 78.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 71.7 66.0 71.7 Max Q Clear Time (g_c+I1), s 62.6 68.0 73.7 Green Ext Time (p_c), s 5.5 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 918.8	Lane Grp Cap(c), veh/h				769	0	0	141	0	0	0	0	883
HCM Platoon Ratio	V/C Ratio(X)				2.30	0.00	0.00	6.03	0.00	0.00	0.00	0.00	0.91
Upstream Filter(I) 1.00 0.00 0.00 1.00 0.00 <td>Avail Cap(c_a), veh/h</td> <td></td> <td></td> <td></td> <td>769</td> <td>0</td> <td>0</td> <td>141</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>883</td>	Avail Cap(c_a), veh/h				769	0	0	141	0	0	0	0	883
Uniform Delay (d), s/veh 42.0 0.0 0.0 64.7 0.0 0.0 0.0 36.3 Incr Delay (d2), s/veh 587.0 0.0 0.0 2278.4 0.0	HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incr Delay (d2), s/veh	Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	1.00
Initial Q Delay(d3),s/veh	Uniform Delay (d), s/veh				42.0	0.0	0.0	64.7	0.0	0.0	0.0	0.0	36.3
%ile BackOfQ(50%),veh/ln 152.6 0.0 0.0 94.7 0.0 0.0 0.0 0.0 30.4 Unsig. Movement Delay, s/veh 629.0 0.0 0.0 2343.2 0.0 0.0 0.0 0.0 51.6 LnGrp LOS F A A F A D B </td <td>Incr Delay (d2), s/veh</td> <td></td> <td></td> <td></td> <td>587.0</td> <td>0.0</td> <td>0.0</td> <td>2278.4</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>15.3</td>	Incr Delay (d2), s/veh				587.0	0.0	0.0	2278.4	0.0	0.0	0.0	0.0	15.3
Unsig. Movement Delay, s/veh 629.0 0.0 0.0 2343.2 0.0 0.0 0.0 0.0 51.6 LnGrp LOS F A A F A	Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh 629.0 0.0 0.0 2343.2 0.0 0.0 0.0 0.0 51.6 LnGrp LOS F A A F A A A A A D Approach Vol, veh/h 1766 850 806 A	%ile BackOfQ(50%),veh/ln				152.6	0.0	0.0	94.7	0.0	0.0	0.0	0.0	30.4
LnGrp LOS F A A F A	Unsig. Movement Delay, s/veh												
Approach Vol, veh/h 1766 850 806 Approach Delay, s/veh 629.0 2343.2 51.6 Approach LOS F F F Timer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 78.0 72.0 78.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 71.7 66.0 71.7 Max Q Clear Time (g_c+l1), s 62.6 68.0 73.7 Green Ext Time (p_c), s 5.5 0.0 0.0 Intersection Summary 918.8	LnGrp Delay(d),s/veh				629.0	0.0	0.0	2343.2	0.0	0.0	0.0	0.0	51.6
Approach Delay, s/veh 629.0 2343.2 51.6 Approach LOS F F F D Timer - Assigned Phs 2 4 6 6 Phs Duration (G+Y+Rc), s 78.0 72.0 78.0 78.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 71.7 66.0 71.7 Max Q Clear Time (g_c+I1), s 62.6 68.0 73.7 Green Ext Time (p_c), s 5.5 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 918.8	LnGrp LOS				F	Α	Α	F	Α	Α	Α	Α	D
Approach LOS F F D Timer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 78.0 72.0 78.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 71.7 66.0 71.7 Max Q Clear Time (g_c+I1), s 62.6 68.0 73.7 Green Ext Time (p_c), s 5.5 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 918.8	Approach Vol, veh/h					1766			850			806	
Timer - Assigned Phs 2 4 6 Phs Duration (G+Y+Rc), s 78.0 72.0 78.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 71.7 66.0 71.7 Max Q Clear Time (g_c+l1), s 62.6 68.0 73.7 Green Ext Time (p_c), s 5.5 0.0 0.0 Intersection Summary 918.8	Approach Delay, s/veh					629.0			2343.2			51.6	
Phs Duration (G+Y+Rc), s 78.0 72.0 78.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 71.7 66.0 71.7 Max Q Clear Time (g_c+l1), s 62.6 68.0 73.7 Green Ext Time (p_c), s 5.5 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 918.8	Approach LOS					F			F			D	
Phs Duration (G+Y+Rc), s 78.0 72.0 78.0 Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 71.7 66.0 71.7 Max Q Clear Time (g_c+l1), s 62.6 68.0 73.7 Green Ext Time (p_c), s 5.5 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 918.8	Timer - Assigned Phs		2		4		6						
Change Period (Y+Rc), s 6.3 6.0 6.3 Max Green Setting (Gmax), s 71.7 66.0 71.7 Max Q Clear Time (g_c+l1), s 62.6 68.0 73.7 Green Ext Time (p_c), s 5.5 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 918.8			78.0		72.0		78.0						
Max Green Setting (Gmax), s 71.7 66.0 71.7 Max Q Clear Time (g_c+l1), s 62.6 68.0 73.7 Green Ext Time (p_c), s 5.5 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 918.8													
Max Q Clear Time (g_c+l1), s 62.6 68.0 73.7 Green Ext Time (p_c), s 5.5 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 918.8	. ,.												
Green Ext Time (p_c), s 5.5 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 918.8													
HCM 6th Ctrl Delay 918.8	10												_
HCM 6th Ctrl Delay 918.8	Intersection Summary												
				918.8									
	HCM 6th LOS			510.0 F									

3: Columbia Avenue & Comalander Drive

	•		•	1	2000	•	1	1	1	\	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	321	250	299	0	212	7	254	0	0	1	0	292
Future Volume (vph)	321	250	299	0	212	7	254	0	0	1	0	292
Satd. Flow (prot)	0	1740	0	0	1855	0	0	1770	0	0	1522	0
Flt Permitted		0.769						0.404			0.999	
Satd. Flow (perm)	0	1363	0	0	1855	0	0	753	0	0	1520	0
Satd. Flow (RTOR)		45			3						324	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%	8%
Adj. Flow (vph)	357	278	332	0	236	8	282	0	0	1	0	324
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	967	0	0	244	0	0	282	0	0	325	0
Turn Type	Perm	NA			NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	64.0	64.0		64.0	64.0		36.0	36.0		36.0	36.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
Act Effct Green (s)		58.0			58.0			30.0			30.0	
Actuated g/C Ratio		0.58			0.58			0.30			0.30	
v/c Ratio		1.20			0.23			1.25			0.48	
Control Delay		122.2			10.7			177.7			5.7	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		122.2			10.7			177.7			5.7	
LOS		F			В			F			Α	
Approach Delay		122.2			10.7			177.7			5.7	
Approach LOS		F			В			F			Α	
Queue Length 50th (ft)		~741			69			~226			0	
Queue Length 95th (ft)		#986			110			#387			63	
Internal Link Dist (ft)		174			688			417			356	
Turn Bay Length (ft)												
Base Capacity (vph)		809			1077			225			682	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		1.20			0.23			1.25			0.48	

Intersection Summary

Cycle Length: 100 Actuated Cycle Length: 100

Control Type: Actuated-Uncoordinated

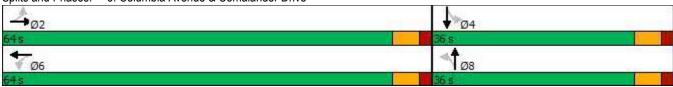
Maximum v/c Ratio: 1.25

Intersection Signal Delay: 95.0 Intersection Capacity Utilization 113.0%

Intersection LOS: F ICU Level of Service H

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 3: Columbia Avenue & Comalander Drive

2044 No Build PM Peak Hour

Splits and Phases: 3: Columbia Avenue & Comalander Drive

	1		7	1	0200545 0200773	•	1	1	1	1	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	321	250	299	0	212	7	254	0	0	1	0	292
Future Volume (veh/h)	321	250	299	0	212	7	254	0	0	1	0	292
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	357	278	332	0	236	8	282	0	0	1	0	324
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	3	3	3	2	2	2	2	2	2	2	2	2
Cap, veh/h	321	212	253	0	1043	35	266	0	0	36	1	487
Arrive On Green	0.58	0.58	0.58	0.00	0.58	0.58	0.30	0.00	0.00	0.30	0.00	0.30
Sat Flow, veh/h	469	365	436	0	1798	61	647	0	0	1	4	1624
Grp Volume(v), veh/h	967	0	0	0	0	244	282	0	0	325	0	0
Grp Sat Flow(s),veh/h/ln	1271	0	0	0	0	1859	647	0	0	1629	0	0
Q Serve(g_s), s	51.7	0.0	0.0	0.0	0.0	6.3	12.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	58.0	0.0	0.0	0.0	0.0	6.3	30.0	0.0	0.0	18.0	0.0	0.0
Prop In Lane	0.37		0.34	0.00		0.03	1.00		0.00	0.00		1.00
Lane Grp Cap(c), veh/h	786	0	0	0	0	1078	266	0	0	525	0	0
V/C Ratio(X)	1.23	0.00	0.00	0.00	0.00	0.23	1.06	0.00	0.00	0.62	0.00	0.00
Avail Cap(c_a), veh/h	786	0	0	0	0	1078	266	0	0	525	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	25.8	0.0	0.0	0.0	0.0	10.2	41.8	0.0	0.0	30.8	0.0	0.0
Incr Delay (d2), s/veh	114.5	0.0	0.0	0.0	0.0	0.1	72.0	0.0	0.0	2.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	43.1	0.0	0.0	0.0	0.0	2.4	11.9	0.0	0.0	6.7	0.0	0.0
Unsig. Movement Delay, s/veh	1											
LnGrp Delay(d),s/veh	140.3	0.0	0.0	0.0	0.0	10.3	113.8	0.0	0.0	33.0	0.0	0.0
LnGrp LOS	F	Α	Α	Α	Α	В	F	Α	Α	С	Α	Α
Approach Vol, veh/h		967			244			282			325	
Approach Delay, s/veh		140.3			10.3			113.8			33.0	
Approach LOS		F			В			F			С	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		64.0		36.0		64.0		36.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		58.0		30.0		58.0		30.0				
Max Q Clear Time (g_c+l1), s		60.0		20.0		8.3		32.0				
Green Ext Time (p_c), s		0.0		0.8		2.9		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			99.5									
HCM 6th LOS			F									

2044 No Build PM Peak Hour

Lanes, Volumes, Timings 4: Crooked Creek Road & I-26 EB On Ramp

		*	1		1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.				1	
Traffic Volume (vph)	1409	48	0	0	8	16
Future Volume (vph)	1409	48	0	0	8	16
Satd. Flow (prot)	1855	0	0	0	1637	0
Flt Permitted					0.983	
Satd. Flow (perm)	1855	0	0	0	1637	0
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	3%	2%	2%	8%	2%
Adj. Flow (vph)	1515	52	0	0	9	17
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1567	0	0	0	26	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utiliza	tion 87.1%			IC	U Level c	f Service I
Analysis Period (min) 15						

HCM 6th TWSC 4: Crooked Creek Road & I-26 EB On Ramp

Intersection						
Int Delay, s/veh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1				N.	
Traffic Vol, veh/h	1409	48	0	0	8	16
Future Vol, veh/h	1409	48	0	0	8	16
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # 0	-	-	16983	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	3	2	2	8	2
Mvmt Flow	1515	52	0	0	9	17
				_		
	Major1			N	/linor1	
Conflicting Flow All	0	0			1541	1541
Stage 1	-	-			1541	-
Stage 2	-	-			0	-
Critical Hdwy	-	-			6.48	6.22
Critical Hdwy Stg 1	-	-			5.48	-
Critical Hdwy Stg 2	-	-			-	-
Follow-up Hdwy	-	-			3.572	3.318
Pot Cap-1 Maneuver	-	-			123	142
Stage 1	_	-			188	-
Stage 2	-	_			-	_
Platoon blocked, %	_	_				
Mov Cap-1 Maneuver	_	_			123	142
Mov Cap-2 Maneuver	_	_			123	- 1 12
Stage 1	_				188	_
Stage 2	_				100	
Stage 2	-	-			-	-
Approach	EB				NB	
HCM Control Delay, s	0				37.9	
HCM LOS					Е	
	, ,	UDL 4	EDT	EDD		
Minor Lane/Major Mvm	it l	NBLn1	EBT	EBR		
Capacity (veh/h)		135	-	-		
HCM Lane V/C Ratio		0.191	-	-		
HCM Control Delay (s)		37.9	-	-		
HCM Lane LOS		Е	-	-		
HCM 95th %tile Q(veh)		0.7	-	-		

3: Columbia Avenue & Ellett Road/New Frontage Road

	•		*	1		•	1	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			र्स	7	1	1		-	**	7
Traffic Volume (vph)	40	0	25	121	0	313	126	1525	173	157	1345	181
Future Volume (vph)	40	0	25	121	0	313	126	1525	173	157	1345	181
Satd. Flow (prot)	1770	1583	0	0	1770	1583	1770	3339	0	1719	3539	1583
Flt Permitted	0.629				0.739		0.104			0.067		
Satd. Flow (perm)	1172	1583	0	0	1377	1583	194	3339	0	121	3539	1583
Satd. Flow (RTOR)		179				33		19				143
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	7%	2%	5%	2%	2%
Adj. Flow (vph)	44	0	28	134	0	348	140	1694	192	174	1494	201
Shared Lane Traffic (%)												
Lane Group Flow (vph)	44	28	0	0	134	348	140	1886	0	174	1494	201
Turn Type	Perm	NA		Perm	NA	pm+ov	pm+pt	NA		pm+pt	NA	Perm
Protected Phases		4			8	1	5	2		1	6	
Permitted Phases	4			8		8	2			6		6
Total Split (s)	24.0	24.0		24.0	24.0	16.0	15.0	60.0		16.0	61.0	61.0
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	6.0
Act Effct Green (s)	14.3	14.3			14.3	30.0	65.9	58.0		69.6	59.8	59.8
Actuated g/C Ratio	0.14	0.14			0.14	0.30	0.66	0.58		0.70	0.60	0.60
v/c Ratio	0.27	0.07			0.68	0.70	0.55	0.97		0.72	0.71	0.20
Control Delay	40.8	0.4			57.9	35.4	18.0	36.5		43.8	12.7	1.4
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	40.8	0.4			57.9	35.4	18.0	36.5		43.8	12.7	1.4
LOS	D	Α			Е	D	В	D		D	В	Α
Approach Delay		25.0			41.6			35.2			14.3	
Approach LOS		С			D			D			В	
Queue Length 50th (ft)	25	0			82	171	22	~620		50	344	11
Queue Length 95th (ft)	56	0			141	264	73	#827		m#155	464	9
Internal Link Dist (ft)		199			1080			1870			829	
Turn Bay Length (ft)	220					250	150			300		150
Base Capacity (vph)	210	431			247	508	273	1943		251	2115	1004
Starvation Cap Reductn	0	0			0	0	0	0		0	0	0
Spillback Cap Reductn	0	0			0	0	0	0		0	0	0
Storage Cap Reductn	0	0			0	0	0	0		0	0	0
Reduced v/c Ratio	0.21	0.06			0.54	0.69	0.51	0.97		0.69	0.71	0.20

Intersection Summary

Cycle Length: 100
Actuated Cycle Length: 100

Offset: 10 (10%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.97

Intersection Signal Delay: 27.0
Intersection Capacity Utilization 86.2%

Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

3: Columbia Avenue & Ellett Road/New Frontage Road

2044 Build Conditions AM Peak Hour

m Volume for 95th percentile queue is metered by upstream signal.

HCM 6th Signalized Intersection Summary 3: Columbia Avenue & Ellett Road/New Frontage Road

2044 Build Conditions AM Peak Hour

	•		7	1	2007	•	1	†	1	/	Į	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			र्स	7	1	†		7	^	7
Traffic Volume (veh/h)	40	0	25	121	0	313	126	1525	173	157	1345	181
Future Volume (veh/h)	40	0	25	121	0	313	126	1525	173	157	1345	181
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1796	1796	1826	1870	1870
Adj Flow Rate, veh/h	44	0	28	134	0	0	140	1694	192	174	1494	201
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	7	7	5	2	2
Cap, veh/h	302	0	212	236	0	_	268	1949	217	209	2264	1010
Arrive On Green	0.13	0.00	0.13	0.13	0.00	0.00	0.05	0.63	0.63	0.06	0.64	0.64
Sat Flow, veh/h	1418	0.00	1585	1221	0.00	1585	1781	3096	345	1739	3554	1585
Grp Volume(v), veh/h	44	0	28	134	0	0	140	921	965	174	1494	201
	1418	0	1585	1221	0	1585	1781	1706	1734	1739	1777	1585
Grp Sat Flow(s),veh/h/ln		0.0	1.6		0.0			43.4		3.5	26.3	
Q Serve(g_s), s	0.0			9.5		0.0	2.7		46.5			5.3
Cycle Q Clear(g_c), s	2.2	0.0	1.6	11.0	0.0	0.0	2.7	43.4	46.5	3.5	26.3	5.3
Prop In Lane	1.00	0	1.00	1.00	0	1.00	1.00	4075	0.20	1.00	0004	1.00
Lane Grp Cap(c), veh/h	302	0	212	236	0		268	1075	1092	209	2264	1010
V/C Ratio(X)	0.15	0.00	0.13	0.57	0.00		0.52	0.86	0.88	0.83	0.66	0.20
Avail Cap(c_a), veh/h	367	0	285	299	0	4.00	341	1075	1092	285	2264	1010
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	0.73	0.73	0.73
Uniform Delay (d), s/veh	38.5	0.0	38.2	43.0	0.0	0.0	11.9	14.9	15.5	23.5	11.4	7.5
Incr Delay (d2), s/veh	0.2	0.0	0.3	2.2	0.0	0.0	1.6	8.8	10.5	10.8	1.1	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.0	0.0	0.6	3.3	0.0	0.0	1.2	17.0	18.8	3.1	9.3	1.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	38.7	0.0	38.5	45.2	0.0	0.0	13.5	23.7	25.9	34.2	12.5	7.9
LnGrp LOS	D	Α	D	D	Α		В	С	С	С	В	<u>A</u>
Approach Vol, veh/h		72			134	Α		2026			1869	
Approach Delay, s/veh		38.6			45.2			24.1			14.0	
Approach LOS		D			D			С			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	11.6	69.0		19.4	10.9	69.7		19.4				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	10.0	54.0		18.0	9.0	55.0		18.0				
Max Q Clear Time (g_c+l1), s	5.5	48.5		4.2	4.7	28.3		13.0				
Green Ext Time (p_c), s	0.2	5.3		0.2	0.1	20.3		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			20.4									
HCM 6th LOS			С									

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

6: Columbia Avenue & I-26 EB Off Ramp/I-26 EB On Ramp

	•		7	1	527535 525573	•	1	1	1	/	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		લી	7					↑	7	1	**	
Traffic Volume (vph)	37	5	146	0	0	0	0	715	1164	152	1537	0
Future Volume (vph)	37	5	146	0	0	0	0	715	1164	152	1537	0
Satd. Flow (prot)	0	1785	1583	0	0	0	0	1776	1583	1770	3438	0
Flt Permitted		0.958								0.200		
Satd. Flow (perm)	0	1785	1583	0	0	0	0	1776	1583	373	3438	0
Satd. Flow (RTOR)			98						645			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	7%	2%	2%	5%	2%
Adj. Flow (vph)	41	6	162	0	0	0	0	794	1293	169	1708	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	47	162	0	0	0	0	794	1293	169	1708	0
Turn Type	Perm	NA	Perm					NA	Free	pm+pt	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4						Free	6		
Total Split (s)	37.0	37.0	37.0					48.0		15.0	63.0	
Total Lost Time (s)		6.0	6.0					6.0		6.0	6.0	
Act Effct Green (s)		10.2	10.2					61.4	100.0	77.8	77.8	
Actuated g/C Ratio		0.10	0.10					0.61	1.00	0.78	0.78	
v/c Ratio		0.26	0.65					0.73	0.82	0.39	0.64	
Control Delay		43.0	30.3					19.6	9.2	5.9	6.8	
Queue Delay		0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay		43.0	30.3					19.6	9.2	5.9	6.8	
LOS		D	С					В	Α	Α	Α	
Approach Delay		33.2						13.1			6.8	
Approach LOS		С						В			Α	
Queue Length 50th (ft)		28	39					317	456	20	195	
Queue Length 95th (ft)		60	99					m354	m583	47	349	
Internal Link Dist (ft)		846			705			829			562	
Turn Bay Length (ft)										225		
Base Capacity (vph)		553	558					1089	1583	445	2675	
Starvation Cap Reductn		0	0					0	0	0	0	
Spillback Cap Reductn		0	0					0	0	0	0	
Storage Cap Reductn		0	0					0	0	0	0	
Reduced v/c Ratio		0.08	0.29					0.73	0.82	0.38	0.64	

Intersection Summary

Cycle Length: 100
Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Yellow, Master Intersection

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 11.3 Intersection LOS: B
Intersection Capacity Utilization 65.2% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Columbia Avenue & I-26 EB Off Ramp/I-26 EB On Ramp

	۶		•	1		•	1	1	1	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	7					↑	7	7	*	
Traffic Volume (veh/h)	37	5	146	0	0	0	0	715	1164	152	1537	0
Future Volume (veh/h)	37	5	146	0	0	0	0	715	1164	152	1537	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1796	1870	1870	1826	0
Adj Flow Rate, veh/h	41	6	162				0	794	0	169	1708	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2				0	7	2	2	5	0
Cap, veh/h	199	29	202				0	1152		408	2612	0
Arrive On Green	0.13	0.13	0.13				0.00	0.64	0.00	0.05	0.75	0.00
Sat Flow, veh/h	1563	229	1585				0	1796	1585	1781	3561	0
Grp Volume(v), veh/h	47	0	162				0	794	0	169	1708	0
Grp Sat Flow(s),veh/h/ln	1792	0	1585				0	1796	1585	1781	1735	0
Q Serve(g_s), s	2.4	0.0	9.9				0.0	28.4	0.0	3.0	24.0	0.0
Cycle Q Clear(g_c), s	2.4	0.0	9.9				0.0	28.4	0.0	3.0	24.0	0.0
Prop In Lane	0.87		1.00				0.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h	228	0	202				0	1152		408	2612	0
V/C Ratio(X)	0.21	0.00	0.80				0.00	0.69		0.41	0.65	0.00
Avail Cap(c_a), veh/h	556	0	491				0	1152		477	2612	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00				0.00	0.28	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	39.1	0.0	42.4				0.0	11.5	0.0	10.7	6.0	0.0
Incr Delay (d2), s/veh	0.4	0.0	7.3				0.0	1.0	0.0	0.7	1.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.0	0.0	4.1				0.0	10.1	0.0	1.3	6.8	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	39.6	0.0	49.7				0.0	12.5	0.0	11.4	7.3	0.0
LnGrp LOS	D	Α	D				Α	В		В	A	Α
Approach Vol, veh/h	_	209						794	А	_	1877	
Approach Delay, s/veh		47.4						12.5	•		7.7	
Approach LOS		D						. д. В			A	
••	1	2		1		6					,,	
Timer - Assigned Phs Phs Duration (G+Y+Rc), s	11.1	70.2		18.7		81.3						
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0						
Max Green Setting (Gmax), s	9.0	42.0		31.0		57.0						
Max Q Clear Time (g_c+l1), s	5.0	30.4		11.9		26.0						
Green Ext Time (p_c), s	0.2	6.6		0.8		24.8						
Intersection Summary												
HCM 6th Ctrl Delay			11.9									
HCM 6th LOS			В									
Notos												

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

Analysis Period (min) 15

9: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

2044 Build Conditions

AM Peak Hour

	٠	-	1	1		•	4	1	~	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4		1	†			†	7
Traffic Volume (vph)	0	0	0	0	1	167	146	606	0	0	719	110
Future Volume (vph)	0	0	0	0	1	167	146	606	0	0	719	110
Satd. Flow (prot)	0	0	0	0	1444	0	1770	1863	0	0	1776	1524
Flt Permitted							0.950					
Satd. Flow (perm)	0	0	0	0	1444	0	1770	1863	0	0	1776	1524
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	2%	2%	14%	2%	2%	2%	2%	7%	6%
Adj. Flow (vph)	0	0	0	0	1	186	162	673	0	0	799	122
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	187	0	162	673	0	0	799	122
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Control Type: Unsignalized												
Intersection Capacity Utiliza	tion 104.6%	0		IC	U Level o	of Service	G					

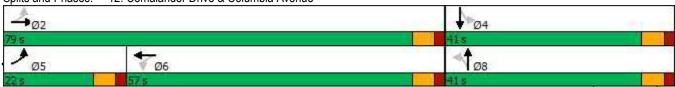
9: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

Novement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR SBT SBR SBT SBR SBT SBT
Lane Configurations Traffic Vol, veh/h 0 0 0 0 1 167 146 606 0 0 719 110 Future Vol, veh/h 0 0 0 0 1 167 146 606 0 0 719 110 Conflicting Peds, #/hr 0
Traffic Vol, veh/h 0 0 0 0 1 167 146 606 0 0 719 110 Future Vol, veh/h 0 0 0 0 1 167 146 606 0 0 719 110 Conflicting Peds, #/hr 0
Traffic Vol, veh/h 0 0 0 0 1 167 146 606 0 0 719 110 Future Vol, veh/h 0 0 0 0 1 167 146 606 0 0 719 110 Conflicting Peds, #/hr 0
Conflicting Peds, #/hr 0
Sign Control Stop Stop Stop Stop Stop Stop Free Free Free Free Free Free Free Fre
RT Channelized - - None - - None - - None Storage Length - - - - - 200 - - - - 150 Veh in Median Storage, # - 0 - - 0 - - 0 - - 0 -
Storage Length 200 150 Veh in Median Storage, # - 0 0 0 0
Veh in Median Storage, # - 0 0 0 -
Grade, % - 0 0 0 -
Peak Hour Factor 90 90 90 90 90 90 90 90 90 90 90 90
Heavy Vehicles, % 2 2 2 2 14 2 2 2 7 6
Mvmt Flow 0 0 0 0 1 186 162 673 0 0 799 122
Major/Minor Minor1 Major1 Major2
Conflicting Flow All 1857 1918 673 921 0 0
Stage 1 997 997
Stage 2 860 921
Critical Hdwy 6.42 6.52 6.34 4.12
Critical Hdwy Stg 1 5.42 5.52
Critical Hdwy Stg 2 5.42 5.52
Follow-up Hdwy 3.518 4.018 3.426 2.218
Pot Cap-1 Maneuver 81 67 435 741 - 0 0
Stage 1 357 322 0 0
Stage 2 414 349 0 0
Platoon blocked, %
Mov Cap-1 Maneuver 63 0 435 741
Mov Cap-2 Maneuver 63 0
Stage 1 279 0
Stage 2 414 0
Approach WB NB SB
HCM Control Delay, s 19.4 2.2 0
HCM LOS C
Minor Lane/Major Mvmt NBL NBTWBLn1 SBT SBR
Capacity (veh/h) 741 - 435
HCM Lane V/C Ratio 0.219 - 0.429
HCM Control Delay (s) 11.2 - 19.4
HCM Lane LOS B - C
HCM 95th %tile Q(veh) 0.8 - 2.1

	•	A Property	•	1	2000	•	1	1	-	•	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			4			4			4	
Traffic Volume (vph)	228	355	190	0	469	4	163	0	0	3	0	197
Future Volume (vph)	228	355	190	0	469	4	163	0	0	3	0	197
Satd. Flow (prot)	1626	1711	0	0	1758	0	0	1770	0	0	1548	0
FIt Permitted	0.200							0.508			0.996	
Satd. Flow (perm)	342	1711	0	0	1758	0	0	946	0	0	1544	0
Satd. Flow (RTOR)		41									219	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	11%	7%	2%	2%	8%	2%	2%	2%	2%	100%	2%	5%
Adj. Flow (vph)	253	394	211	0	521	4	181	0	0	3	0	219
Shared Lane Traffic (%)												
Lane Group Flow (vph)	253	605	0	0	525	0	0	181	0	0	222	0
Turn Type	pm+pt	NA			NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	22.0	79.0		57.0	57.0		41.0	41.0		41.0	41.0	
Total Lost Time (s)	6.0	6.0			6.0			6.0			6.0	
Act Effct Green (s)	54.7	54.7			33.3			22.4			22.4	
Actuated g/C Ratio	0.61	0.61			0.37			0.25			0.25	
v/c Ratio	0.60	0.57			0.81			0.77			0.41	
Control Delay	16.2	13.1			36.7			56.0			7.0	
Queue Delay	0.0	0.0			0.0			0.0			0.0	
Total Delay	16.2	13.1			36.7			56.0			7.0	
LOS	В	В			D			Е			Α	
Approach Delay		14.0			36.7			56.0			7.0	
Approach LOS		В			D			Е			Α	
Queue Length 50th (ft)	60	171			264			95			1	
Queue Length 95th (ft)	137	351			460			210			59	
Internal Link Dist (ft)		1379			1069			620			485	
Turn Bay Length (ft)	250											
Base Capacity (vph)	452	1402			1067			393			770	
Starvation Cap Reductn	0	0			0			0			0	
Spillback Cap Reductn	0	0			0			0			0	
Storage Cap Reductn	0	0			0			0			0	
Reduced v/c Ratio	0.56	0.43			0.49			0.46			0.29	

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 89.9


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.81

Intersection Signal Delay: 24.1 Intersection LOS: C
Intersection Capacity Utilization 96.6% ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 12: Comalander Drive & Columbia Avenue

	١		•	1	1200 S. 200 F.S.	•	1	1	~	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			4			4			4	
Traffic Volume (veh/h)	228	355	190	0	469	4	163	0	0	3	0	197
Future Volume (veh/h)	228	355	190	0	469	4	163	0	0	3	0	197
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1737	1796	1796	1781	1781	1781	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	253	394	211	0	521	4	181	0	0	3	0	219
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	11	7	7	8	8	8	2	2	2	2	2	2
Cap, veh/h	410	655	351	0	683	5	326	0	0	55	4	362
Arrive On Green	0.12	0.60	0.60	0.00	0.39	0.39	0.23	0.00	0.00	0.23	0.00	0.23
Sat Flow, veh/h	1654	1101	589	0	1765	14	962	0	0	6	16	1591
Grp Volume(v), veh/h	253	0	605	0	0	525	181	0	0	222	0	0
Grp Sat Flow(s),veh/h/ln	1654	0	1690	0	0	1779	962	0	0	1613	0	0
Q Serve(g_s), s	5.7	0.0	15.3	0.0	0.0	17.4	4.3	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	5.7	0.0	15.3	0.0	0.0	17.4	12.8	0.0	0.0	8.5	0.0	0.0
Prop In Lane	1.00		0.35	0.00		0.01	1.00		0.00	0.01		0.99
Lane Grp Cap(c), veh/h	410	0	1006	0	0	688	326	0	0	421	0	0
V/C Ratio(X)	0.62	0.00	0.60	0.00	0.00	0.76	0.56	0.00	0.00	0.53	0.00	0.00
Avail Cap(c_a), veh/h	603	0	1821	0	0	1339	661	0	0	878	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	12.6	0.0	8.7	0.0	0.0	18.1	25.7	0.0	0.0	23.5	0.0	0.0
Incr Delay (d2), s/veh	1.5	0.0	0.6	0.0	0.0	1.8	1.5	0.0	0.0	1.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.8	0.0	4.4	0.0	0.0	6.6	2.8	0.0	0.0	2.9	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	14.1	0.0	9.2	0.0	0.0	19.9	27.2	0.0	0.0	24.5	0.0	0.0
LnGrp LOS	В	Α	Α	Α	Α	В	С	Α	Α	С	Α	Α
Approach Vol, veh/h		858			525			181			222	
Approach Delay, s/veh		10.7			19.9			27.2			24.5	
Approach LOS		В			В			С			С	
Timer - Assigned Phs		2		4	5	6		8				
Phs Duration (G+Y+Rc), s		46.3		21.4	14.1	32.2		21.4				
Change Period (Y+Rc), s		6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s		73.0		35.0	16.0	51.0		35.0				
Max Q Clear Time (g_c+I1), s		17.3		10.5	7.7	19.4		14.8				
Green Ext Time (p_c), s		9.7		0.7	0.5	6.8		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			16.8									
HCM 6th LOS			В									

Lanes, Volumes, Timings 29: Columbia Avenue & I-26 WB Off Loop

2044 Build Conditions AM Peak Hour

	4	لر	•	×	×	t
Lane Group	SBL	SBR	NEL	NET	SWT	SWR
Lane Configurations	ODL	7	INEE	^	^	OWN
Traffic Volume (vph)	0	970	0	752	719	0
Future Volume (vph)	0	970	0	752	719	0
Satd. Flow (prot)	0	1565	0	1863	1863	0
Flt Permitted						
Satd. Flow (perm)	0	1565	0	1863	1863	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	5%	2%	2%	2%	2%
Adj. Flow (vph)	0	1078	0	836	799	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	1078	0	836	799	0
Sign Control	Free			Free	Free	
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 104.6%			IC	U Level o	of Service C
Analysis Period (min) 15						

3: Columbia Avenue & Ellett Road/New Frontage Road

	•		•	1	5000 A	•	1	1	-	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			र्स	7	7	* 1>		1	**	7
Traffic Volume (vph)	171	0	111	109	0	184	29	1499	157	145	1777	63
Future Volume (vph)	171	0	111	109	0	184	29	1499	157	145	1777	63
Satd. Flow (prot)	1770	1583	0	0	1770	1583	1770	3486	0	1770	3539	1583
Flt Permitted	0.677				0.671		0.069			0.064		
Satd. Flow (perm)	1261	1583	0	0	1250	1583	129	3486	0	119	3539	1583
Satd. Flow (RTOR)		157				33		18				98
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%
Adj. Flow (vph)	190	0	123	121	0	204	32	1666	174	161	1974	70
Shared Lane Traffic (%)												
Lane Group Flow (vph)	190	123	0	0	121	204	32	1840	0	161	1974	70
Turn Type	Perm	NA		Perm	NA	pm+ov	pm+pt	NA		pm+pt	NA	Perm
Protected Phases		4			8	1	5	2		1	6	
Permitted Phases	4			8		8	2			6		6
Total Split (s)	22.0	22.0		22.0	22.0	15.0	15.0	63.0		15.0	63.0	63.0
Total Lost Time (s)	6.0	6.0			6.0	6.0	6.0	6.0		6.0	6.0	6.0
Act Effct Green (s)	16.0	16.0			16.0	30.4	63.6	57.6		70.0	64.6	64.6
Actuated g/C Ratio	0.16	0.16			0.16	0.30	0.64	0.58		0.70	0.65	0.65
v/c Ratio	0.95	0.32			0.60	0.40	0.18	0.91		0.73	0.86	0.07
Control Delay	94.2	5.3			53.1	25.6	6.9	27.6		41.1	14.4	0.7
Queue Delay	0.0	0.0			0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	94.2	5.3			53.1	25.6	6.9	27.6		41.1	14.4	0.7
LOS	F	Α			D	С	Α	С		D	В	Α
Approach Delay		59.3			35.8			27.2			15.9	
Approach LOS		Е			D			С			В	
Queue Length 50th (ft)	121	0			73	84	5	521		60	569	0
Queue Length 95th (ft)	#256	29			#143	150	13	#727		m105	#777	m1
Internal Link Dist (ft)		199			1080			1865			829	
Turn Bay Length (ft)	220					250	150			300		150
Base Capacity (vph)	201	385			200	513	233	2014		231	2286	1057
Starvation Cap Reductn	0	0			0	0	0	0		0	0	0
Spillback Cap Reductn	0	0			0	0	0	0		0	0	0
Storage Cap Reductn	0	0			0	0	0	0		0	0	0
Reduced v/c Ratio	0.95	0.32			0.60	0.40	0.14	0.91		0.70	0.86	0.07

Intersection Summary

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

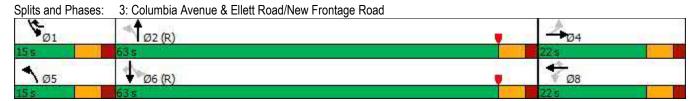
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.95

Intersection Signal Delay: 24.7
Intersection Capacity Utilization 85.6%

Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15


95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

3: Columbia Avenue & Ellett Road/New Frontage Road

2044 Build PM Peak Hour

	٨		•	~	20075	•	1	1	1	/	Į	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1			न	7	1	†		7	*	7
Traffic Volume (veh/h)	171	0	111	109	0	184	29	1499	157	145	1777	63
Future Volume (veh/h)	171	0	111	109	0	184	29	1499	157	145	1777	63
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	190	0	123	121	0	0	32	1666	174	161	1974	70
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	357	0	254	185	0		159	1969	203	214	2241	999
Arrive On Green	0.16	0.00	0.16	0.16	0.00	0.00	0.03	0.61	0.61	0.05	0.63	0.63
Sat Flow, veh/h	1418	0	1585	708	0	1585	1781	3252	335	1781	3554	1585
Grp Volume(v), veh/h	190	0	123	121	0	0	32	900	940	161	1974	70
Grp Sat Flow(s),veh/h/ln	1418	0	1585	708	0	1585	1781	1777	1810	1781	1777	1585
Q Serve(g_s), s	0.0	0.0	7.1	8.9	0.0	0.0	0.7	40.5	42.7	3.4	46.2	1.7
Cycle Q Clear(g_c), s	10.0	0.0	7.1	16.0	0.0	0.0	0.7	40.5	42.7	3.4	46.2	1.7
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.19	1.00		1.00
Lane Grp Cap(c), veh/h	357	0	254	185	0		159	1076	1096	214	2241	999
V/C Ratio(X)	0.53	0.00	0.49	0.65	0.00		0.20	0.84	0.86	0.75	0.88	0.07
Avail Cap(c_a), veh/h	357	0	254	185	0		267	1076	1096	277	2241	999
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	0.59	0.59	0.59
Uniform Delay (d), s/veh	39.5	0.0	38.2	45.8	0.0	0.0	18.1	15.8	16.2	22.2	15.4	7.1
Incr Delay (d2), s/veh	1.5	0.0	1.4	7.9	0.0	0.0	0.6	7.7	8.7	4.9	3.3	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.5	0.0	2.8	3.4	0.0	0.0	0.4	16.6	18.0	2.5	16.9	0.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	41.0	0.0	39.7	53.8	0.0	0.0	18.7	23.5	24.9	27.1	18.7	7.2
LnGrp LOS	D	A	D	D	А		В	С	С	С	В	Α
Approach Vol, veh/h		313	_	_	121	А	_	1872			2205	
Approach Delay, s/veh		40.5			53.8	/ \		24.1			18.9	
Approach LOS		D			D			C			В	
	1			4		C						
Timer - Assigned Phs Phs Duration (G+Y+Rc), s	11.5	66.5		22.0	5 8.9	69.1		22.0				
Change Period (Y+Rc), s	6.0	6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s	9.0	57.0		16.0	9.0	57.0		16.0				
Max Q Clear Time (g_c+l1), s	5.4	44.7		12.0	2.7	48.2		18.0				
Green Ext Time (p_c), s	0.1	11.4		0.6	0.0	8.4		0.0				
`` ′	0.1	11.7		0.0	0.0	0.4		0.0				
Intersection Summary			00.7									
HCM 6th Ctrl Delay			23.5									
HCM 6th LOS			С									
Notos												

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

2044 Build PM Peak Hour

6: Columbia Avenue & I-26 EB Off Ramp/I-26 EB On Ramp

	1		•	1	2000	•	1	1	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7					↑	7	7	**	
Traffic Volume (vph)	60	7	162	0	0	0	0	731	1123	245	1823	0
Future Volume (vph)	60	7	162	0	0	0	0	731	1123	245	1823	0
Satd. Flow (prot)	0	1706	1553	0	0	0	0	1863	1568	1770	3539	0
Flt Permitted		0.957								0.145		
Satd. Flow (perm)	0	1706	1553	0	0	0	0	1863	1568	270	3539	0
Satd. Flow (RTOR)			98						609			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	5%	20%	4%	2%	2%	2%	2%	2%	3%	2%	2%	2%
Adj. Flow (vph)	67	8	180	0	0	0	0	812	1248	272	2026	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	75	180	0	0	0	0	812	1248	272	2026	0
Turn Type	Perm	NA	Perm					NA	Free	pm+pt	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4						Free	6		
Total Split (s)	27.0	27.0	27.0					55.0		18.0	73.0	
Total Lost Time (s)		6.0	6.0					6.0		6.0	6.0	
Act Effct Green (s)		11.5	11.5					55.4	100.0	76.5	76.5	
Actuated g/C Ratio		0.12	0.12					0.55	1.00	0.76	0.76	
v/c Ratio		0.38	0.68					0.79	0.80	0.63	0.75	
Control Delay		44.7	32.3					19.8	8.6	15.7	9.7	
Queue Delay		0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay		44.7	32.3					19.8	8.6	15.7	9.7	
LOS		D	С					В	Α	В	Α	
Approach Delay		35.9						13.0			10.4	
Approach LOS		D						В			В	
Queue Length 50th (ft)		45	50					220	306	39	294	
Queue Length 95th (ft)		82	112					m431	m535	146	538	
Internal Link Dist (ft)		846			705			829			562	
Turn Bay Length (ft)										225		
Base Capacity (vph)		358	403					1031	1568	437	2706	
Starvation Cap Reductn		0	0					0	0	0	0	
Spillback Cap Reductn		0	0					0	0	0	0	
Storage Cap Reductn		0	0					0	0	0	0	
Reduced v/c Ratio		0.21	0.45					0.79	0.80	0.62	0.75	

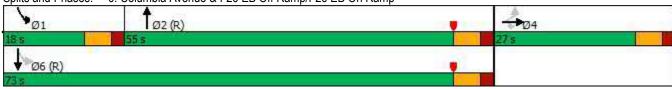
Intersection Summary

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Yellow, Master Intersection

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.80

Intersection Signal Delay: 13.0 Intersection LOS: B
Intersection Capacity Utilization 71.2% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Columbia Avenue & I-26 EB Off Ramp/I-26 EB On Ramp

HCM 6th Signalized Intersection Summary 6: Columbia Avenue & I-26 EB Off Ramp/I-26 EB On Ramp

2044 Build PM Peak Hour

	•		>	1	5000 S	•	1	1	1	/	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		न	7					↑	7	7	**	
Traffic Volume (veh/h)	60	7	162	0	0	0	0	731	1123	245	1823	0
Future Volume (veh/h)	60	7	162	0	0	0	0	731	1123	245	1823	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1841	1604	1841				0	1870	1856	1870	1870	0
Adj Flow Rate, veh/h	67	8	180				0	812	0	272	2026	0
Peak Hour Factor	0.90	0.90	0.90				0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	4	20	4				0	2	3	2	2	0
Cap, veh/h	191	23	217				0	1128		411	2633	0
Arrive On Green	0.14	0.14	0.14				0.00	0.60	0.00	0.08	0.74	0.00
Sat Flow, veh/h	1371	164	1560				0	1870	1572	1781	3647	0
Grp Volume(v), veh/h	75	0	180				0	812	0	272	2026	0
Grp Sat Flow(s), veh/h/ln	1535	0	1560				0	1870	1572	1781	1777	0
Q Serve(g_s), s	4.4	0.0	11.2				0.0	30.4	0.0	5.4	34.4	0.0
Cycle Q Clear(g_c), s	4.4	0.0	11.2				0.0	30.4	0.0	5.4	34.4	0.0
Prop In Lane	0.89	0.0	1.00				0.00	00.1	1.00	1.00	01.1	0.00
Lane Grp Cap(c), veh/h	214	0	217				0.00	1128	1.00	411	2633	0.00
V/C Ratio(X)	0.35	0.00	0.83				0.00	0.72		0.66	0.77	0.00
Avail Cap(c_a), veh/h	322	0.00	328				0.00	1128		487	2633	0.00
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00				0.00	0.37	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	39.0	0.0	41.9				0.0	13.9	0.0	14.1	7.8	0.0
Incr Delay (d2), s/veh	1.0	0.0	10.4				0.0	1.5	0.0	2.6	2.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.7	0.0	4.8				0.0	11.8	0.0	3.0	10.5	0.0
Unsig. Movement Delay, s/veh		0.0	7.0				0.0	11.0	0.0	0.0	10.0	0.0
LnGrp Delay(d),s/veh	39.9	0.0	52.3				0.0	15.4	0.0	16.7	10.0	0.0
LnGrp LOS	00.0 D	Α	52.5 D				Α	В	0.0	В	В	Α
Approach Vol, veh/h	U	255	U					812	А	<u> </u>	2298	
		48.7						15.4	А		10.8	
Approach Delay, s/veh		40.7 D						15.4 B			10.0 B	
Approach LOS		U						D			D	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	13.8	66.3		19.9		80.1						
Change Period (Y+Rc), s	6.0	6.0		6.0		6.0						
Max Green Setting (Gmax), s	12.0	49.0		21.0		67.0						
Max Q Clear Time (g_c+I1), s	7.4	32.4		13.2		36.4						
Green Ext Time (p_c), s	0.4	8.6		0.7		27.4						
Intersection Summary												
HCM 6th Ctrl Delay			14.8									
HCM 6th LOS			В									
Notes												

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

2044 Build PM Peak Hour

9: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

	A		•	-		•	1	Ť	-	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4		1	↑			↑	7
Traffic Volume (vph)	0	0	0	0	0	251	172	619	0	0	705	53
Future Volume (vph)	0	0	0	0	0	251	172	619	0	0	705	53
Satd. Flow (prot)	0	0	0	0	1611	0	1736	1863	0	0	1863	1583
Flt Permitted							0.950					
Satd. Flow (perm)	0	0	0	0	1611	0	1736	1863	0	0	1863	1583
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	4%	2%	2%	2%	2%	2%
Adj. Flow (vph)	0	0	0	0	0	279	191	688	0	0	783	59
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	279	0	191	688	0	0	783	59
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Control Type: Unsignalized												
Intersection Capacity Utilizat	ion 128.2%	,)		IC	U Level	of Service	Н					
Analysis Period (min) 15												

9: Columbia Avenue & I-26 WB On Ramp/I-26 WB Off Ramp

Intersection												
Int Delay, s/veh	4.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4		7	↑			↑	7
Traffic Vol, veh/h	0	0	0	0	0	251	172	619	0	0	705	53
Future Vol, veh/h	0	0	0	0	0	251	172	619	0	0	705	53
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	200	-	-	-	-	150
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	4	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	279	191	688	0	0	783	59
Major/Minor			ľ	Minor1			Major1		N	/lajor2		
Conflicting Flow All				1883	1912	688	842	0	-	-	-	0
Stage 1				1070	1070	-	-	-	-	-	-	-
Stage 2				813	842	-	-	-	-	-	-	-
Critical Hdwy				6.42	6.52	6.22	4.14	-	-	-	-	-
Critical Hdwy Stg 1				5.42	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2				5.42	5.52	-	-	-	-	-	-	-
Follow-up Hdwy				3.518	4.018	3.318	2.236	-	-	-	-	-
Pot Cap-1 Maneuver				78	68	446	785	-	0	0	-	-
Stage 1				329	298	-	-	-	0	0	-	-
Stage 2				436	380	-	-	-	0	0	-	-
Platoon blocked, %								-			-	-
Mov Cap-1 Maneuver				59	0	446	785	-	-	-	-	-
Mov Cap-2 Maneuver				59	0	-	-	-	-	-	-	-
Stage 1				249	0	-	-	-	-	-	-	-
Stage 2				436	0	-	-	-	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				25.6			2.4			0		
HCM LOS				D								
Minor Lane/Major Mvmt	t	NBL	NBTV	VBLn1	SBT	SBR						
Capacity (veh/h)		785	-		-	-						
HCM Lane V/C Ratio		0.243	-	0.625	-	-						
HCM Control Delay (s)		11.1	-		-	-						
HCM Lane LOS		В	-	D	-	-						
HCM 95th %tile Q(veh)		1	-		-	-						

	•		>	1	2000 E	•	4	1	-	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1,			4			4			4	
Traffic Volume (vph)	321	250	299	0	212	7	254	0	0	1	0	292
Future Volume (vph)	321	250	299	0	212	7	254	0	0	1	0	292
Satd. Flow (prot)	1770	1702	0	0	1855	0	0	1770	0	0	1522	0
Flt Permitted	0.321							0.483			0.999	
Satd. Flow (perm)	598	1702	0	0	1855	0	0	900	0	0	1520	0
Satd. Flow (RTOR)		80			2						324	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%	8%
Adj. Flow (vph)	357	278	332	0	236	8	282	0	0	1	0	324
Shared Lane Traffic (%)												
Lane Group Flow (vph)	357	610	0	0	244	0	0	282	0	0	325	0
Turn Type	pm+pt	NA			NA		Perm	NA		Perm	NA	
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	26.0	52.0		26.0	26.0		48.0	48.0		48.0	48.0	
Total Lost Time (s)	6.0	6.0			6.0			6.0			6.0	
Act Effct Green (s)	39.4	39.4			15.4			29.9			29.9	
Actuated g/C Ratio	0.48	0.48			0.19			0.37			0.37	
v/c Ratio	0.66	0.71			0.70			0.86			0.43	
Control Delay	22.2	21.5			44.7			50.3			4.1	
Queue Delay	0.0	0.0			0.0			0.0			0.0	
Total Delay	22.2	21.5			44.7			50.3			4.1	
LOS	С	С			D			D			Α	
Approach Delay		21.8			44.7			50.3			4.1	
Approach LOS		С			D			D			Α	
Queue Length 50th (ft)	118	213			123			138			0	
Queue Length 95th (ft)	225	413			227			#285			51	
Internal Link Dist (ft)		1379			1301			620			485	
Turn Bay Length (ft)	250											
Base Capacity (vph)	589	1041			479			487			971	
Starvation Cap Reductn	0	0			0			0			0	
Spillback Cap Reductn	0	0			0			0			0	
Storage Cap Reductn	0	0			0			0			0	
Reduced v/c Ratio	0.61	0.59			0.51			0.58			0.33	

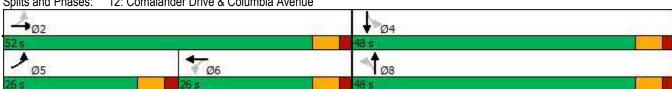
Intersection Summary

Cycle Length: 100

Actuated Cycle Length: 81.9

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.86


Intersection Signal Delay: 26.1 Intersection LOS: C Intersection Capacity Utilization 95.3% ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 12: Comalander Drive & Columbia Avenue

	•		>	1	2000 AV 2000 PG	•	1	1	1	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1			4			4			4	
Traffic Volume (veh/h)	321	250	299	0	212	7	254	0	0	1	0	292
Future Volume (veh/h)	321	250	299	0	212	7	254	0	0	1	0	292
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1856	1856	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	357	278	332	0	236	8	282	0	0	1	0	324
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	3	3	2	2	2	2	2	2	2	2	2
Cap, veh/h	503	350	418	0	315	11	424	0	0	53	2	588
Arrive On Green	0.19	0.45	0.45	0.00	0.17	0.17	0.37	0.00	0.00	0.37	0.00	0.37
Sat Flow, veh/h	1781	770	920	0	1798	61	860	0	0	1	4	1586
Grp Volume(v), veh/h	357	0	610	0	0	244	282	0	0	325	0	0
Grp Sat Flow(s),veh/h/ln	1781	0	1690	0	0	1859	860	0	0	1591	0	0
Q Serve(g_s), s	10.4	0.0	21.1	0.0	0.0	8.5	11.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	10.4	0.0	21.1	0.0	0.0	8.5	22.1	0.0	0.0	11.1	0.0	0.0
Prop In Lane	1.00		0.54	0.00		0.03	1.00		0.00	0.00		1.00
Lane Grp Cap(c), veh/h	503	0	767	0	0	325	424	0	0	642	0	0
V/C Ratio(X)	0.71	0.00	0.79	0.00	0.00	0.75	0.67	0.00	0.00	0.51	0.00	0.00
Avail Cap(c_a), veh/h	683	0	1136	0	0	544	681	0	0	1028	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	16.8	0.0	15.9	0.0	0.0	26.8	21.9	0.0	0.0	17.0	0.0	0.0
Incr Delay (d2), s/veh	2.2	0.0	2.4	0.0	0.0	3.5	1.8	0.0	0.0	0.6	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.0	0.0	7.4	0.0	0.0	3.8	4.2	0.0	0.0	3.5	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	18.9	0.0	18.4	0.0	0.0	30.3	23.7	0.0	0.0	17.7	0.0	0.0
LnGrp LOS	В	Α	В	Α	Α	С	С	Α	Α	В	Α	A
Approach Vol, veh/h		967			244			282			325	
Approach Delay, s/veh		18.6			30.3			23.7			17.7	
Approach LOS		В			С			С			В	
Timer - Assigned Phs		2		4	5	6		8				
Phs Duration (G+Y+Rc), s		37.1		31.3	19.1	18.0		31.3				
Change Period (Y+Rc), s		6.0		6.0	6.0	6.0		6.0				
Max Green Setting (Gmax), s		46.0		42.0	20.0	20.0		42.0				
Max Q Clear Time (g_c+I1), s		23.1		13.1	12.4	10.5		24.1				
Green Ext Time (p_c), s		7.6		1.2	8.0	1.4		1.2				
Intersection Summary												
HCM 6th Ctrl Delay			20.8									
HCM 6th LOS			С									

Lanes, Volumes, Timings 29: Columbia Avenue & I-26 WB Off Loop

2044 Build PM Peak Hour

	(w	لر	•	×	K	t
Lane Group	SBL	SBR	NEL	NET	SWT	SWR
Lane Configurations		7		↑	†	
Traffic Volume (vph)	0	1363	0	791	705	0
Future Volume (vph)	0	1363	0	791	705	0
Satd. Flow (prot)	0	1611	0	1863	1863	0
Flt Permitted						
Satd. Flow (perm)	0	1611	0	1863	1863	0
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	1514	0	879	783	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	1514	0	879	783	0
Sign Control	Free			Free	Free	

Intersection Summary

Control Type: Unsignalized

Intersection Capacity Utilization 128.2%

ICU Level of Service H

Analysis Period (min) 15

Site: 101 [2024 Build AM Crooked Creek Road & New Frontage Road]

Roundabout

Move	ment Per	formance -	Vehicle	es							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: New Fron	veh/h tage Road	%	v/c	sec		veh	ft		per veh	mph
		_	0.0	0.044	0.0	1.00.4	0.4	4.5	0.00	0.00	04.0
3	L2	1	2.0	0.014	2.8	LOS A	0.1	1.5	0.02	0.00	21.3
18	R2	18	2.0	0.014	2.8	LOS A	0.1	1.5	0.02	0.00	33.8
Appro	ach	20	2.0	0.014	2.8	LOS A	0.1	1.5	0.02	0.00	33.1
East:	Crooked Cı	reek Road									
1	L2	122	2.0	0.091	3.4	LOS A	0.4	10.4	0.02	0.00	32.8
6	T1	1	2.0	0.091	3.4	LOS A	0.4	10.4	0.02	0.00	31.6
Appro	ach	123	2.0	0.091	3.4	LOS A	0.4	10.4	0.02	0.00	32.8
West:	Crooked C	reek Road									
2	T1	1	2.0	0.002	3.0	LOS A	0.0	0.2	0.25	0.09	34.5
12	R2	1	2.0	0.002	3.0	LOS A	0.0	0.2	0.25	0.09	29.8
Appro	ach	2	2.0	0.002	3.0	LOS A	0.0	0.2	0.25	0.09	31.9
All Ve	hicles	145	2.0	0.091	3.3	LOSA	0.4	10.4	0.02	0.00	32.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RAMEY KEMP & ASSOCIATES, INC. | Processed: Friday, March 6, 2020 9:47:29 AM Project: P:\Projects\20045 - I-26 Chapin IMR\Analysis\SIDRA\Crooked Creek & Frontage.sip7

Site: 101 [2024 Build PM Crooked Creek Road & New Frontage Road]

Roundabout

Move	ment Per	formance -	Vehicle	es							
Mov	OD	Demand I		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance ft	Queued	Stop Rate per veh	Speed
South	: New Fron		70	V/C	Sec		ven	11		per veri	mph
3	L2	1	3.0	0.031	2.9	LOS A	0.1	3.3	0.02	0.00	21.3
18	R2	40	3.0	0.031	2.9	LOS A	0.1	3.3	0.02	0.00	33.7
Appro	ach	41	3.0	0.031	2.9	LOS A	0.1	3.3	0.02	0.00	33.4
East:	Crooked Ci	reek Road									
1	L2	21	3.0	0.016	2.8	LOS A	0.1	1.7	0.02	0.00	33.1
6	T1	1	2.0	0.016	2.8	LOS A	0.1	1.7	0.02	0.00	32.1
Appro	ach	22	3.0	0.016	2.8	LOS A	0.1	1.7	0.02	0.00	33.1
West:	Crooked C	reek Road									
2	T1	1	2.0	0.002	2.7	LOS A	0.0	0.2	0.09	0.02	34.7
12	R2	1	2.0	0.002	2.7	LOS A	0.0	0.2	0.09	0.02	30.0
Appro	ach	2	2.0	0.002	2.7	LOS A	0.0	0.2	0.09	0.02	32.2
All Ve	hicles	65	3.0	0.031	2.9	LOSA	0.1	3.3	0.02	0.00	33.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RAMEY KEMP & ASSOCIATES, INC. | Processed: Friday, March 6, 2020 9:47:25 AM Project: P:\Projects\20045 - I-26 Chapin IMR\Analysis\SIDRA\Crooked Creek & Frontage.sip7

Site: 101 [2044 Build AM Crooked Creek Road & New Frontage Road]

Roundabout

Move	ment Per	formance -	Vehicle	es							
Mov ID	OD Mov	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South	: New Fron	tage Road									
3	L2	1	2.0	0.018	2.8	LOS A	0.1	2.0	0.02	0.00	21.3
18	R2	24	2.0	0.018	2.8	LOS A	0.1	2.0	0.02	0.00	33.8
Appro	ach	25	2.0	0.018	2.8	LOS A	0.1	2.0	0.02	0.00	33.3
East:	Crooked C	reek Road									
1	L2	157	2.0	0.117	3.6	LOS A	0.5	13.8	0.02	0.00	32.7
6	T1	1	2.0	0.117	3.6	LOS A	0.5	13.8	0.02	0.00	31.5
Appro	ach	158	2.0	0.117	3.6	LOS A	0.5	13.8	0.02	0.00	32.7
West:	Crooked C	reek Road									
2	T1	1	2.0	0.002	3.1	LOS A	0.0	0.2	0.28	0.11	34.4
12	R2	1	2.0	0.002	3.1	LOS A	0.0	0.2	0.28	0.11	29.7
Appro	ach	2	2.0	0.002	3.1	LOS A	0.0	0.2	0.28	0.11	31.9
All Ve	hicles	185	2.0	0.117	3.5	LOSA	0.5	13.8	0.02	0.00	32.7

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RAMEY KEMP & ASSOCIATES, INC. | Processed: Friday, March 6, 2020 9:50:45 AM Project: P:\Projects\20045 - I-26 Chapin IMR\Analysis\SIDRA\Crooked Creek & Frontage.sip7

Site: 101 [2044 Build PM Crooked Creek Road & New Frontage Road]

Roundabout

Move	ment Per	formance -	Vehicle	es							
Mov	OD	Demand I		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: New Fron	veh/h	%	v/c	sec		veh	ft		per veh	mph
		_									
3	L2	1	3.0	0.040	3.0	LOS A	0.2	4.3	0.02	0.00	21.3
18	R2	52	3.0	0.040	3.0	LOS A	0.2	4.3	0.02	0.00	33.7
Appro	ach	53	3.0	0.040	3.0	LOS A	0.2	4.3	0.02	0.00	33.4
East:	Crooked Cı	eek Road									
1	L2	26	3.0	0.020	2.8	LOS A	0.1	2.2	0.02	0.00	33.1
6	T1	1	2.0	0.020	2.8	LOS A	0.1	2.2	0.02	0.00	32.1
Appro	ach	27	3.0	0.020	2.8	LOS A	0.1	2.2	0.02	0.00	33.0
West:	Crooked C	reek Road									
2	T1	1	2.0	0.002	2.7	LOS A	0.0	0.2	0.10	0.02	34.7
12	R2	1	2.0	0.002	2.7	LOS A	0.0	0.2	0.10	0.02	30.0
Appro	ach	2	2.0	0.002	2.7	LOS A	0.0	0.2	0.10	0.02	32.1
All Ve	hicles	83	3.0	0.040	2.9	LOSA	0.2	4.3	0.02	0.00	33.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: RAMEY KEMP & ASSOCIATES, INC. | Processed: Friday, March 6, 2020 9:49:12 AM Project: P:\Projects\20045 - I-26 Chapin IMR\Analysis\SIDRA\Crooked Creek & Frontage.sip7

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 RAMEY KEMP ASSOCIATES

Moving forward.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

APPENDIX F

Arterial Analysis Worksheets

Arterial Level of Service 2020 Existing AM

020 Existing AM 05/12/2020

Arterial Level of Service: EB Columbia Avenue

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
I-26 WB Off Ramp	2	20.4	32.5	0.1	13	
	5	1.9	7.2	0.1	26	
	6	0.8	16.9	0.2	33	
Comalander Drive	3	0.8	5.7	0.0	30	
Total		23.9	62.3	0.4	21	

Arterial Level of Service: WB Columbia Avenue

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Comalander Drive	3	0.5	15.4	0.1	35	
	6	0.2	5.2	0.0	33	
	5	2.2	18.3	0.2	31	
I-26 WB On Ramp	2	16.7	22.1	0.1	9	
I-26 EB Off Ramp	1	17.6	29.2	0.1	14	
Total		37.0	90.2	0.5	21	

SimTraffic Report

Arterial Level of Service

2020 Existing PM 05/12/2020

Arterial Level of Service: EB Columbia Avenue

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
I-26 WB Off Ramp	2	24.1	36.3	0.1	11	
	5	2.0	7.4	0.1	26	
	6	0.7	16.8	0.2	33	
Comalander Drive	3	0.5	5.4	0.0	32	
Total		27.3	65.8	0.4	20	

Arterial Level of Service: WB Columbia Avenue

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Comalander Drive	3	0.3	15.1	0.1	35	
	6	0.1	5.1	0.0	34	
	5	0.4	16.6	0.2	34	
I-26 WB On Ramp	2	17.2	22.7	0.1	8	
I-26 EB Off Ramp	1	9.1	20.3	0.1	20	
Total		27.2	79.9	0.5	23	

Arterial Level of Service 2024 No-Build AM

05/12/2020

Arterial Level of Service: EB Columbia Avenue

		Delay	Travel	Dist	Arterial
		•			
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed
I-26 WB Off Ramp	2	123.8	143.0	0.1	3
	5	69.7	75.0	0.1	3
	20	76.9	82.8	0.1	3
	6	129.8	139.6	0.1	3
	3	83.6	140.4	0.0	2
Total		483 9	580.8	0.4	3

Arterial Level of Service: WB Columbia Avenue

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
Comalander Drive	3	3518.3	27221.7	0.1	0	
	6	1411.1	1411.3	0.0	0	
	20	3505.4	3505.8	0.1	0	
	5	3263.1	3263.4	0.1	0	
I-26 WB On Ramp	2	3359.0	5015.9	0.1	0	
I-26 EB Off Ramp	1	1239.5	2410.6	0.1	0	
Total		16296.4	42828.7	0.5	0	

SimTraffic Report

Arterial Level of Service 2024 No-Build PM

4 No-Build PM 05/12/2020

Arterial Level of Service: EB Columbia Avenue

		Delay	Travel	Dist	Arterial
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed
I-26 WB Off Ramp	2	43.5	55.2	0.1	7
	5	5.6	10.9	0.1	17
	17	8.0	14.1	0.1	15
	6	20.0	29.9	0.1	12
	3	28.3	34.7	0.0	5
Total		105 4	144 9	0.4	9

Arterial Level of Service: WB Columbia Avenue

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Comalander Drive	3	1872.2	5144.6	0.1	0	
	6	346.1	349.9	0.0	0	
	17	940.6	948.0	0.1	0	
	5	639.9	644.9	0.1	0	
I-26 WB On Ramp	2	549.1	983.3	0.1	0	
I-26 EB Off Ramp	1	432.3	599.1	0.1	1	
Total		4780.2	8669.8	0.5	0	

SimTraffic Report

Arterial Level of Service 2024 Build AM

24 Build AM 05/13/2020

Arterial Level of Service: NB Columbia Avenue

		Delay	Travel	Dist	Arterial
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed
New Frontage Road	3	18.0	55.7	0.4	24
I-26 EB On Ramp	6	9.4	26.4	0.2	23
I-26 WB Off Loop	29	2.0	14.5	0.1	30
I-26 WB Off Ramp	9	0.8	6.8	0.1	33
Comalander Drive	12	11.1	38.6	0.3	26
Total		41.2	141 9	1.0	25

Arterial Level of Service: SB Columbia Avenue

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
Comalander Drive	12	17.4	39.8	0.2	20	
I-26 WB On Ramp	9	4.3	32.4	0.3	31	
I-26 WB Off Loop	29	0.6	6.7	0.1	33	
I-26 EB Off Ramp	6	3.5	16.0	0.1	27	
Ellett Road	3	8.5	25.5	0.2	24	
Total		34.3	120.4	0.9	26	

Arterial Level of Service 2024 Build PM

06/01/2020 06/01/2020

Arterial Level of Service: NB Columbia Avenue

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
New Frontage Road	3	17.4	55.0	0.4	24	
I-26 EB On Ramp	6	12.6	30.3	0.2	20	
I-26 WB Off Loop	29	2.5	15.6	0.1	28	
I-26 WB Off Ramp	9	1.1	7.0	0.1	32	
Comalander Drive	12	18.2	46.1	0.3	22	
Total		51.7	154.0	1.0	23	

Arterial Level of Service: SB Columbia Avenue

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
Comalander Drive	12	26.7	48.6	0.2	16	
I-26 WB On Ramp	9	4.1	31.9	0.3	31	
I-26 WB Off Loop	29	0.7	7.1	0.1	31	
I-26 EB Off Ramp	6	5.1	17.6	0.1	25	
Ellett Road	3	7.9	25.4	0.2	24	
Total		44.5	130.7	0.8	23	•

Arterial Level of Service 2044 No-Build AM

44 No-Build AM 05/12/2020

Arterial Level of Service: EB Columbia Avenue

		Delay	Travel	Dist	Arterial
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed
I-26 WB Off Ramp	2	169.3	192.7	0.1	2
	5	7.5	12.8	0.1	15
	20	11.3	17.2	0.1	12
	6	32.5	42.5	0.1	8
	3	35.8	46.2	0.0	4
Total		256.5	311.4	0.4	5

Arterial Level of Service: WB Columbia Avenue

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Comalander Drive	3	252.2	1669.1	0.1	2	
	6	58.4	63.2	0.0	3	
	20	136.2	146.0	0.1	2	
	5	78.0	83.8	0.1	2	
I-26 WB On Ramp	2	73.2	110.9	0.1	2	
I-26 EB Off Ramp	1	46.8	101.4	0.1	7	
Total		644.7	2174.5	0.5	3	

SimTraffic Report

Arterial Level of Service 2044 No-Build PM

4 No-Build PM 05/12/2020

Arterial Level of Service: EB Columbia Avenue

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed
I-26 WB Off Ramp	2	75.1	86.7	0.1	5
	5	24.6	30.0	0.1	6
	17	31.4	37.5	0.1	6
	6	53.0	62.9	0.1	6
	3	38.9	53.0	0.0	4
Total		223.0	270.0	0.4	5

Arterial Level of Service: WB Columbia Avenue

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed	
Comalander Drive	3	3576.7	14814.8	0.1	0	
	6	1408.6	1408.8	0.0	0	
	17	3328.0	3328.8	0.1	0	
	5	3031.4	3032.1	0.1	0	
I-26 WB On Ramp	2	2984.6	5656.1	0.1	0	
I-26 EB Off Ramp	1	474.2	1079.5	0.1	1	
Total		14803.4	29320.1	0.5	0	

SimTraffic Report

Arterial Level of Service 2044 Build AM

44 Build AM 06/01/2020

Arterial Level of Service: NB Columbia Avenue

		Delay	Travel	Dist	Arterial
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed
New Frontage Road	3	26.7	64.4	0.4	21
I-26 EB On Ramp	6	13.0	30.0	0.2	21
I-26 WB Off Loop	29	2.5	15.1	0.1	29
I-26 WB Off Ramp	9	1.0	6.9	0.1	32
Comalander Drive	12	12.8	40.2	0.3	25
Total		56.0	156.6	1.0	23

Arterial Level of Service: SB Columbia Avenue

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
Comalander Drive	12	20.6	42.7	0.2	19	
I-26 WB On Ramp	9	4.7	32.8	0.3	30	
I-26 WB Off Loop	29	0.9	7.0	0.1	32	
I-26 EB Off Ramp	6	4.7	17.3	0.1	25	
Ellett Road	3	9.8	26.8	0.2	23	
Total		40.6	126.7	0.8	24	

Arterial Level of Service 2044 Build PM

44 Build PM 06/01/2020

Arterial Level of Service: NB Columbia Avenue

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
New Frontage Road	3	23.9	61.6	0.4	22	
I-26 EB On Ramp	6	13.7	31.3	0.2	20	
I-26 WB Off Loop	29	2.5	15.6	0.1	28	
I-26 WB Off Ramp	9	1.0	6.9	0.1	32	
Comalander Drive	12	16.8	44.5	0.3	22	
Total		58.0	160.0	1.0	23	

Arterial Level of Service: SB Columbia Avenue

		Delay	Travel	Dist	Arterial	
Cross Street	Node	(s/veh)	time (s)	(mi)	Speed	
Comalander Drive	12	27.0	53.2	0.3	18	
I-26 WB On Ramp	9	4.3	31.9	0.3	31	
I-26 WB Off Loop	29	0.9	7.2	0.1	31	
I-26 EB Off Ramp	6	6.5	19.0	0.1	23	
Ellett Road	3	8.2	25.8	0.2	24	
Total		46.9	137.1	0.9	23	

DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 RAMEY KEMP ASSOCIATES

Moving forward.

Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report

APPENDIX G

Crash Analysis Worksheets

Crash Summary

I- 26 (INTERSTATE 26) from MPT 89.750 to MPT 92.000 LEXINGTON COUNTY

01/01/2014 - 09/30/2019 (5.7 years)

Length = 2.250 miles

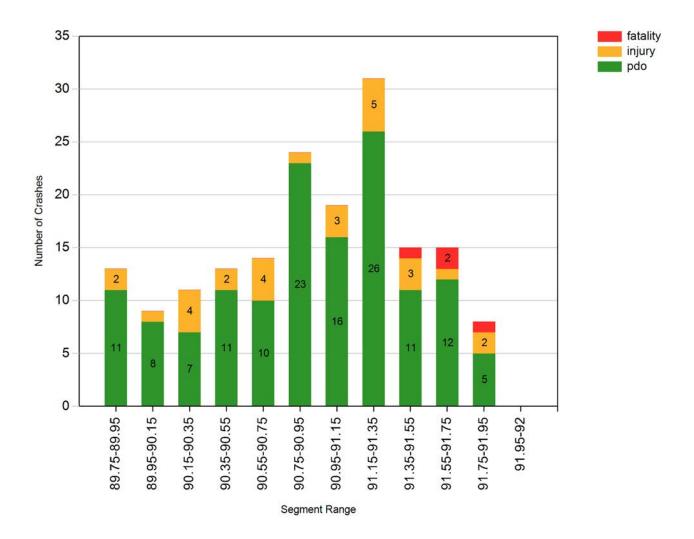
AADT = 47,777

Functional Class = Rural -- Principal Arterial - Interstate

Crashes by Injury Class	
Fatality Crashes	4
Injury Crashes	28
PDO Crashes	140
Total Crashes	172
Crashes by Manner Of Collision	
Rear End	70
Angle	16
Sideswipe	26
Head On	2
Run Off Road	49
Animal	3
Bicycle	0
Pedestrian	2
Other	4
Total Crashes	172
Special Contributing Factors	
Night	43
Day	129
Wet	43
Dry	129

I- 26 (INTERSTATE 26) from MPT 89.750 to MPT 92.000 LEXINGTON COUNTY

01/01/2014 - 09/30/2019 (5.7 years)

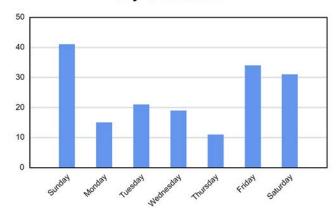

Functional Class = Rural -- Principal Arterial - Interstate

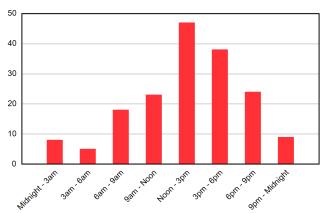
I- 26 (INTERSTATE 26) from MPT 89.750 to MPT 92.000 LEXINGTON COUNTY

01/01/2014 - 09/30/2019 (5.7 years)

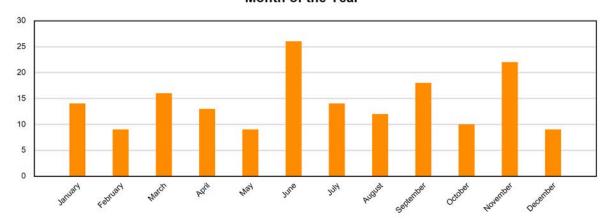
Functional Class = Rural -- Principal Arterial - Interstate

I- 26 (INTERSTATE 26) from MPT 89.750 to MPT 92.000 LEXINGTON COUNTY


01/01/2014 - 09/30/2019 (5.7 years)


Functional Class = Rural -- Principal Arterial - Interstate

Year	2014	2015	2016	2017	2018	2019	Total
Rear End	6	11	15	13	13	12	70
Angle	2	4	3	2	2	3	16
Sideswipe	2	6	6	1	4	7	26
Head On	0	0	0	2	0	0	2
Run Off Road	10	10	8	11	6	4	49
Animal	2	0	0	1	0	0	3
Bicycle	0	0	0	0	0	0	0
Pedestrian	1	0	1	0	0	0	2
Other	1	1	1	0	0	1	4
	24	32	34	30	25	27	172


Day of the Week

Time of Day

Month of the Year

MPT 89.750 to 89.950 (Stack #1)

Total C	rashes: 1	3 Light: 9	Dark:	4 Dry	: 9 Wet: 4	Fatalities: 0	Injuries: 2	PDO: 11
1 1	4615960	89.925 INJ0	DAY	DRY	ANIMAL (DEER O	ONLY)		NO COLLISION W/MV
2 1	5507071	89.778 INJ0	DARK	WET	MEDIAN BARRIE	ER		NO COLLISION W/MV
3 1	5573346	89.775 INJ0	DAY	DRY	MOTOR VEHICL	E (STOPPED)		REAR END
4 1	5573562	89.937 INJ0	DAY	DRY	OTHER MOVABL	LE OBJECT		NO COLLISION W/MV
5 1	6669110	89.825 INJ0	DAY	DRY	MOTOR VEHICL	E (IN TRANSPO	PRT)	SIDESWIPE SAME
6 1	7524900	89.860 INJ0	DAY	WET	MEDIAN BARRIE	ER .		NO COLLISION W/MV
7 1	7678431	89.875 INJ0	DAY	DRY	MOTOR VEHICL	E (IN TRANSPO	PRT)	REAR END
8 1	8667426	89.777 INJ1	DUSK	DRY	MOTOR VEHICL	E (STOPPED)		REAR END
9 1	9536179	89.847 INJ1	DAY	DRY	MOTOR VEHICL	E (IN TRANSPO	PRT)	REAR END
10 1	9536588	89.849 INJ0	DAY	DRY	MOTOR VEHICL	E (STOPPED)		REAR END
11 1	9595200	89.874 INJ0	DAY	DRY	OVERTURN/ROL	LLOVER		NO COLLISION W/MV
12 1	9610631	89.776 INJ0	DARK	WET	MOTOR VEHICL	E (PARKED)		REAR END
13 1	9610632	89.774 INJ0	DARK	WET	MOTOR VEHICL	E (IN TRANSPO	PRT)	REAR END

MPT 89.950 to 90.150 (Stack #2)

Total Crashes: 9 Ligi	ht: 7 Dark:	2 Dry:	8 Wet: 1 Fatalities: 0	Injuries: 1	PDO: 8
1 14624477 90.046	INJ0 DAY	DRY	MEDIAN BARRIER		NO COLLISION W/MV
2 14624891 89.956	INJO DAY	DRY	MEDIAN BARRIER		NO COLLISION W/MV
3 15509006 89.955	INJ2 DARK	DRY	MOTOR VEHICLE (IN TRANSF	PORT)	SIDESWIPE SAME
4 15535161 89.982	INJO DAY	DRY	MOTOR VEHICLE (IN TRANSF	PORT)	REAR END
5 15573434 90.014	INJ0 DAY	DRY	OVERTURN/ROLLOVER		NO COLLISION W/MV
6 15597957 89.968	INJO DUSK	DRY	MOTOR VEHICLE (IN TRANSF	PORT)	SIDESWIPE SAME
7 16509459 89.978	INJ0 DAY	WET	MOTOR VEHICLE (IN TRANSF	PORT)	SIDESWIPE OPP
8 16511067 90.075	INJ0 DAY	DRY	MOTOR VEHICLE (IN TRANSF	PORT)	ANGLE
9 19610959 90.025	INJ0 DAY	DRY	MOTOR VEHICLE (IN TRANSF	PORT)	REAR END

MPT 90.150 to 90.350 (Stack #3)

Total Crash	es: 11 Light:	i i Dark: U	Dry: / we	t: 4 Fatalities: 0	injuries: 4 PDO: 7	
1 14621	544 90.171 INJ0	DAY W	ET MOTOR VI	EHICLE (STOPPED)	REAR ENI	D
2 14621	545 90.169 INJ0	DAY W	ET MOTOR VE	EHICLE (STOPPED)	REAR ENI	D
3 155792	201 90.220 INJ0	DAY DR	RY MEDIAN B	ARRIER	ANGLE	
4 16569	512 90.295 INJ0	DAY DR	RY MOTOR VI	EHICLE (STOPPED)	BACKED I	NTO
5 16574	36 90.290 INJ2	DAY DR	RY MOTOR VI	EHICLE (STOPPED)	REAR ENI	D
6 16581	333 90.309 INJ1	DAY DF	RY MEDIAN B	ARRIER	NO COLLI	ISION W/MV
7 166159	941 90.256 INJ0	DAY W	ET MOTOR VI	EHICLE (STOPPED)	REAR ENI	D

8 17545685	90.230 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
9 17549854	90.220 INJ0	DAY	DRY	TREE	NO COLLISION W/MV
10 17569459	90.220 INJ1	DAY	WET	MOTOR VEHICLE (IN TRANSPORT)	REAR END
11 18590377	90.159 INJ1	DAY	DRY	MEDIAN BARRIER	NO COLLISION W/MV

MPT 90.350 to 90.550 (Stack #4)

Total Crashes: 1	3 Light: 7	Dark:	6 Dry	y: 10 Wet: 3 Fatalities: 0 Injuries: 2 P	DO: 11
1 14546548	90.437 INJ0	DARK	DRY	MOTOR VEHICLE (IN TRANSPORT) SID	ESWIPE SAME
2 15505312	90.440 INJ0	DAY	WET	MOTOR VEHICLE (IN TRANSPORT) SID	ESWIPE SAME
3 15522158	90.474 INJ0	DAY	DRY	MEDIAN BARRIER NO	COLLISION W/MV
4 15524478	90.547 INJ0	DAY	WET	MOTOR VEHICLE (IN TRANSPORT) AND	JLE
5 15595169	90.412 INJ0	DARK	DRY	MOTOR VEHICLE (STOPPED) REA	AR END
6 15612496	90.419 INJ3	DAY	DRY	TREE NO	COLLISION W/MV
7 15615929	90.543 INJ0	DARK	DRY	MOTOR VEHICLE (STOPPED) REA	AR END
8 15615930	90.545 INJ0	DARK	DRY	MOTOR VEHICLE (STOPPED) REA	AR END
9 15639762	90.538 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT) REA	AR END
10 18589994	90.371 INJ2	DAY	DRY	MOTOR VEHICLE (STOPPED) REA	AR END
11 18614502	90.539 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT) SID	ESWIPE SAME
12 18626845	90.374 INJ0	DARK	WET	EMBANKMENT NO	COLLISION W/MV
13 19563723	90.508 INJ0	DARK	DRY	MOTOR VEHICLE (IN TRANSPORT) SID	ESWIPE SAME

MPT 90.550 to 90.750 (Stack #5)

Total	Crashes: 1	4 Light: 1	l Dark	: 3 Dr	ry: 10 Wet: 4	Fatalities: 0	Injuries: 4	PDO: 10
1	14563965	90.556 INJ0	DAY	DRY	MOTOR VEHICLE	(IN TRANSPORT	Γ) Ι	REAR END
2	14606230	90.726 INJ0	DARK	DRY	ANIMAL (DEER O	NLY)	ı	NO COLLISION W/MV
3	14623574	90.712 INJ0	DAY	WET	MEDIAN BARRIEF	₹	I	NO COLLISION W/MV
4	15621075	90.566 INJ0	DAY	DRY	MOTOR VEHICLE	(IN TRANSPORT	Γ) Ι	REAR END
5	16567706	90.615 INJ0	DAY	DRY	MOTOR VEHICLE	(STOPPED)	I	REAR END
6	16616007	90.674 INJ1	DARK	DRY	MOTOR VEHICLE	(IN TRANSPORT	Γ) :	SIDESWIPE SAME
7	16619568	90.632 INJ0	DAY	WET	MOTOR VEHICLE	(STOPPED)	I	REAR END
8	16648024	90.643 INJ0	DAY	WET	MOTOR VEHICLE	(STOPPED)	1	REAR END
9	16677834	90.651 INJ0	DAY	DRY	MEDIAN BARRIEF	3	I	NO COLLISION W/MV
10	18592947	90.676 INJ0	DAY	DRY	MOTOR VEHICLE	(STOPPED)	1	REAR END
11	19510221	90.729 INJ1	DARK	WET	MEDIAN BARRIEF	3	I	NO COLLISION W/MV
12	19624398	90.630 INJ1	DAY	DRY	MOTOR VEHICLE	(IN TRANSPORT	Γ) Ι	REAR END
13	19624399	90.636 INJ2	DAY	DRY	MOTOR VEHICLE	(STOPPED)	1	REAR END
14	19626830	90.655 INJ0	DAY	DRY	MOTOR VEHICLE	(IN TRANSPORT	Γ) Ι	REAR END

MPT 90.750 to 90.950 (Stack #6)

Total	Crashes: 2	4 Light: 21	Dark	: 3 Dr	y: 17 Wet: 7 Fatalities: 0 Injuries	: 1 PDO: 23
1	14505005	90.923 INJ0	DAY	DRY	OTHER MOVABLE OBJECT	NO COLLISION W/MV
2	14506828	90.876 INJ0	DARK	SNOW	TREE	NO COLLISION W/MV
3	14508930	90.773 INJ0	DARK	WET	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
4	14592689	90.917 INJ0	DAY	DRY	EMBANKMENT	NO COLLISION W/MV
5	14592718	90.877 INJ0	DAY	DRY	MEDIAN BARRIER	NO COLLISION W/MV
6	15573433	90.884 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
7	16518141	90.783 INJ1	DAY	WET	MOTOR VEHICLE (IN TRANSPORT)	REAR END
8	16551088	90.852 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
9	16577998	90.894 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	ANGLE
10	16596303	90.815 INJ0	DAY	WET	MOTOR VEHICLE (STOPPED)	REAR END
11	16596305	90.815 INJ0	DAY	WET	MOTOR VEHICLE (IN TRANSPORT)	REAR END
12	17621643	90.820 INJ0	DAY	DRY	MEDIAN BARRIER	NO COLLISION W/MV
13	18543814	90.832 INJ0	DARK	DRY	MOTOR VEHICLE (PARKED)	ANGLE
14	18550204	90.872 INJ0	DAY	WET	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
15	18554197	90.924 INJ0	DAY	WET	HIGHWAY TRAFFIC SIGN POST	NO COLLISION W/MV
16	18670085	90.911 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
17	19530138	90.897 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
18	19545040	90.843 INJ0	DAY	DRY	MEDIAN BARRIER	NO COLLISION W/MV
19	19577098	90.910 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
20	19590159	90.835 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
21	19590169	90.795 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
22	19593578	90.835 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
23	19596618	90.753 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
24	19610662	90.800 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME

MPT 90.950 to 91.150 (Stack #7)

Total Crashes: 19	Light: 16	Dark:	3 Dr	y: 15	Wet: 4	Fatalities: 0	Injuries: 3	PDO: 16
1 14560207 9	1.134 INJ1	DAY	DRY	MOTOR	VEHICLE	(STOPPED)	R	EAR END
2 14580416 9	1.107 INJ0	DAY	DRY	MOTOR	VEHICLE	(IN TRANSPORT) R	EAR END
3 14620354 9	1.126 INJ0	DARK	DRY	MOTOR	VEHICLE	(STOPPED)	R	EAR END
4 15527428 9	0.994 INJ0	DAY	WET	TREE			N	O COLLISION W/MV
5 15545968 9	1.138 INJ0	DAY	DRY	MOTOR	VEHICLE	(STOPPED)	R	EAR END
6 15589851 9	1.081 INJ0	DAY	DRY	MOTOR	VEHICLE	(STOPPED)	R	EAR END
7 15651710 9	0.950 INJ2	DAY	DRY	HIGHWA	AY TRAFFI	C SIGN POST	N	O COLLISION W/MV
8 16506265 9	0.972 INJ0	DAY	WET	MEDIAN	I BARRIER		N	O COLLISION W/MV

9	16539798	90.958 INJ0	DAY	DRY	TREE	NO COLLISION W/MV
10	16569396	90.974 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	ANGLE
11	16581308	91.083 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
12	16623501	90.956 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
13	17562611	90.970 INJ0	DARK	DRY	DITCH	NO COLLISION W/MV
14	17569402	90.970 INJ0	DAY	WET	MOTOR VEHICLE (IN TRANSPORT)	REAR END
15	17617762	91.120 INJ1	DARK	DRY	MEDIAN BARRIER	NO COLLISION W/MV
16	17665999	91.130 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
17	18642384	91.042 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
18	18662388	91.134 INJ0	DAY	WET	MOTOR VEHICLE (STOPPED)	REAR END
19	19534560	91.070 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	ANGLE

MPT 91.150 to 91.350 (Stack #8)

Total Crashes: 31	Liaht: 23	Dark: 8	Drv: 24	Wet: 7	Fatalities: 0	Injuries: 5	PDO: 26

1 1	14004663	91.220 INJ0	DARK	SNOW	MEDIAN BARRIER	NO COLLISION W/MV
2 1	14512428	91.169 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	ANGLE
3 1	14576684	91.196 INJ0	DAY	WET	OVERHEAD SIGN SUPPORT	NO COLLISION W/MV
4 1	15560792	91.320 INJ0	DAY	DRY	MEDIAN BARRIER	NO COLLISION W/MV
5 1	15573343	91.327 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
6 1	15635045	91.320 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
7 1	15653088	91.169 INJ0	DARK	DRY	MOTOR VEHICLE (IN TRANSPORT)	ANGLE
8 1	16578002	91.311 INJ0	DAY	DRY	SPILL (TWO-WHEELED VEH)	NO COLLISION W/MV
9 1	16607105	91.246 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
10 1	16610946	91.272 INJ0	DAY	WET	MOTOR VEHICLE (IN TRANSPORT)	REAR END
11 1	16635161	91.300 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
12 1	17502738	91.310 INJ0	DAY	WET	GUARDRAIL FACE	NO COLLISION W/MV
13 1	17503248	91.220 INJ2	DARK	DRY	EQUIPMENT FAILURE	NO COLLISION W/MV
14 1	17544920	91.290 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
15 1	17548573	91.220 INJ0	DAY	DRY	MEDIAN BARRIER	NO COLLISION W/MV
16 1	17548907	91.220 INJ0	DAY	DRY	MEDIAN BARRIER	NO COLLISION W/MV
17 1	17581832	91.220 INJ2	DARK	DRY	MOTOR VEHICLE (STOPPED)	REAR END
18 1	17586584	91.220 INJ1	DAY	DRY	TREE	NO COLLISION W/MV
19 1	17590349	91.220 INJ0	DAY	WET	MOTOR VEHICLE (IN TRANSPORT)	ANGLE
20 1	17590363	91.220 INJ1	DAY	WET	MOTOR VEHICLE (IN TRANSPORT)	ANGLE
21 1	17613692	91.220 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
22 1	17613694	91.220 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
23 1	17617770	91.220 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	HEAD ON
24 1	17651029	91.220 INJ0	DARK	DRY	ANIMAL (DEER ONLY)	NO COLLISION W/MV

25 17662263	91.150 INJ0	DARK	DRY	MEDIAN BARRIER	NO COLLISION W/MV
26 17676095	91.220 INJ0	DARK	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
27 18537318	91.199 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
28 18591995	91.158 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
29 18641336	91.192 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	ANGLE
30 18683970	91.302 INJ0	DARK	WET	MOTOR VEHICLE (IN TRANSPORT)	REAR END
31 19621375	91.345 INJ1	DAY	DRY	TREE	NO COLLISION W/MV

MPT 91.350 to 91.550 (Stack #9)

	Total Crashes: 15	Light: 10	Dark: 5	Dry: 12	Wet: 3	Fatalities: 1	Injuries: 3	PDO: 11
--	-------------------	-----------	---------	---------	--------	---------------	-------------	---------

1 14519195	91.380 INJ1	DAWN	DRY	OVERTURN/ROLLOVER	NO COLLISION W/MV
2 15628035	91.471 INJ0	DAY	WET	MOTOR VEHICLE (IN TRANSPORT)	REAR END
3 15628037	91.471 INJ0	DAY	WET	MEDIAN BARRIER	NO COLLISION W/MV
4 16630847	91.360 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
5 16649470	91.513 INJ4	DARK	DRY	PEDESTRIAN	NO COLLISION W/MV
6 16653217	91.443 INJ0	DAY	WET	EMBANKMENT	NO COLLISION W/MV
7 16674408	91.532 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
8 16674567	91.443 INJ0	DARK	DRY	TREE	NO COLLISION W/MV
9 16680037	91.450 INJ2	DARK	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
10 18536691	91.425 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
11 18591725	91.515 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
12 19507259	91.483 INJ0	DARK	DRY	MOTOR VEHICLE (IN TRANSPORT)	ANGLE
13 19548722	91.393 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
14 19592958	91.503 INJ0	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
15 19609498	91.403 INJ1	DAY	DRY	TREE	ANGLE

MPT 91.550 to 91.750 (Stack #10)

C	otal	Crashes: 1	5 Lig	ht: 9	Dark:	6 Dry	: 11 We	et: 4	Fatalities: 2	Injuries: 1	PDO: 12
	1	14541624	91.642	INJ0	DAY	DRY	EMBANKI	MENT			NO COLLISION W/MV
	2	14605635	91.574	INJ4	DARK	DRY	PEDESTF	RIAN			NO COLLISION W/MV
	3	15534530	91.694	INJ0	DAY	DRY	MOTOR V	/EHICLE	(IN TRANSPO	ORT)	SIDESWIPE SAME
	4	15536314	91.704	INJ0	DAY	WET	HIGHWAY	Y TRAFF	IC SIGN POS	Т	NO COLLISION W/MV
	5	15536619	91.575	INJ0	DAY	WET	MOTOR V	/EHICLE	(IN TRANSPO	ORT)	ANGLE
	6	17569529	91.720	INJ0	DARK	DRY	MOTOR V	/EHICLE	(IN TRANSPO	ORT)	SIDESWIPE SAME
	7	17615899	91.720	INJ0	DAY	DRY	MOTOR V	/EHICLE	(IN TRANSPO	ORT)	REAR END
	8	17630721	91.720	INJ1	DARK	DRY	MOTOR V	/EHICLE	(IN TRANSPO	ORT)	REAR END
	9	17647817	91.720	INJ0	DAY	DRY	MOTOR V	/EHICLE	(IN TRANSPO	ORT)	HEAD ON
	10	17678432	91.570	INJ0	DAY	DRY	MOTOR V	/EHICLE	(IN TRANSPO	ORT)	REAR END

11 185140	01 91.624 INJ0	DARK	DRY	MOTOR VEHICLE (STOPPED)	REAR END
12 185456	99 91.692 INJ0	DARK	DRY	MOTOR VEHICLE (IN TRANSPORT)	SIDESWIPE SAME
13 185532	09 91.671 INJ0	DAY	WET	MOTOR VEHICLE (IN TRANSPORT)	REAR END
14 185577	92 91.603 INJ4	DARK	DRY	OVERTURN/ROLLOVER	NO COLLISION W/MV
15 186883	78 91.735 INJ0	DAY	WET	MOTOR VEHICLE (STOPPED)	REAR END

MPT 91.750 to 91.950 (Stack #11)

Tota	l Crashes: 8	B Light: 5	Dark: 3	Dry:	6 Wet: 2	Fatalities: 1	Injuries: 2	PDO: 5	
	1 14565957	91.902 INJ1	DAY	WET	MOTOR VEHI	CLE (IN TRANSP	ORT)	ANGLE	
2	2 15521378	91.798 INJ4	DARK	DRY	GUARDRAIL	FACE		NO COLLISION W/MV	
;	3 16566822	91.795 INJ0	DAWN	DRY	TREE			NO COLLISION W/MV	
4	4 16654551	91.805 INJ0	DARK	DRY	MOTOR VEHI	CLE (IN TRANSP	ORT)	REAR END	
į	5 18520229	91.769 INJ1	DAY	DRY	GUARDRAIL	END		NO COLLISION W/MV	
(6 18623879	91.925 INJ0	DAY	DRY	GUARDRAIL	END		NO COLLISION W/MV	
-	7 19552385	91.803 INJ0	DAY	OTHER	GUARDRAIL	END		NO COLLISION W/MV	
8	3 19614835	91.884 INJ0	DAY	DRY	MOTOR VEHI	CLE (IN TRANSP	ORT)	SIDESWIPE SAME	

Crash Summary

S- 48 (COLUMBIA AVE) from MPT 1.835 (EAGLE CHASE CT) to MPT 2.858 (DAN COMALANDER DR) LEXINGTON COUNTY

01/01/2014 - 09/30/2019 (5.7 years)

Length = 1.023 miles

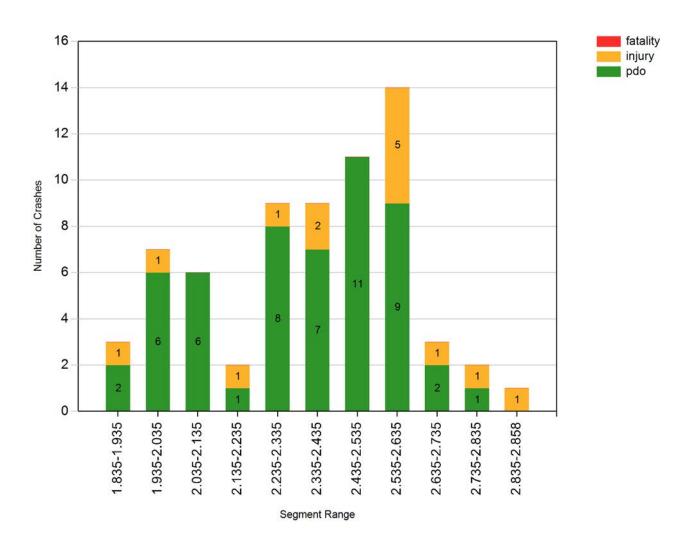
AADT = 11,686

Functional Class = Rural -- Minor Arterial

Fatality Crashes 0 Injury Crashes 14 PDO Crashes 53 Total Crashes 67 Crashes by Manner Of Collision Rear End 51 Angle 9 Sideswipe 2 Head On 0 Run Off Road 4 Animal 1 Bicycle 0 Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16 Dry 51	Crashes by Injury Class	
PDO Crashes 53 Total Crashes 67 Crashes by Manner Of Collision Rear End 51 Angle 9 Sideswipe 2 Head On 0 Run Off Road 4 Animal 1 Bicycle 0 Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	Fatality Crashes	0
Total Crashes 67 Crashes by Manner Of Collision 51 Rear End 51 Angle 9 Sideswipe 2 Head On 0 Run Off Road 4 Animal 1 Bicycle 0 Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	Injury Crashes	14
Crashes by Manner Of Collision Rear End 51 Angle 9 Sideswipe 2 Head On 0 Run Off Road 4 Animal 1 Bicycle 0 Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	PDO Crashes	53
Rear End 51 Angle 9 Sideswipe 2 Head On 0 Run Off Road 4 Animal 1 Bicycle 0 Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	Total Crashes	67
Rear End 51 Angle 9 Sideswipe 2 Head On 0 Run Off Road 4 Animal 1 Bicycle 0 Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16		
Angle 9 Sideswipe 2 Head On 0 Run Off Road 4 Animal 1 Bicycle 0 Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	Crashes by Manner Of Collision	
Sideswipe 2 Head On 0 Run Off Road 4 Animal 1 Bicycle 0 Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	Rear End	51
Head On Run Off Road Animal Bicycle Pedestrian Other Other Total Crashes 67 Special Contributing Factors Night Day 59 Wet 16	Angle	9
Run Off Road 4 Animal 1 Bicycle 0 Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	Sideswipe	2
Animal 1 Bicycle 0 Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	Head On	0
Bicycle 0 Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	Run Off Road	4
Pedestrian 0 Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	Animal	1
Other 0 Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	Bicycle	0
Total Crashes 67 Special Contributing Factors Night 8 Day 59 Wet 16	Pedestrian	0
Special Contributing Factors Night 8 Day 59 Wet 16	Other	0
Night 8 Day 59 Wet 16	Total Crashes	67
Day 59 Wet 16	Special Contributing Factors	
Wet 16	Night	8
	Day	59
	Wet	16
	Dry	51

S- 48 (COLUMBIA AVE) from MPT 1.835 (EAGLE CHASE CT) to MPT 2.858 (DAN COMALANDER DR) LEXINGTON COUNTY

01/01/2014 - 09/30/2019 (5.7 years)

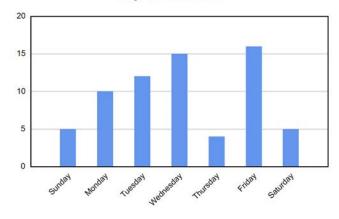

Functional Class = Rural -- Minor Arterial

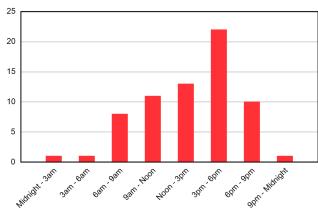
S- 48 (COLUMBIA AVE) from MPT 1.835 (EAGLE CHASE CT) to MPT 2.858 (DAN COMALANDER DR) LEXINGTON COUNTY

01/01/2014 - 09/30/2019 (5.7 years)

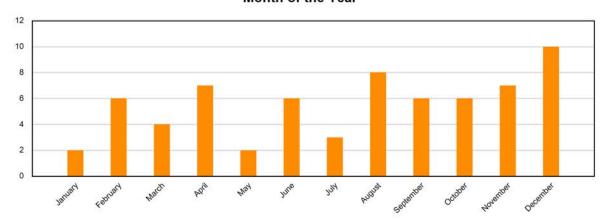
Functional Class = Rural -- Minor Arterial

S- 48 (COLUMBIA AVE) from MPT 1.835 (EAGLE CHASE CT) to MPT 2.858 (DAN COMALANDER DR) LEXINGTON COUNTY


01/01/2014 - 09/30/2019 (5.7 years)


Functional Class = Rural -- Minor Arterial

Year	2014	2015	2016	2017	2018	2019	Total
Rear End	10	5	13	10	7	6	51
Angle	1	2	1	3	1	1	9
Sideswipe	0	0	1	1	0	0	2
Head On	0	0	0	0	0	0	0
Run Off Road	0	1	0	1	2	0	4
Animal	1	0	0	0	0	0	1
Bicycle	0	0	0	0	0	0	0
Pedestrian	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0
	12	8	15	15	10	7	67


Day of the Week

Time of Day

Month of the Year

MPT 1.835 to 1.935 (Stack #1)

Total Crashes: 3	Light: 2	Dark: 1	Dry:	2 Wet: 1	Fatalities: 0	Injuries: 1	PDO: 2
1 17008783	1.838 INJ0	DAY	DRY	MOTOR VEH	ICLE (IN TRANSF	PORT)	REAR END
2 18689311	1.839 INJ2	DARK	DRY	DITCH			NO COLLISION W/MV
3 19002799	1.930 INJ0	DAY	WET	MOTOR VEH	ICLE (STOPPED))	REAR END

MPT 1.935 to 2.035 (Stack #2)

Total Crashes: 7	Light: 5	Dark: 2	Dry:	4 Wet: 3	Fatalities: 0	Injuries: 1	PDO: 6
1 14031186	2.020 INJ0	DAY	DRY	MOTOR VEH	ICLE (IN TRANSI	PORT)	REAR END
2 14034302	1.951 INJ0	DUSK	WET	MOTOR VEH	ICLE (IN TRANSI	PORT)	REAR END
3 14532308	1.992 INJ0	DAY	DRY	MOTOR VEH	ICLE (STOPPED))	REAR END
4 16017692	1.961 INJ0	DAY	DRY	MOTOR VEH	ICLE (STOPPED))	REAR END
5 17670109	1.954 INJ1	DUSK	WET	MOTOR VEH	ICLE (STOPPED))	REAR END
6 18010183	1.952 INJ0	DAY	WET	MOTOR VEH	ICLE (STOPPED))	REAR END
7 19006940	1.997 INJ0	DAY	DRY	MOTOR VEH	ICLE (IN TRANSI	PORT)	REAR END

MPT 2.035 to 2.135 (Stack #3)

MV

MPT 2.135 to 2.235 (Stack #4)

Total Crashes: 2	Light: 2	Dark: 0	Dry:	2 Wet: 0	Fatalities: 0	Injuries: 1	PDO: 1
1 17026161	2.232 INJ1	DAY	DRY	MOTOR VEH	ICLE (STOPPED)		REAR END
2 19006505	2.188 INJ0	DAY	DRY	MOTOR VEH	ICLE (STOPPED)		REAR END

MPT 2.235 to 2.335 (Stack #5)

Total Crashes: 9	Light: 9	Dark: 0	Dry:	8 Wet: 1	Fatalities: 0	Injuries: 1	PDO: 8	
1 14037306	2.254 INJ0	DAY	DRY	MOTOR VEHI	CLE (STOPPED)		ANGLE	
2 14538836	2.318 INJ0	DAY	DRY	MOTOR VEHI	CLE (STOPPED)		REAR END	
3 14612170	2.247 INJ0	DAY	DRY	MOTOR VEHI	CLE (STOPPED)		REAR END	
4 15033761	2.238 INJ0	DAY	DRY	MOTOR VEHI	CLE (STOPPED)		REAR END	

5 15537511	2.254 INJ0 DAY	WET	DITCH	NO COLLISION W/MV
6 16025450	2.238 INJ0 DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
7 16028313	2.238 INJ0 DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	ANGLE
8 18008296	2.253 INJ1 DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
9 18009166	2.252 INJ0 DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END

MPT 2.335 to 2.435 (Stack #6)

Total Crashes: 9	Light: 8	Dark: 1	l Dry:	5 Wet: 4	Fatalities: 0	Injuries: 2	PDO: 7	
1 14582903	2.388 INJ0	DAY	DRY	MOTOR VEH	ICLE (STOPPED))	REAR END	
2 15004224	2.360 INJ0	DUSK	WET	MOTOR VEH	ICLE (IN TRANSF	PORT)	REAR END	
3 15008555	2.424 INJ0	DAY	DRY	MOTOR VEH	ICLE (STOPPED)	1	REAR END	
4 16012074	2.415 INJ1	DAY	WET	MOTOR VEH	ICLE (STOPPED)	1	REAR END	
5 16015361	2.434 INJ0	DAY	DRY	MOTOR VEH	ICLE (STOPPED)	1	REAR END	
6 16607229	2.425 INJ0	DAY	WET	MOTOR VEH	ICLE (IN TRANSF	PORT)	REAR END	
7 17000439	2.421 INJ0	DAY	DRY	MOTOR VEH	ICLE (IN TRANSF	PORT)	ANGLE	
8 17012464	2.426 INJ0	DAY	WET	MOTOR VEH	ICLE (STOPPED)	1	REAR END	
9 17026636	2.347 INJ1	DAY	DRY	DITCH			NO COLLISION W/	/MV

MPT 2.435 to 2.535 (Stack #7)

Total	Crashes: 11	Ligh	nt: 11	Dark:	0 D	ry: 10	Wet: 1	Fatalities: 0	Injuries: () PDO: 11
1	14036670	2.472 IN	NJ0	DAY	DRY	MOTOR	VEHICLE	(IN TRANSPORT	<u> </u>	REAR END
2	14517648	2.531 IN	NJ0	DAY	WET	MOTOR	VEHICLE	(STOPPED)		REAR END
3	15004955	2.456 IN	NJ0	DAY	DRY	MOTOR	VEHICLE	(IN TRANSPORT	_)	ANGLE
4	15020021	2.468 IN	NJ0	DAY	DRY	MOTOR	VEHICLE	(IN TRANSPORT	_)	REAR END
5	16017690	2.460 IN	NJ0	DAY	DRY	MOTOR	VEHICLE	(STOPPED)		REAR END
6	16023770	2.472 IN	NJ0	DAY	DRY	MOTOR	VEHICLE	(STOPPED)		REAR END
7	16578026	2.505 IN	NJ0	DAY	DRY	MOTOR	VEHICLE	(IN TRANSPORT	_)	REAR END
8	16631047	2.447 IN	NJ0	DAY	DRY	MOTOR	VEHICLE	(IN TRANSPORT	_)	REAR END
9	18602884	2.487 IN	NJ0	DAY	DRY	MOTOR	VEHICLE	(IN TRANSPORT	<u> </u>	ANGLE
10	18677572	2.479 IN	NJ0	DAY	DRY	MOTOR	VEHICLE	(STOPPED)		REAR END
11	19629537	2.492 IN	NJ0	DAY	DRY	MOTOR	VEHICLE	(IN TRANSPORT	<u> </u>	ANGLE

MPT 2.535 to 2.635 (Stack #8)

Total Crashes: 14	Light: 12	2 Dark	c: 2	Dry: 10	Wet: 4	Fatalities: 0	Injuries: 5	PDO: 9
1 14517644	2.592 INJ1	DAY	DRY	MOTOR	VEHICLE	(STOPPED)	ı	REAR END
2 15545790	2.595 INJ0	DAY	DRY	MOTOR	VEHICLE	(IN TRANSPORT	Γ) /	ANGLE
3 16027909	2.577 INJ1	DARK	WET	MOTOR	VEHICLE	(STOPPED)	ı	REAR END
4 16647983	2.541 INJ0	DAY	DRY	MOTOR	VEHICLE	(IN TRANSPORT	Γ) Ι	REAR END

5	17010232	2.577 INJ0	DAY	WET	MOTOR VEHICLE (STOPPED)	REAR END
6	17022823	2.577 INJ1	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	ANGLE
7	17025964	2.577 INJ0	DAWN	DRY	MOTOR VEHICLE (IN TRANSPORT)	ANGLE
8	17026160	2.577 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
9	17027607	2.577 INJ2	DAY	DRY	MOTOR VEHICLE (IN TRANSPORT)	REAR END
10	17525356	2.577 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
11	18509909	2.605 INJ0	DAY	WET	MOTOR VEHICLE (STOPPED)	REAR END
12	18535754	2.592 INJ0	DAY	DRY	GUARDRAIL FACE	NO COLLISION W/MV
13	18587841	2.594 INJ0	DAY	DRY	MOTOR VEHICLE (STOPPED)	REAR END
14	19006504	2.577 INJ1	DAY	WET	MOTOR VEHICLE (IN TRANSPORT)	REAR END

MPT 2.635 to 2.735 (Stack #9)

Total Crashes: 3	Light: 2	Dark: 1	Dry:	2 Wet: 1	Fatalities: 0	Injuries: 1	PDO: 2
1 17020429	2.677 INJ1	DUSK	DRY	MOTOR VEH	ICLE (IN TRANSF	PORT)	REAR END
2 17519763	2.677 INJ0	DAY	DRY	MOTOR VEH	ICLE (IN TRANSF	PORT)	SIDESWIPE SAME
3 19002560	2.677 INJ0	DAY	WET	MOTOR VEH	ICLE (STOPPED)		REAR END

MPT 2.735 to 2.835 (Stack #10)

Total Crashes: 2	Light: 2	Dark: 0	Dry:	2 Wet: 0	Fatalities: 0	Injuries: 1	PDO: 1
1 16004239	2.774 INJ2	DAY	DRY	MOTOR VEH	ICLE (STOPPED))	REAR END
2 19517690	2.786 INJ0	DAY	DRY	MOTOR VEH	ICLE (IN TRANSF	PORT)	REAR END

MPT 2.835 to 2.858 (Stack #11)

Total Crashes: 1	Light: 1	Dark: 0	Dry: 0) Wet: 1	Fatalities: 0	Injuries: 1	PDO: 0
1 16012075	2.835 INJ3	DAY	WET I	MOTOR VEHICLE (IN TRANSPORT)			SIDESWIPE SAME

CMF ID: 2248

Change driveway density from X to Y (driveways/mile for segment)

Description:

Prior Condition: No Prior Condition(s)

Category: Access management

Study: Potential Driveway Density Accident Modification Factors for Rural

Highways Using Texas Data, Fitzpatrick et al., 2008

Star Quality Rating: [View score details]

Crash Modification Factor (CMF)

Value: $e^{0.0232(Y-X)}$ Adjusted Standard Error:

Unadjusted Standard Error:

Crash Reduction Factor (CRF)

Value:

 $100(1 - e^{0.0232(Y-X)})$

Adjusted Standard Error:	
Unadjusted Standard Error:	

Applicability	
Crash Type:	All
Crash Severity:	All
Roadway Types:	Principal Arterial Other
Number of Lanes:	2
Road Division Type:	
Speed Limit:	
Area Type:	Rural
Traffic Volume:	
Time of Day:	All
If countermeasure is intersection-based	
Intersection Type:	
Intersection Geometry:	
Traffic Control:	
Major Road Traffic Volume:	
Minor Road Traffic Volume:	

Development Details	
Date Range of Data Used:	1999 to 2001
Municipality:	

State:	TX
Country:	
Type of Methodology Used:	Regression cross-section
Sample Size Used:	7062

Other Details	
Included in Highway Safety Manual?	No
Date Added to Clearinghouse:	Dec-01-2009
Comments:	Driveway density at the study sites ranged from 0 to 20 driveways per mile.

CMF ID: 7569

Convert 2 lane roadway to 4 lane divided roadway

Description: Conversion of urban and rural two-lane roadways to four-lane

divided roadways

Prior Condition: 2 lane roadway

Category: Roadway

Study: Evaluation of the Safety Effectiveness of the Conversion of Two-Lane Roadways to Four-Lane Divided Roadways: Bayesian vs. Empirical Bayes, Ahmed

et al., 2015

Star Quality Rating:

| View score details

Crash Modification Factor (CMF)	
Value:	0.712
Adjusted Standard Error:	
Unadjusted Standard Error:	0.076

Crash	Reduction	Factor	(CRF)
-------	-----------	--------	-------

Value:

28.79 (This value indicates a **decrease** in crashes)

Adjusted Standard Error:	
Unadjusted Standard Error:	7.65

Applicability	
Crash Type:	All
Crash Severity:	All
Roadway Types:	Not specified
Number of Lanes:	2
Road Division Type:	Undivided
Speed Limit:	
Агеа Туре:	Rural
Traffic Volume:	
Time of Day:	All
If countermeasure is intersection-based	
Intersection Type:	
Intersection Geometry:	
Traffic Control:	
Major Road Traffic Volume:	
Minor Road Traffic Volume:	

Development Details	
Date Range of Data Used:	2002 to 2012
Municipality:	

State:	FL
Country:	USA
Type of Methodology Used:	Before/after using empirical Bayes or full Bayes
Sample Size Used:	

Other Details	
Included in Highway Safety Manual?	No
Date Added to Clearinghouse:	Nov-01-2015
Comments:	

CMF ID: 325

Install a traffic signal

Description:

Prior Condition: Stop controlled

Category: Intersection traffic control

Study: <u>Accident Modification Factors for Traffic Engineering and ITS</u>

Improvements, Harkey et al., 2008

Star Quality Rating:	全会会会会

Crash Modification Factor (CMF)	
Value:	0.56
Adjusted Standard Error:	0.03
Unadjusted Standard Error:	

Crash Reduction Factor (CRF)	
Value:	44 (This value indicates a decrease in crashes)
Adjusted Standard Error:	3

Applicability		
Crash Type:	All	
Crash Severity:	All	
Roadway Types:	Not specified	
Number of Lanes:		
Road Division Type:		
Speed Limit:		
Area Type:	Rural	
Traffic Volume:		
Time of Day:		
If countermeasure is intersection-based		
Intersection Type:	Roadway/roadway (not interchange related)	
Intersection Geometry:	3-leg,4-leg	
Traffic Control:	Stop-controlled	
Major Road Traffic Volume:	3261 to 29926 Annual Average Daily Traffic (AADT)	
Minor Road Traffic Volume:	101 to 10300 Annual Average Daily Traffic (AADT)	

Development Details	
Date Range of Data Used:	
Municipality:	
State:	

Country:	
Type of Methodology Used:	Before/after using empirical Bayes or full Bayes
Sample Size Used:	

Other Details	
Included in Highway Safety Manual?	Yes. HSM lists this CMF in bold font to indicate that it has the highest reliability since it has an adjusted standard error of 0.1 or less.
Date Added to Clearinghouse:	Dec-01-2009
Comments:	Countermeasure name has been slightly modified for consistency across Clearinghouse

CMF ID: 479

Provide cloverleaf ramp instead of long ramp

Description:

Prior Condition: No Prior Condition(s)

Category: Interchange design

Study: Revision of the Hand Book of Road Safety Measures, Elvik, R. and Erke,

A., 2007

Star Quality Rating:

73	M	M	X	M

Crash Modification Factor (CMF)	
Value:	0.77
Adjusted Standard Error:	0.2
Unadjusted Standard Error:	0.11

Crash Reduction Factor (CRF)	
Value:	23 (This value indicates a decrease in crashes)
Adjusted Standard Error:	20

Unadjusted Standard Error:

11

Applicability		
Crash Type:	All	
Crash Severity:	All	
Roadway Types:	Not specified	
Number of Lanes:		
Road Division Type:		
Speed Limit:		
Area Type:	Not specified	
Traffic Volume:		
Time of Day:		
If o	countermeasure is intersection-based	
Intersection Type:		
Intersection Geometry:		
Traffic Control:		
Major Road Traffic Volume:		
Minor Road Traffic Volume:		
Development Details		

Development Details	
Date Range of Data Used:	
Municipality:	
State:	

Country:	
Type of Methodology Used:	Meta-analysis
Sample Size Used:	

Other Details	
Included in Highway Safety Manual?	No
Date Added to Clearinghouse:	Dec-01-2009
Comments:	

CMF ID: 477

Provide long ramp instead of shortramp

Description:

Prior Condition: No Prior Condition(s)

Category: Interchange design

Study: Revision of the Hand Book of Road Safety Measures, Elvik, R. and Erke,

A., 2007

Star Quality Rating:

Crash Modification Factor (CMF)	
Value:	0.62
Adjusted Standard Error:	0.1
Unadjusted Standard Error:	0.06

Crash Reduction Factor (CRF)	
Value:	38 (This value indicates a decrease in crashes)
Adjusted Standard Error:	10

Unadjusted Standard Error:

6

Applicability		
	Applicability	
Crash Type:	All	
Crash Severity:	All	
Roadway Types:	Not specified	
Number of Lanes:		
Road Division Type:		
Speed Limit:		
Area Type:	Not specified	
Traffic Volume:		
Time of Day:		
If o	countermeasure is intersection-based	
Intersection Type:		
Intersection Geometry:		
Traffic Control:		
Major Road Traffic Volume:		
Minor Road Traffic Volume:		
Development Details		

Development Details	
Date Range of Data Used:	
Municipality:	
State:	

Country:	
Type of Methodology Used:	Meta-analysis
Sample Size Used:	

Other Details	
Included in Highway Safety Manual?	No
Date Added to Clearinghouse:	Dec-01-2009
Comments:	

CMF ID: 7997

Install left-turn lane

Description:

Prior Condition: Intersections without left turn lanes

Category: Intersection geometry

Study: <u>Safety Evaluation of Signal Installation With and Without Left Turn Lanes</u> on Two Lane Roads in Rural and Suburban Areas, Srinivasan et al., 2014

Crash Modification Factor (CMF)

Value: 0.924

Adjusted Standard Error: 0.07

Crash Reduction Factor (CRF)	
Value:	7.6 (This value indicates a decrease in crashes)
Adjusted Standard Error:	

Unadjusted Standard Error:

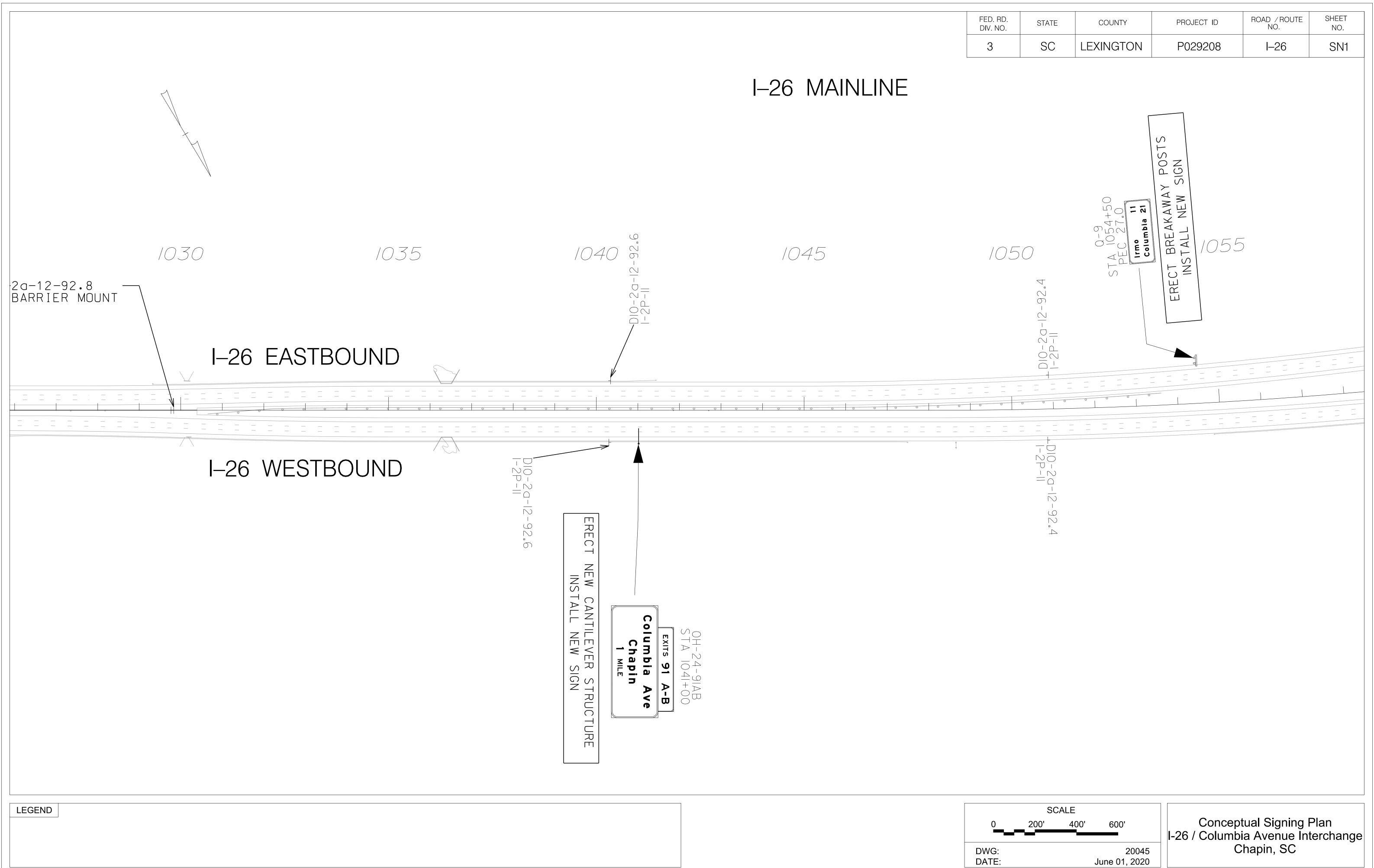
7

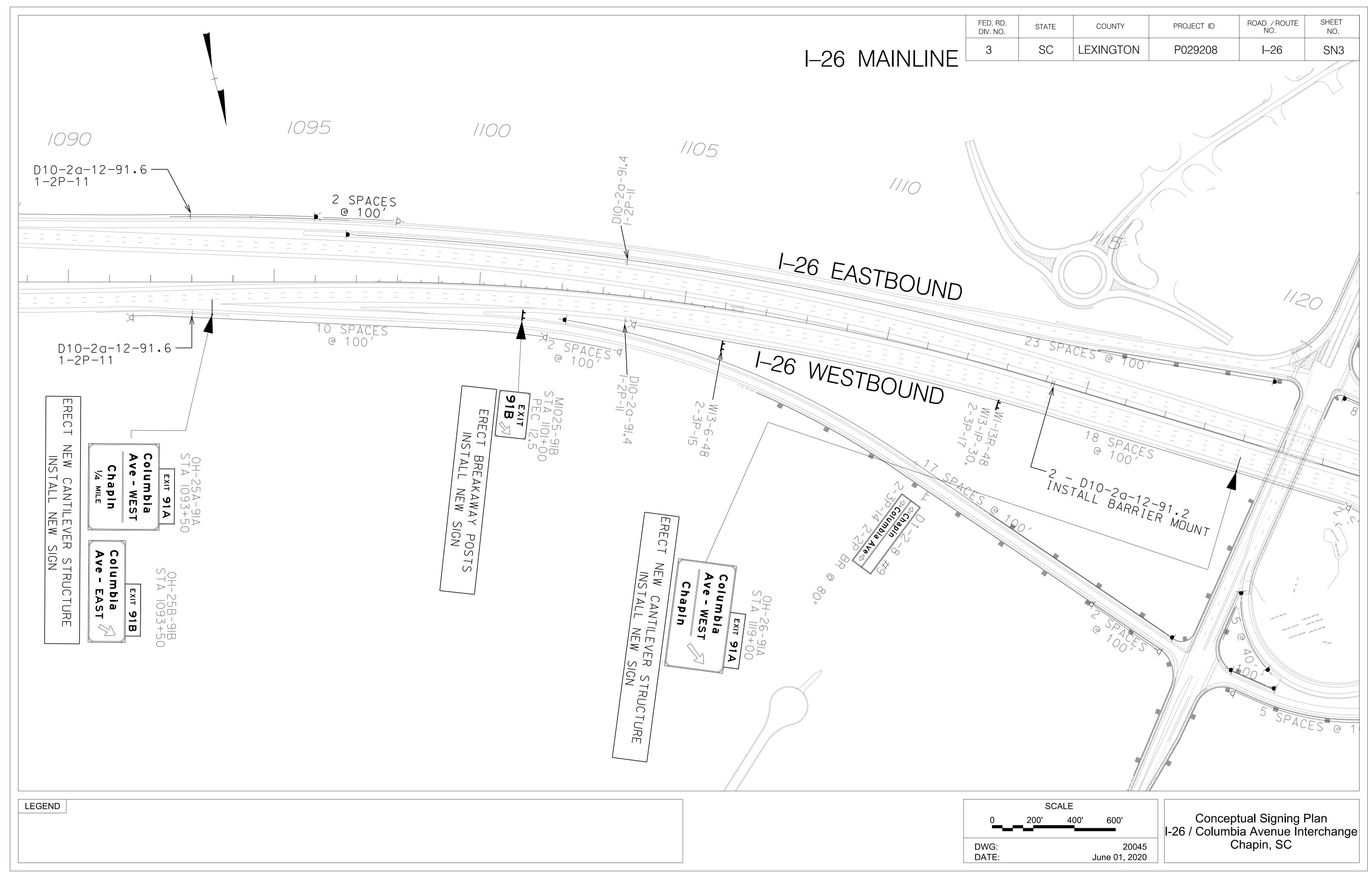
	Applicability	
Crash Type:	All	
Crash Severity:	All	
Roadway Types:	Not specified	
Number of Lanes:	2	
Road Division Type:		
Speed Limit:		
Area Type:	All	
Traffic Volume:		
Time of Day:	All	
If e	countermeasure is intersection-based	
Intersection Type:	Not specified	
Intersection Geometry:	4-leg	
Traffic Control:	Signalized	
Major Road Traffic Volume:	1360 to 17566 Annual Average Daily Traffic (AADT)	
Minor Road Traffic Volume:	746 to 8884 Annual Average Daily Traffic (AADT)	

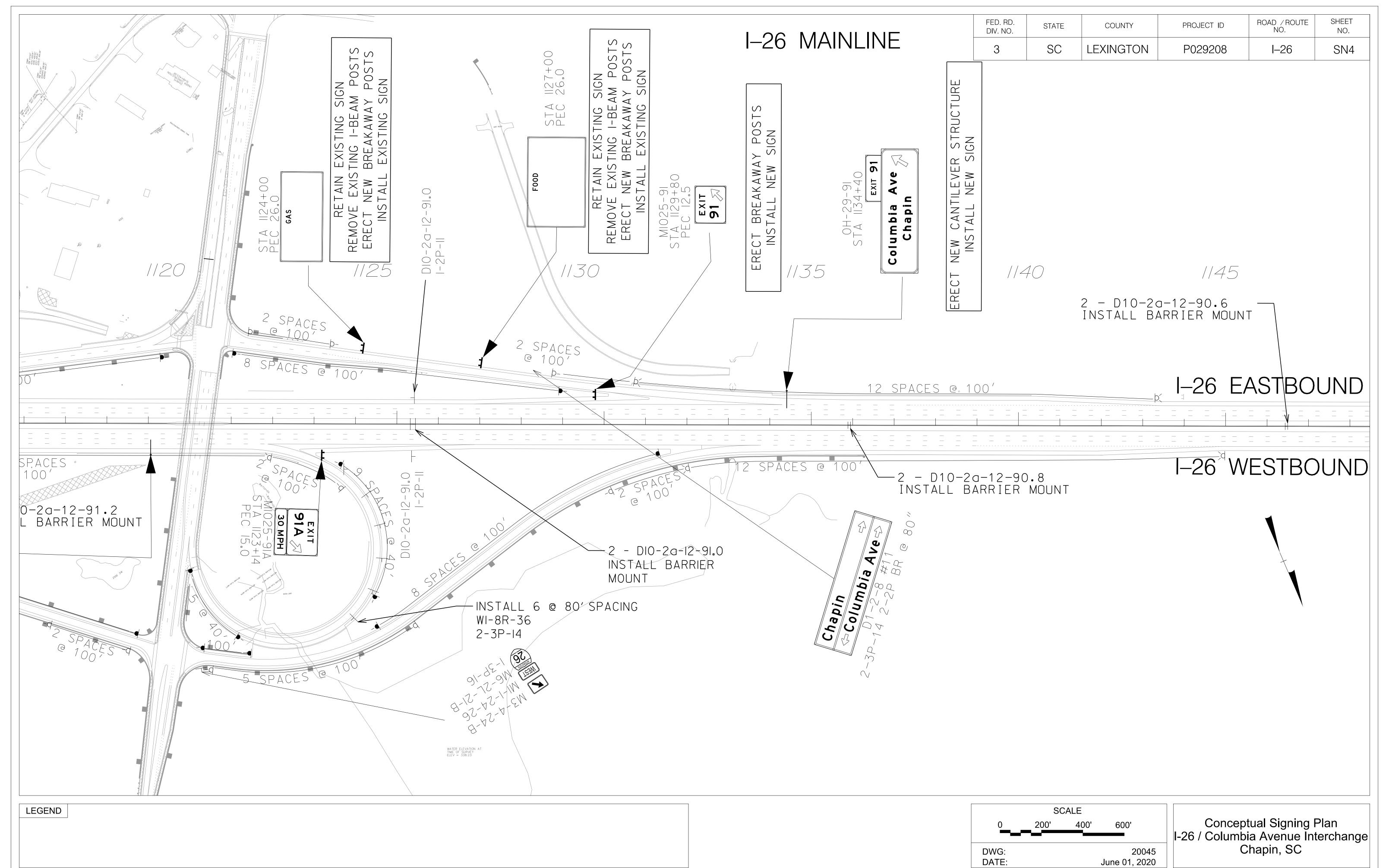
Development Details	
Date Range of Data Used:	1992 to 2012
Municipality:	
State:	NC

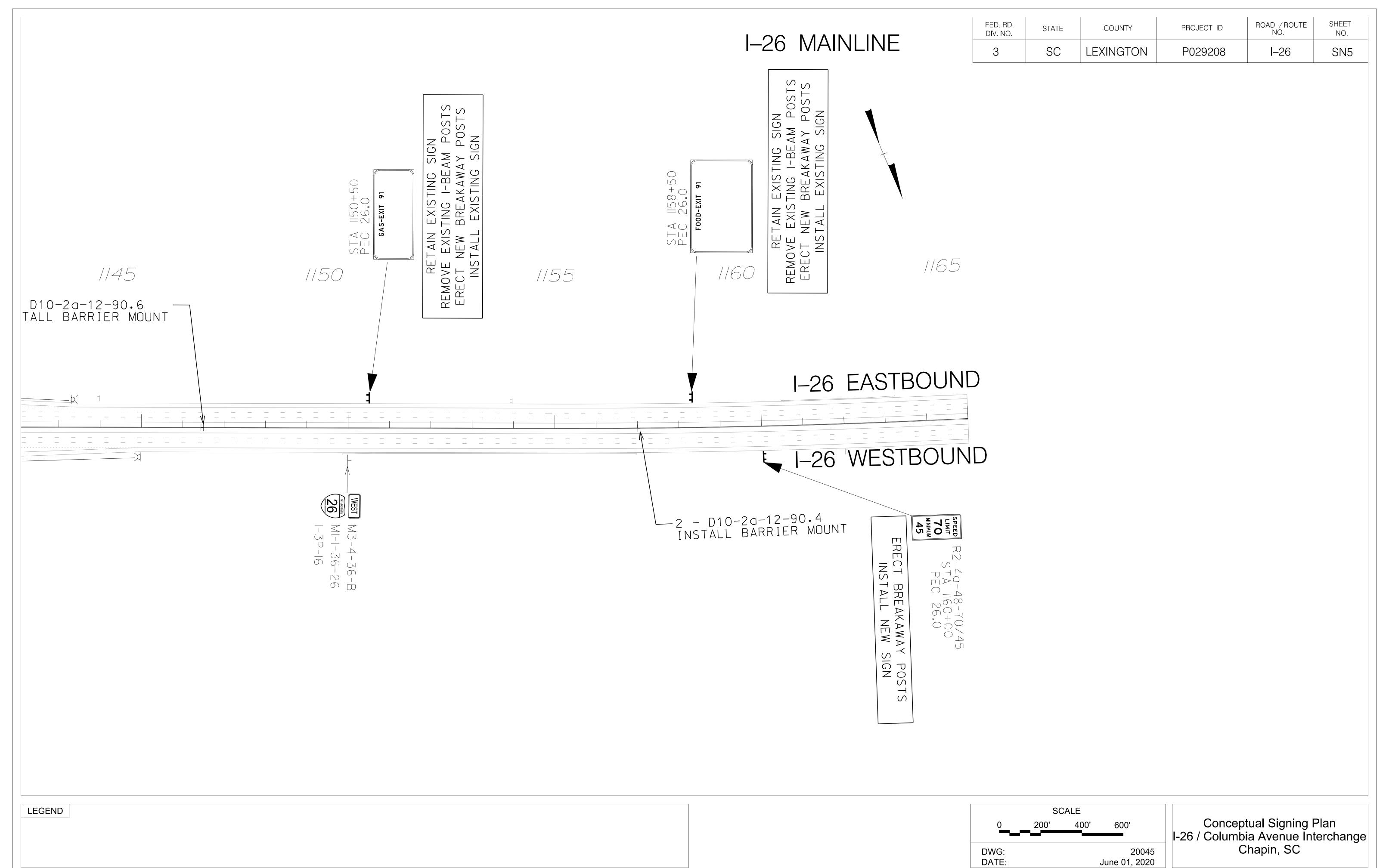
Country:	
Type of Methodology Used:	Before/after using empirical Bayes or full Bayes
Sample Size Used:	

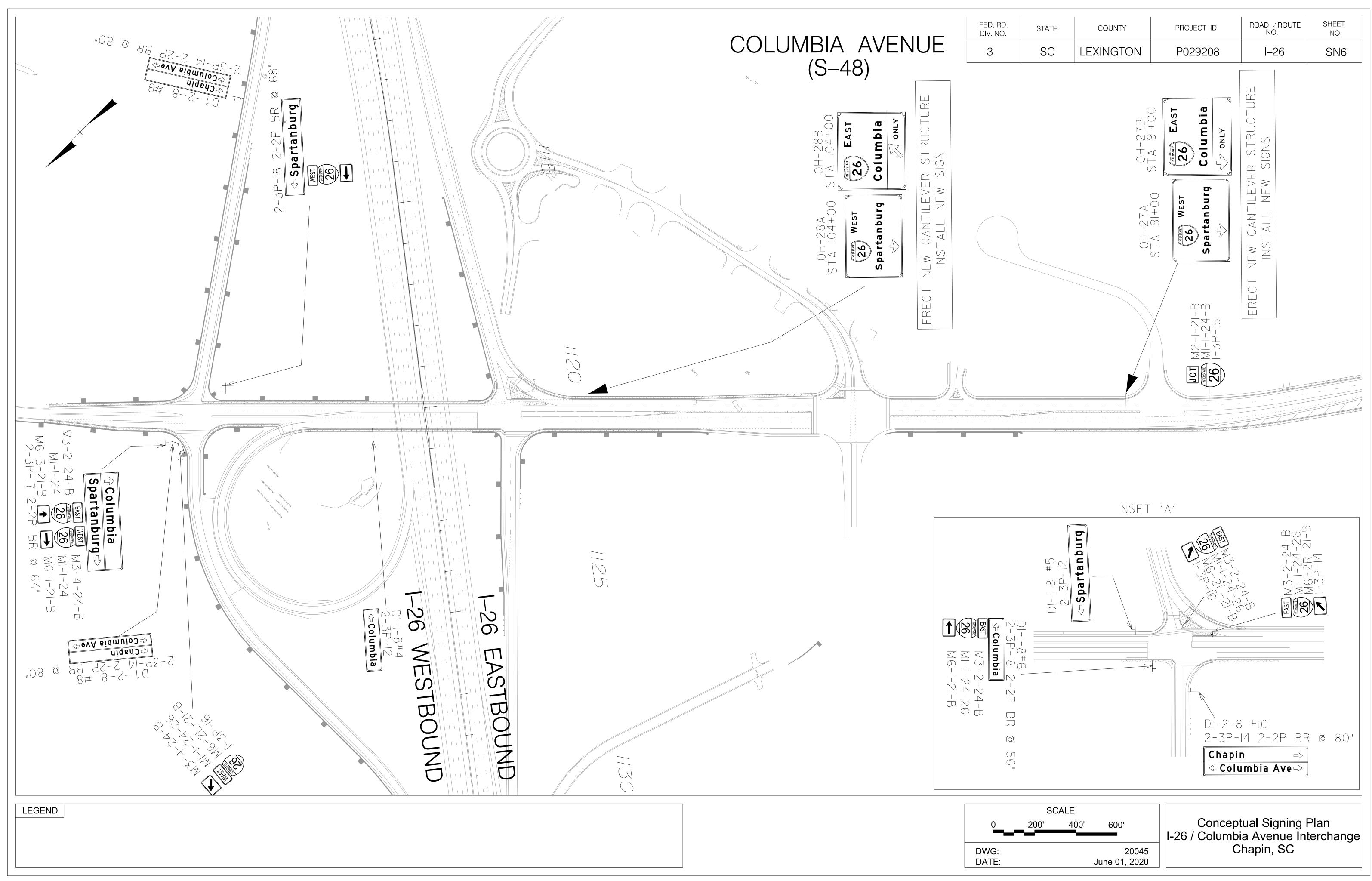
Other Details	
Included in Highway Safety Manual?	No
Date Added to Clearinghouse:	Nov-10-2016
Comments:	The CMF was developed for both rural and suburban areas.


DocuSign Envelope ID: 80BCC4F1-7DFA-49FB-8D14-889B07D24B97 RAMEY KEMP ASSOCIATES


Moving forward.


Columbia Avenue (S-48) Over I-26 Interchange – Interchange Modification Report


APPENDIX H


Conceptual Signing Plan

